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1. Topological and Quasiconformal Reflections

By the Brouwer–Kerekjarto theorem, every periodic homeomorphism of the
sphere S2 is topologically equivalent to a rotation, or to the product of rotation
and reflection across the diametral plane (see [10], [19], [48]). The first case
corresponds to orientation preserving homeomorphisms (and then E consists of
two points), the second one is orientation reversing, and then either the fixed
point set E is empty (which is excluded in our situation) or it is a topological
circle.

We are concerned with homeomorphisms reversing orientation. Such homeo-
morphisms of order 2 are topological involutions of S2 with f ◦ f = id and are
called topological reflections.

For a discussion of the properties of periodical homeomorphisms of the sphere
Sn, n > 2, we refer to [11], [48], [49].

Let us consider quasiconformal reflections on the sphere S2 = Ĉ. The
topological circles admitting such reflections are quasicircles, i.e., the circles
which are locally quasi-intervals (the images of straight line segments under
quasiconformal maps of the sphere S2). Geometrically, any quasicircle L is
characterized by the uniform boundedness of cross-ratios for all ordered quadru-
ples (z1, z2, z3, z4) of the distinct points on L or, equivalently, by the property
that, for any two points z1, z2 on L, the ratio of the chordal distance |z1 − z2|
to the diameters of the correspoding subarcs with these endpoints is uniformly
bounded (see, e.g., [2], [16], [37], [42]). Note also that, due to [3], any quasicircle
admits a bi-Lipschitz reflection, which is very useful in various applications.

For an extension to higher dimensions see [39], [54].
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Quasireflections across more general sets E ⊂ Ĉ also appear in certain ques-
tions and are of independent interest. Those sets admitting quasireflections are
called quasiconformal mirrors.

2. Quantitative Estimating

One defines, for each mirror E, its reflection coefficient

qE = inf k(f) = inf
∥∥∂zf/∂z̄f

∥∥
∞ (1)

and quasiconformal dilatation

QE = (1 + qE)/(1− qE) ≥ 1;

the infimum in (1) is taken over all quasireflections across E provided these
exist and is attained by some quasireflection f0. When E = L is a quasicircle,
the corresponding quantity

kE = inf
{
k(f∗) : f∗(S1) = E

}
(2)

and the reflection coefficient qE can be estimated in terms of each another;
moreover, due to [3], [33], we have

QE = KE := (1 + kE)2/(1− kE)2. (3)

The infimum in (2) is taken over all orientation preserving quasiconformal au-
tomorphisms f∗ carrying the unit circle onto L, and k(f∗) = ‖∂z̄f/∂zf‖∞.

Note that quasiconformal maps (not reflections) mean orientation preserving
homeomorphic solutions of the Beltrami equation

∂zw = µ(z) ∂zw

in a domain D j Ĉ = C ∪ {∞} with ‖µ‖∞ < 1, where the derivatives ∂z̄ and
∂z are distributional and belong locally to L2. The function µ is called the
Beltrami coefficient of the map w; the quantities k(w) = ‖µ‖∞ and K(f) =
(1 + k(w))/(1 − k(w)) are, respectively, its dilatation and maximal dilatation.
The maps with k(w) ≤ k0 are called k0-quasiconformal (cf., e.g., [3], [21]).

It has been established in [26], [28] that any set E ⊂ S2, which admits
an orientation reversing quasiconformal homeomorphism f of the sphere S2

keeping this set pointwise fixed, is necessarily a subset of a quasicircle (hence
any quasiconformal mirror E ⊂ S2 obeys quasiconformal involutions of S2 of
order 2). Moreover, this quasicircle can be chosen to have the same reflection
coefficient as the initial set E (cf. [27], [34]). This result gives a complete answer

to a question of Kühnau of describing all sets E ∈ Ĉ which admit quasiconformal
reflections (see, e.g., [35]); it also yields various quantitative consequences. In
particular, this result provides that equality (3) is true for any subset E of S2

(assuming QE = ∞ if E does not admit quasiconformal reflections).
The conformal symmetry on the extended complex plane is strictly rigid

and reduces to reflection z 7→ z̄ within conjugation by transformations g ∈
PSL(2,C). The quasiconformal symmetry avoids such rigidity and is possible
over quasicircles; this case turns out to be the most general one.
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A somewhat different construction of quasiconformal reflections across Jordan
curves was provided in [14]; it relies on the conformally natural extension of
homeomorphisms of the circle introduced by Douady and Earle [12].

3. Fredholm Eigenvalues

An important problem is to provide the algorithms for calculating exact or
approximate values of the reflection coefficients of particular curves and arcs.
Even for polygons only special results are known (see, e.g., [31], [33], [53]).

Here, the least nontrivial Fredholm eigenvalue λ1 = λL plays a crucial role.
The Fredholm eigenvalues are defined for a smooth closed bounded curve L to
be the eigenvalues of the double-layer potential over L, in other words, of the
equation

h(z) =
ρ

π

∫

L

h(ζ)
∂

∂nζ

log
1

|ζ − z| dsζ , ζ ∈ L,

where nζ is the outer normal and dsζ is the length element at ζ ∈ L. These
values are important in various questions (see, e.g., [1], [15], [33], [43], [44], [45],
[46], [52]; [29], part 2).

The indicated eigenvalue ρL can be defined for any oriented closed Jordan

curve L ⊂ Ĉ by the equality

1

ρL

= sup
|DG(u)−DG∗(u)|
DG(u) + DG∗(u)

, (4)

where G and G∗ are respectively the interior and the exterior of L; D denotes
the Dirichlet integral, and the supremum is taken over all functions u continuous

on Ĉ and harmonic on G ∪G∗. Due to [1],

qL ≥ 1

ρL

. (5)

Denote ∆ = {z : |z| < 1}, ∆∗ = {z ∈ Ĉ : |z| > 1}.
It suffices to consider the quasiconformal homeomorphisms of the sphere car-

rying S1 onto L whose Beltrami coefficients µf (z) = ∂z̄f/∂zf have support in
the unit disk ∆, and

f |∆∗(z) = z + b0 + b1z
−1 + · · ·

(or in the upper half-plane U = {Im z > 0}) because all quantities in (5)
are invariant under the action of the Möbius group PSL(2,C)/ ± 1. By the
Kühnau–Schiffer theorem [30], [45], we have ρL = 1/κ(f ∗), where

κ(f ∗) = sup
∣∣∣

∞∑
m,n=1

√
mn αmnxmxn

∣∣∣ ≤ 1

is the Grunsky constant of the map f ∗; here αmn are the Grunsky coefficients
obtained from the expansion of the principal branch of the function log[(f ∗(z)−
f ∗(ζ))/(z− ζ)] into the double series on the bidisk (∆∗)2, and the supremum is
taken over the points x = (xn) ∈ l2 with ‖x‖2 = 1 (cf. [17], [33]).
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Note that the function g(z) = 1/f ∗(1/z) = z + a2z
2 + · · · , which is univalent

in ∆, has the same Grunsky coefficients αmn as f ∗(z).
It is well-known that κ(f ∗) ≤ k0(f

∗), but in the general case the strict
inequality κ(f ∗) < k0(f

∗) holds (see, e.g., [22], [32], [33]). A complete charac-
terization of maps for which κ(f ∗) = k0(f

∗) = qf∗(S1) is given in [22], [26].
One of the standard ways of establishing the reflection coefficients qL (respec-

tively, the Fredholm eigenvalues ρL) consists of verifying whether the equality
in (5) or the equality κ(f ∗) = k0(f

∗) hold for a given curve L. There is no
complete answer even for the rectangles (cf. [24], [33], [53]).

4. A Conjecture of Ahlfors

Let now f be a conformal map of the upper half-plane U = {z : Re z > 0}
onto the interior domain D = D(L) of a given quasicircle L. How can this map
be characterized?

L. Ahlfors conjectured in [2] that it can be characterized by analytic properties
of the invariant (logarithmic derivative) bf = f ′′/f ′. Starting by the well-
known Becker’s univalence criterion for the disk, different authors established
the conditions for f ′′/f ′ which ensure quasiconformal extensions of f (see, e.g.,
[5], [6], [7], [18], [40], [41]).

5. General Theorem

The goal of this paper is to prove the following theorem which concerns the
above conjecture and relies on the properties of the logarithmic derivative.

Theorem 5.1. Let a function f map conformally the upper half-plane U into
C, and let the equation

w′′(ζ) = tbf (ζ)w′(ζ), ζ ∈ U, (6)

have univalent solutions on U for all t ∈ [0, t0], t0 > 1. Then the image f(U)

is a quasidisk, and the reflection coefficient of its boundary L = f(R̂) = ∂f(U)
satisfies

qL ≤ 1

t0
. (7)

The bound given by (7) cannot be improved in the general case. The equality
in (7) is attained by any quasicircle which contains two C1+ε smooth subarcs
(ε > 0) with the interior intersection angle απ, where α = 1 − 1/t0 (under the
above univalence assumption for the logarithmic derivative bf ). In this case,

qL =
1

ρL

=
1

t0
. (8)

The exact bound for the reflection coefficient qL follows from (7) by choosing a
maximal value of t0 admitting the indicated univalence property for all t ∈ [0, t0].
The corresponding solution wt0 of (6) for this value is also univalent on U (by the
properties of holomorphic functions), but the domain wt0(U) is not a quasidisk.



A BOUND FOR REFLECTIONS ACROSS JORDAN CURVES 565

Proof. We map the half-plane U conformally onto the disks ∆t = {z : |z| < t}
by the functions

z = t
ζ − i

ζ + i
, 0 < t ≤ t0;

the inverse maps ∆t → U are

σt(z) = i(1 + tz)/(1− tz).

Then

bf◦σt(z) = (bf ◦ σt)σ
′
t(z) + bσt(z) = bf

(
i
1 + tz

1− tz

) 2it

(1− tz)2
− 2t

1− tz
,

and equation (6) is transformed to

u′′(z) = tbf◦σt(z)u′(z). (9)

Note that, for a fixed t, any two solutions u∗, u∗∗ to (9) differ by a linear trans-
formation u∗∗ = c1u∗+c2; hence, all these solutions are simultaneously univalent
on U (of course, the same is true for equation (6)).

Now observe that these both equations have only univalent solutions (in U
and ∆, respectively) also for the complex values of the parameter t when |t| ≤ t0.

Indeed, take the solution ur of (9) normalized by ur(0) = 0, u′r(0) = 1. It
has the form

ur(z) = z + c2(r)z
2 + c3(r)z

2 + · · · , (10)

where the coefficients are analytic on |r| < t0, i.e.,

cj(r) = cj,0r
j + cj,1r

j+1 + · · · .

Define for t = reiθ the function

ut(z) = e−iθur(e
iθz).

It is also univalent on ∆, and

u′′t (z)

u′t(z)
= eiθ u′′r(e

iθz)

u′r(eiθz)
= tbf◦σr(e

iθz).

Taking this into account, we set

bf,t(z) = tbf◦σt(tz)

and define a complex homotopy Wt(z) : ∆×∆t so that for 0 < |t| < t0 the map
Wt(z) is the solution on the unit disk ∆ = |z| < 1 of the differential equation

u′′(z) = bf,t(z)u′(z), z ∈ ∆, t ∈ [0, t0],

normalized by means of (10), while W (z, 0) = z.

The function W (z, t) = Wt(z) : ∆×∆t0 → Ĉ defines holomorphic motion of
the unit disk ∆, i.e., it satisfies: (a) the map z 7→ f(z, t) is injective on ∆ for

each t; (b) the (Ĉ-valued) function t 7→ f(z, t) is holomorphic on ∆ for each z;
(c) f(z, 0) = z for all z ∈ ∆. ¤
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The basic properties of homotopies depending holomorphically on a complex
parameter are presented in the following statement (see, e.g., [9], [13], [38], [47],
[50]).

Extended lambda-lemma ([38], [47]). If f : E ×∆ → Ĉ is holomorphic

motion of a set E ⊂ Ĉ (containing at least three points), then:

1) f has an extension f̃ : E ×∆ → Ĉ such that f̃ is holomorphic motion of

the closure E of E, each f̃t(z) = f̃(z, t) : E → Ĉ is quasiconformal, and f̃ is
jointly continuous in (z, t).

2) The motion f can be extended to holomorphic motion F : Ĉ×∆ → Ĉ, so
that F |E ×∆ = f . This map determines the holomorphic map

t → µF = ∂z̄F (z, t)/∂zF (z, t)

of ∆ into the unit ball M1 = {µ ∈ L∞(C) : ‖µ‖ < 1} of the Beltrami coeffi-
cients, and by the Schwarz lemma,

‖µF‖∞ ≤ |t|.
This bound cannot be improved in the general case.

In our case, the condition (a) is satisfied because of the univalence of solutions
provided by the assumption of the theorem, and (c) holds trivially; as for (b),
the general results on complex differential equations provide that the normalized
solutions Wt(z) are complex holomorphic functions of the parameter t by a
fixed z.

Applying the lambda-lemma, one obtains that every fiber map Wt : ∆ → Ĉ
has quasiconformal extension Ŵt to the whole sphere Ĉ whose Beltrami coeffi-
cient µ bFt

is estimated by

‖µcWt
‖∞ ≤

∣∣∣ t

t0

∣∣∣
and depends holomorphically on t via an element of L∞(C).

Returning to the half-plane U , one obtains holomorphic motion

ŵ(ζ, t) = Ŵ (σ−1(ζ), t/t0) : U ×∆ → Ĉ.

It can be renormalized by composing with the linear maps γ1(ζ) and g2(w) to
get the motion γ2 ◦ ŵ(·, t) ◦ g1(ζ) which includes the initial conformal map f of
U , i.e., such that γ2 ◦ ŵ(, 1) ◦ g1(ζ) = f(ζ).

It follows from the above that we have established the existence of a quasi-

conformal extension F = γ2◦ŵ(·, 1/t0)◦g1 of the map f onto Ĉ, whose Beltrami
coefficient satisfies ‖µF‖∞ ≤ 1/t0. Hence, the boundary curve L = ∂f(U) is a
quasicircle.

This extension defines a quasireflection

F̃ (ζ) = F ◦ F−1(ζ)

across L; moreover, the dilatations of both maps F̃ and F are equal because of
the conformality of F on U . Thereby one obtains bound (7).
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To examine the case of the equality in (7), we combine (5) with the angle

inequality of Kühnau [33] which asserts that if any closed curve L ⊂ Ĉ contains
two analytic arcs with the interior intersection angle πα, then its reflection
coefficient satisfies

1/ρL ≥ |1− α|. (11)

This provides the equalities (8) for quasicircles with analytic subarcs.
By an appropriate approximation, one obtains that the inequality (11) is

extended to the curves with C1+ε-smooth subarcs. This completes the proof of
the theorem.

6. Geometric Features

The following theorem announced in [28] shows that the bound (6) given
by Theorem 1 is achieved for unbounded convex or concave domains and their
fractional linear images.

Theorem 2. For every unbounded convex domain D ⊂ C with piecewise
C1+ε-smooth boundary L (ε > 0), the equalities

qL = 1/ρL = κ(g) = κ(g∗) = k0(g) = k0(g
∗) = 1− |α| (12)

hold, where g and g∗ denote the appropriately normalized conformal maps ∆ →
D and ∆∗ → Ĉ \D, respectively; k0(g) and k0(g

∗) are the minimal dilatations

of their quasiconformal extensions to Ĉ, and π|α| is the opening of the least
interior angle between the boundary arcs Lj ⊂ L. Here 0 < α < 1 if the
corresponding vertex is finite and −1 < α < 0 for the angle at the vertex at
infinity.

The same is true for the unbounded concave domains which do not contain
∞; for these one must replace the last term by |β|−1, where π|β| is the opening
of the largest interior angle of D.

The univalence of solutions of equation (6) for 0 ≤ t ≤ 1/(1 − |α|) is es-
tablished for such domains approximating f : U → D by conformal maps fn

of the half-plane onto the rectilinear polygons Pn which are chosen to be also
unbounded and convex or concave simultaneously with the original domain D.
These maps fn are represented by the Schwarz–Christoffel integral (cf., e.g.,
[20]).

The main point is that if the least interior angle of Pn equals π|αn| (taking
the negative sign for the angle at infinity), then for any t ∈ [0, 1/(1− |αn|)] the
corresponding fiber map wt(z) is again a conformal map of the half-plane onto
a well-defined rectilinear polygon.

The basic equalities q∂Pn = 1/ρ∂Pn = 1 − |αn| follow now from Theorem 1,
while the remaining equalities in (12) are obtained by combining this theorem
with the Kühnau–Schiffer theorem mentioned above.

Theorems 1 and 2 have various important consequences. For example, for
any closed unbounded curve L with the convex interior, which is C1+ε-smooth
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at all finite points and has, at infinity, the asymptotes approaching the interior
angle πα < 0, we have

qL = 1/ρL = 1− |α|. (13)

More generally, let L = γ1 ∪ γ2 ∪ γ3, where

γ1 = [a1,∞], γ2 = eiπα[a2,∞], a1 ≥ a2 > 0, 0 < α ≤ 1/2,

and

γ3 =
{
(x, y) : y = h(x), a2 cos πα ≤ x ≤ a1

}

with a decreasing convex piecewise C1+ε-smooth function h such that

h(a2 cos πα) = a2 sin π|α|, h(a1) = 0.

The equalities (13) hold for any such curve.
The above geometric assumptions on the domains are essential. In particular,

the assertion of Theorem 2 extends neither to arbitrary unbounded nonconvex
and nonconcave domains nor to arbitrary bounded convex domains without
some additional assumptions.

For example, any rectangle P is fractional-linearly equivalent to a circular
4-gon P ∗ with one vertex at infinity, whose boundary consists of two infinite
straight line intervals and two circular arcs; these four parts of ∂P ∗ are mutually
orthogonal. By the results of [31] and [53], we have q∂P > 1/2 for any rectangle
whose conformal module is greater than 2.76, though the interior angles of P ∗

are equal to ±π/2.
On the other hand, the examples from [32] and [22] provide the bounded

convex domains D ⊂ C whose Grunsky constants κ(g∗) and the minimal di-
latation k0(g

∗) are related by κ(g∗) < k0(g
∗) = q∂D, in contrast to the situation

in Theorem 2.
This shows also that the univalence of solutions wt for all t ∈ [0, t0] in Theorem

1 is essential.
Note that for a few special curves, similar equalities were established in [31],

[33], [53]) by applying geometric constructions giving explicitly the extremal
quasireflections.

7. An Obstruction to Connectedness of Generic Intervals

Theorem 1 closely relates to the structure of holomorphic embeddings of
the universal Teichmüller space. An old question posed already in [8] in a
collection of unsolved problems for Teichmüller spaces and Kleinian groups is
whether for an arbitrary finitely or infinitely generated Fuchsian group Γ the
Bers embedding of its Teichmüller space T(Γ) is starlike.

The Bers embedding of T(Γ) can be modelled as a bounded domain in the
complex Banach space B(∆∗, Γ) of holomorphic Γ-automorohic forms of the
degree -4 (quadratic differentials) ψ on the disk ∆∗, with the norm

‖ψ‖ = sup
∆∗

(|z|2 − 1)2|ψ(z)|.
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This domain is filled by the Schwarzian derivatives

Sf (z) = b′f (z)− bf (z)2

2

of univalent and nonvanishing functions

f(z) = z + a1z
−1 + · · · (14)

in ∆∗ admitting quasiconformal extensions to the whole sphere Ĉ which are
compatible with the group Γ (i.e., such that the conjugation fGf−1 produces a
quasifuchsian group). The functions (14) form the well-known class Σ.

A complete answer for the universal Teichmüller space (in the negative) was
given in [23]. Denote

S =
{
Sf ∈ B : f univalent in ∆∗}.

It was shown in [23] that the space T is not starlike with respect to any of its
points, and there exist points ϕ ∈ T for which the line interval

Iϕ =
{
tϕ : 0 < t < 1

} ⊂ B (15)

contains the points from B \ S. In other words, the corresponding functions f
with Sf = ϕ in ∆∗ are only locally univalent on ∆∗.

The proof of this important fact relies on Thurston’s theorem on the existence
of conformally rigid domains which correspond to isolated components of S \T
([51], see also [4]).

The logarithmic derivatives βf = f ′′/f ′ determine the Becker embedding of
T as a domain D1 in the Banach space B1 of holomorphic functions ψ on ∆∗

with the norm ‖ψ‖ = sup∆∗(|z|2 − 1)|zψ(z)|.
Using the known estimate ‖Sf‖ ≤ 41‖bf‖ (see, e.g., [6]), one concludes that

the domain D1 is also not starlike.
In particular, it was shown in [23] that there are functions f ∈ Σ mapping

∆∗ onto the domains G with analytic boundaries so that the corresponding
intervals (15) for ϕ = Sf (belonging to T) contain the points from B \ S. This
yields intervals {tϕ : 0 < t < 1} ⊂ B1 which do not lie entirely in D1, i.e., the
intersections of these intervals with the domain D1 are not connected.

The domains G can be approximated by polygons for which the above inter-
vals have a similar property.
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domains. Pacific J. Math. 2(1952), 385–394.

44. M. Schiffer, The Fredholm eigenvalues of plane domains. Pacific J. Math. 7(1957),
1187–1225.

45. M. Schiffer, Fredholm eigenvalues and Grunsky matrices. Ann. Polon. Math. 39(1981),
149–164.

46. G. Schober, Estimates for Fredholm eigenvalues based on quasiconformal mapping. Nu-
merische, insbesondere approximationstheoretische Behandlung von Funktionalgleichun-
gen (Tagung, Math. Forschungsinst., Oberwolfach, 1972), 211–217. Lecture Notes in
Math., 333, Springer, Berlin, 1973.

47. Z. Slodkowski, Holomorphic motions and polynomial hulls. Proc. Amer. Math. Soc.
111(1991), 347–355.



572 SAMUEL L. KRUSHKAL

48. P. A. Smith, Transformations of finite period. Ann. of Math. 39(1938), 127–164.
49. P. A. Smith, Transformations of finite period II. Ann. of Math. 40(1939), 690–711.
50. D. Sullivan and W. P. Thurston, Extending holomorphic motions. Acta Math.

157(1986), 243–257.
51. W. P. Thurston, Zippers and univalent functions. Bieberbach conjecture (West

Lafayette, Ind., 1985), 185–197, Math. Surveys Monogr., 21, Amer. Math. Soc., Prov-
idence, RI, 1986.

52. S. E. Warschawski, On the effective determination of conformal maps. Contributions
to the theory of Riemann surfaces, 177–188. Annals of Mathematics Studies, no. 30.
Princeton University Press, Princeton, N. J., 1953.

53. S. Werner, Spiegelungskoeffizient und Fredholmscher Eigenwert für gewisse Polygone.
Ann. Acad. Sci. Fenn. Ser. A I Math. 22(1997), 165–186.

54. S. Yang, Quasiconformal reflection, uniform and quasiconformal extension domains.
Complex Variables Theory Appl. 17(1992), 277–286.

(Received 8.04.2003)

Author’s address:

Research Institute for Mathematical Sciences
Department of Mathematics and Statistics
Bar-Ilan University, 52900 Ramat-Gan
Israel


