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ON FOURIER SERIES IN EIGENFUNCTIONS
OF ELLIPTIC BOUNDARY VALUE PROBLEMS
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To the memory of Victor Dmitrievich Kupradze

Abstract. We consider a general elliptic formally self-adjoint problem in a
bounded domain Ω ⊂ Rn with homogeneous boundary conditions under the
assumption that the boundary and coefficients are infinitely smooth. The
operator in L2(Ω) corresponding to this problem has an orthonormal basis
{ul} of eigenfunctions, which are infinitely smooth in Ω. However, the system
{ul} is not a basis in Sobolev spaces Ht(Ω) of high order.

We note and discuss the following possibility: for an arbitrarily large t,
for each function u ∈ Ht(Ω) one can explicitly construct a function u0 ∈
Ht(Ω) such that the Fourier series of the difference u − u0 in the functions
ul converges to this difference in Ht(Ω). Moreover, the function u(x) is
viewed as a solution of the corresponding nonhomogeneous elliptic problem
and is not assumed to be known a priori; only the right-hand sides of the
elliptic equation and the boundary conditions for u are assumed to be given.
These data are also sufficient for the computation of the Fourier coefficients
of u − u0. The function u0 is obtained by applying some linear operator to
these right-hand sides.
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1. Introduction. It is well known that the smoother a function to be expanded
in a trigonometric Fourier series is, the better the series converges. Trigonomet-
ric functions are eigenfunctions of the operator u 7→ u′′ on the circle. More gen-
erally, the situation is similar for Fourier expansions in eigenfunctions of elliptic
self-adjoint differential operators with smooth coefficients (or pseudodifferential
operators of nonzero order with smooth symbols) on a smooth closed manifold
(i.e., a compact manifold without boundary). This is also well known; see, e.g.,
[1]. Throughout the paper, except for Remark 1 in Section 3, smoothness is
understood as infinite smoothness.

This is not and cannot be true for Fourier series in eigenfunctions of self-
adjoint elliptic boundary value problems with homogeneous boundary condi-
tions on a compact smooth manifold with smooth boundary. For example, the
well-known papers [2] and [3] deal with the convergence or summability of these
series mainly on compact sets lying in the interior of the manifold. The reason
is not discussed there, but it is very simple: the eigenfunctions are subjected
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to boundary conditions, whereas the function to be expanded does not satisfy
these conditions in general.

In the papers [4] and [5], additional boundary conditions are indicated that
should be imposed on a function to be expanded in a Fourier series in eigen-
functions of the given elliptic boundary value problem so as to ensure that the
series converges to the function in Sobolev spaces of high order. These are
the homogeneous boundary conditions of the problem corresponding to an ap-
propriate power of the operator associated with the original problem. (More
precisely, these papers deal in general with nonself-adjoint problems and discuss
the completeness of root functions. See also the references therein.) In [6], the
orders of Sobolev spaces are discussed in which the completeness and conver-
gence of Fourier series in eigenfunctions in domains with smooth or nonsmooth
(Lipschitz) boundary are preserved.

Let us give an example. Consider the spectral boundary value problem

−∆u(x) = λu(x) in Ω, Bu := ∂νu(x)− µu(x) = 0 on Γ. (1)

Here and in the following, Ω is a bounded domain in Rn with connected (n−1)-
dimensional smooth boundary Γ. The coefficient µ is assumed to be a given real
number. By ∂ν we denote the outward normal derivative on the boundary. This
is a formally self-adjoint problem with discrete spectrum, and its eigenfunctions
form an orthonormal basis in L2(Ω). The eigenfunctions belong to C∞(Ω)
and satisfy the boundary condition in (1). Associated with problem (1) is the
operator Au = −∆u in L2(Ω) with domain H2(Ω, B) that is the subspace of
H2(Ω) singled out by the boundary condition in (1). Here and in the following,
we use the simplest Sobolev spaces H t = W t

2. For simplicity, suppose that
λ = 0 is not an eigenvalue of problem (1). Then the operator A maps H2(Ω, B)
onto L2(Ω) bi-isomorphically and bicontinuously. Hence the eigenfunctions form
an unconditional basis in H2(Ω, B). (A basis is said to be unconditional if it
remains a basis after any permutation of its elements.)

Now consider the eigenfunctions as elements of the spaces H t(Ω). The bound-
ary condition in (1) is of first order. The differentiation reduces the index of
the Sobolev space by one, and the passage to the boundary reduces it further
by 1/2. Hence the boundary condition makes sense as a relation in H t−3/2(Γ),
but only for t > 3/2. If 0 ≤ t < 3/2, then the boundary condition becomes
meaningless, and so the eigenfunctions satisfy no boundary conditions at all (in
the sense of usual functions rather than distributions). One can show with the
use of interpolation that the eigenfunctions form an unconditional basis in the
space H t(Ω) for 0 ≤ t < 3/2. (See the next section for details concerning more
general problems.) For t = 3/2, the situation is slightly more complicated, and
we do not discuss it. For 3/2 < t < 7/2, the eigenfunctions form an uncon-
ditional basis in the subspace H t(Ω, B) ⊂ H t(Ω) singled out by the boundary
condition in (1).

Let us explain how the restriction t < 7/2 arises. Problem (1) implies the
relation

∂ν∆u(x)− µ∆u(x) = 0 (2)
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on Γ, since the left-hand side is equal to λ[−∂νu(x)+µu(x)]. The new boundary
condition (2) has order 3 and makes sense for eigenfunctions provided that these
are viewed as elements of H t(Ω) with t > 7/2. Using the square of the operator
corresponding to the original problem, one can verify that for 7/2 < t < 11/2
the eigenfunctions form an unconditional basis in the subspace of H t(Ω) singled
out by the two boundary conditions. For 11/2 < t < 15/2, a third boundary
condition is added, and so on.

As has been noted in the abstract, our aim is to discuss the following possi-
bility: for an arbitrarily large t, from the function u ∈ H t(Ω) to be expanded
we can always subtract a function u0 ∈ H t(Ω) such that the Fourier series of
the difference u − u0 in the eigenfunctions will converge to it in H t(Ω). The
function u0 to be subtracted is obtained by applying some linear operator to
the right-hand sides of the problem for u. For t > n/2, the convergence proves
to be uniform. The procedure of construction and subtraction of u0 can be
viewed as a regularization of the Fourier series of the original function near the
boundary.

If u(x) is completely known, the procedure is of no interest: one can merely
multiply u(x) by a cut-off function equal to unity outside a boundary strip and
vanishing in a smaller boundary strip, thus readily obtaining a function that
lies in the domain of any power of the operator corresponding to the problem.
However, our procedure is realizable if u(x) is viewed as a solution of a given
nonhomogeneous elliptic problem and only the right-hand sides of the elliptic
equation and the boundary conditions in this problem are known. Here we also
manage to compute the Fourier coefficients of u− u0.

We think that this possibility is adequate to the situation and can be of some
use. The latter is seen, for example, in the discussion of the physical notion of
the R-matrices for the Schrödinger equation and the Dirac system, which has
actually encouraged the authors to write this article; see Section 4 below and,
for more details, [6] and [7].

The description and justification of our proposal is not complicated. We give
precise assertions in Section 2 and indicate some possible generalizations in
Section 3. The main result is Theorem 4 in Section 2.

We do not touch upon problems concerning the localization of spectral ex-
pansions and their convergence or summability almost everywhere (see [2], [3]).
Recall however that the convergence almost everywhere follows from the con-
vergence in the Sobolev space Hε(Ω) with an arbitrarily small ε > 0 (see, e.g.,
[6], Remark 1.10.)

2. Main results. For definiteness and simplicity, we consider the elliptic
boundary value problem for the 2mth-order scalar partial differential equation

Au := A(x,D)u(x) = f(x) (x ∈ Ω) (3)

with the differential boundary conditions

Bju := Bj(x, D)u(x) = 0 (x ∈ Γ, j = 1, . . . , m). (4)
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We assume that n ≥ 2, although one can also consider ordinary differential
equations. The coefficients of A(x, D) and B(x,D) are assumed to be smooth in
Ω and on Γ, respectively. Suppose that the boundary operators have orders rj <
2m and form a normal system, i.e., rj are pairwise distinct and the boundary is
noncharacteristic with respect to each Bj at every point of Γ. (In other words,
the coefficient of the rjth-order normal derivative in the expansion of Bj in
powers of the normal derivative is an everywhere nonvanishing function.) We
assume that the problem is formally self-adjoint. Then it defines a self-adjoint
operator Au = f in L2(Ω) = H0(Ω) with domain

H2m(Ω, B) = {u ∈ H2m(Ω) : Bju = 0, j = 1, . . . , m}. (5)

The spectrum of this operator is discrete, and the eigenvalues tend to infinity.
The eigenfunctions belong to C∞(Ω) and form an orthonormal basis {ul}∞1 in
L2(Ω). The eigenvalues λl have a power asymptotics for an appropriate num-
bering. In particular, if the operator corresponding to the problem is bounded
below, then λl = Cl2m/n +O(l(2m−1)/n), where C is a positive constant that can
be expressed via the principal symbol of A in a well-known way (see [8] and
references cited therein).

Shifting the spectral parameter if necessary (which does not affect the eigen-
functions), we can assume that zero is not an eigenvalue. Then the operator A
defines a bicontinuous isomorphism of the space (5) onto L2(Ω).

Let us give three assertions that have actually been used already in [4]–[6].

Proposition 1. For every positive integer k, the operator Ak corresponds to
the boundary value problem for the equation Aku = f (x ∈ Ω) with the boundary
conditions

BjA
qu = 0 (x ∈ Γ, j = 1, . . . , m; q = 0, . . . , k − 1). (6)

These boundary operators form a normal system, and the problem is elliptic.

The ellipticity can be verified via equivalent a priori estimates, and the re-
maining assertions are obvious.

Let t be a positive number. (To avoid additional stipulations, we assume
that it is not a half-integer.) By Ht(Ω, A, B) ⊂ H t(Ω) we denote the subspace
singled out by those of the boundary conditions (6) which make sense in H t(Ω).
Namely, these are conditions (6) with rj + 2mq < t− 1/2. The system formed
by these conditions is still normal if it is nonempty.

Proposition 2. The operator At/2m defines a bicontinuous isomorphism of
the spaces H t(Ω, A,B) and L2(Ω).

This follows from the results concerning the interpolation of subspaces singled
out by boundary conditions in Sobolev spaces [9], [10]; cf. [4]–[6]. The space
H t(Ω, A,B) is the domain of the operator At/2m.

Corollary. Under the same assumptions, the eigenfunctions ul form an
unconditional basis in H t(Ω, A, B).
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Now let C = {Cj(x,D)} (j = 0, . . . , s) be an arbitrary normal system of
differential boundary operators of some orders ρj < t− 1/2, where t is still not
a half-integer. Consider the system of boundary conditions

Cj(x,D)v(x) = gj(x) (x ∈ Γ, j = 0, . . . , s), (7)

which is not necessarily related to an elliptic boundary value problem.

Proposition 3. There exists a bounded linear operator

T = T (C) :
∏
j≤s

H t−ρj−1/2(Γ) → H t(Ω)

that transforms each set {gj} of the right-hand sides in the boundary conditions
(7) into a function v in Ω satisfying these boundary conditions.

Proof. Since one can use a partition of unity on Γ, it suffices to consider the
following situation. Let x0 be a point on Γ, and assume that it is possible to
pass to local coordinates rectifying the boundary in the ball OR(x0) of radius
R with center at x0. We need to construct a function v with support lying in
OR/2(x0)∩Ω assuming that the supports of the right-hand sides lie in OR/4(x0)∩
Γ.

Passing to these coordinates, we can now consider the half-space Rn
+ = {x :

xn > 0} instead of Ω and the hyperplane Rn−1 = {x : xn = 0} instead of
Γ. Moreover, we assume that the supports of gj lie in a neighborhood Oε(0)
of the origin in Rn−1, and we need to construct v with support lying, say,
in O2ε(0) × [0, ε]. Furthermore, we can assume that s = max ρj, since the
given system of boundary operators can always be supplemented by operators
of the missing orders with the use of the corresponding powers of the derivative
Dn = −i∂/∂xn in xn with, say, zero right-hand sides in the added boundary
conditions. This having been done, the operators form a so-called Dirichlet
system.

The Dirichlet system is equivalent to the system of powers of Dn of orders
0, . . . , s. This means that the column formed by the given operators arranged
in ascending orders is obtained from the column formed by the powers of Dn by
multiplication by a lower triangular matrix of differential operators Ajk of orders
j − k with infinitely smooth coefficients and with nowhere vanishing functions
on the main diagonal. Conversely, the second column can be obtained from the
first in a similar way. This reduces the problem to the case in which the system
of boundary operators on Rn−1 is just the column of powers of Dn. In this case,
the desired function v can be constructed by explicit formulas.

To make the exposition self-contained, we recall Slobodetskii’s formula [11]
for the function v in this case. Let {ψk}s

0 be a system of functions in C∞
0 (R)

subject to the conditions

Dj
nψk(0) = δj

k (j, k = 0, . . . , s).



406 M. S. AGRANOVICH AND B. A. AMOSOV

By F we denote the Fourier transform with respect to x′ = (x1, . . . , xn−1). Let
t > s + 1/2. For gk ∈ H t−k−1/2(Rn−1), k = 0, . . . , s, we set

v(x) =
s∑

k=0

F−1
ξ′ 7→x′

[
ψk(xn(1 + |ξ′|2)1/2)(Fgk)(ξ

′)(1 + |ξ′|2)−k/2
]
. (8)

Then v ∈ H t(Rn), and this function satisfies the desired boundary conditions

Dk
nv

∣∣
xn=0

= gk(x
′) (k = 0, . . . , s).

Cf. Seeley [12]. For us, it remains to multiply the right-hand side of (8) by an
appropriate cut-off function. ¤

Thus, the desired function can be expressed in a closed form via the right-
hand sides of the given boundary conditions on Γ.

Of course, in concrete situations, other possibilities to construct u0 can ap-
pear to be more convenient. For example, if one needs to construct a function
satisfying the single Dirichlet or Neumann condition, then it is possible to use
the solution of the corresponding boundary value problems for the Laplace or
Helmholtz equation by means of potentials.

Now let t be an arbitrary positive number that is not a half-integer, and
let u be an arbitrary function in H t(Ω) (it need not satisfy the homogeneous
boundary conditions). We set r = [t− 1/2] provided that this is a nonnegative
number and denote the set of right-hand sides of the nonhomogeneous boundary
conditions BjA

qu = gjq (cf. (6)) of order ≤ r by g(u). (This set may well be
empty.) By Proposition 3, there exists an operator T (we preserve this notation;
it can be written out explicitly) such that the function u−u0, where u0 = T g(u),
satisfies the same boundary conditions with zero right-hand sides. It belongs
to the space H t(Ω, A,B) and hence satisfies the following main assertion.

Theorem 4. The Fourier series of the function u−T g(u) in the eigenfunc-
tions ul converges to this function in the norm of the space H t(Ω).

Moreover, the convergence is unconditional.

In particular, by Sobolev’s embedding theorem, the convergence will be uni-
form up to the boundary provided that t > n/2. By increasing t, one can ensure
the uniform convergence of the series obtained by k term-by-term derivations
for an arbitrary given k.

Now we assume that only the following is known about the function u: it is
the solution of the (uniquely solvable) elliptic boundary value problem

Au = f (x ∈ Ω), Bju = gj (x ∈ Γ, j = 1, . . . , m), (9)

and we know only the right-hand sides. We claim that then one can find the
function u0 and the Fourier coefficients of the difference u− u0. Of course, the
eigenfunctions ul and the eigenvalues λl are assumed to be known.

To this end, it suffices to make the following three remarks.

1. Let u be a smooth function. Once Au is known, we can find A2u, . . . ,
BjAu, . . . .
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2. The function u0 is constructed from the right-hand sides gjq of the bound-
ary conditions, and it is the result of the application of some linear operator to
the right-hand sides of problem (9) for u.

3. Let u0 satisfy all boundary conditions in (9). Then, after subtracting u0

from u, we obtain a function whose Fourier coefficients can be determined in the
usual manner from those of the right-hand side of the equation A(u− u0) = f1,
where f1 = f − Au0. Namely,

(u− u0, ul)Ω = λ−1
l (u− u0, Aul)Ω = λ−1

l (f1, ul)Ω.

Note that here, if u − u0 belongs to the domain of A2 and A2(u − u0) = f2,
then

(f1, ul)Ω = λ−1
l (f2, ul)Ω,

etc.

3. Generalizations. Here we indicate some possible generalizations. In doing
so, we neither dwell on their combinations nor waste space on precise statements.

1. One can assume that the boundary and the coefficients are of finite smooth-
ness. Then t in the assertions of the preceding section is naturally bounded
above.

2. One can consider matrix operators A and Bj. In the simplest case, the
principal part of the square matrix A(x,D) is homogeneous with respect to D.
However, one can also consider Douglis–Nirenberg elliptic systems under the
following restriction: the higher orders of the operators on the main diagonal in
A(x,D) are the same (cf. [4], [5]). Under this restriction, a positive integer power
of the operator A corresponds to an elliptic problem of the same structure. Let
us comment this as follows. If the orders of all diagonal operators are equal to
m, then the multiplication of A(x,D) by itself increases the orders of all matrix
entries by m, and the same happens with the matrix of boundary operators if
we multiply it by A(x,D) on the right. Here we do not touch more general
Douglis–Nirenberg elliptic systems.

3. One can consider nonself-adjoint boundary value problems. In this case,
one can discuss completeness, i.e., the possibility of an arbitrarily accurate
approximation to the function u − T g(u) in the space H t(Ω, A, B) by linear
combinations of root functions, as well as the summability of the Fourier series
of this function in root functions by the Abel–Lidskii method with parentheses
in this space. In some cases, one has the unconditional convergence of the
Fourier series with parentheses of the function u − T g(u) in root functions in
the same space (cf. [1] and [4]–[6]).

Let us give some details. Suppose that a given problem has been obtained
from a formally self-adjoint problem by adding some terms of order ≤ s < 2m
to A(x, D). (Here we restrict ourselves to this case.) We set p = 2m/n (this
is the exponent of the power growth of the eigenvalues) and q = s/2m (this is
the relative order of the perturbation of the self-adjoint part of A(x,D) by the
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added terms). Consider the number

p(1− q) = (2m− s)/n. (10)

One can readily verify that it does not change if one passes to powers of the
operator corresponding to the problem. It follows from theorems on weak per-
turbations of self-adjoint operators that if number (10) is not less than unity,
then the difference u − u0 can be expanded in a Fourier series in root func-
tions, which is unconditionally convergent in H t(Ω) after some arrangement of
parentheses independent of u. If number (10) is less than unity, then this series
can be summed in H t(Ω) by the Abel–Lidskii method (with parentheses) of
an arbitrary order greater than p−1 − (1 − q) = [n − (2m − s)]/2m. Here the
function u0 is the same as above.

4. Some applications. Consider the problem

−∆u(x) + V (x)u(x) = λu(x) in Ω, ∂νu(x)− µu(x) = g(x) on Γ (11)

with a spectral parameter λ. For simplicity, we assume that the potential
V (x) is smooth and real and µ is a real number. Let the problem be uniquely
solvable for the given λ. The operator g 7→ u|Γ is referred to as the R-matrix
by physicists. See [13] and references therein. To construct it, they use the
following algorithm. One expands the solution u in L2(Ω) into a Fourier series
in the orthonormal system {ul}∞1 of eigenfunctions of problem (11) with g = 0.
The computation of the coefficients (with the use of integration by parts) shows
that the series has the form

u(x) =
∞∑
1

(g, ul|Γ)Γ

λl − λ
ul(x), (12)

where λl are the corresponding eigenvalues. In this series, one passes to the
boundary, and this gives the following formula for the R-matrix:

u(x)
∣∣
Γ

=
∞∑
1

(g, ul|Γ)Γ

λl − λ
ul(x)

∣∣
Γ
. (13)

For this passage to be nonformal, one should assume that u ∈ H t(Ω) with 1/2 <
t < 3/2 and g ∈ H t−1/2(Γ), and then the series (13) converges in H t−1/2(Γ).
However, physicists prefer to use uniform convergence. To ensure the uniform
convergence, for n = 3 one should assume that 3/2 < t < 5/2, but then the
difference u − u0, rather than u, is to be expanded in the functions ul, where
u0 ∈ H t(Ω) is some function satisfying the same nonhomogeneous boundary
condition. For example, one can take a function with the Cauchy data u0|Γ = 0,
∂νu0|Γ = g. Then the regularized series (13) has the form

u(x)
∣∣
Γ

=
∞∑
1

[
(g, ul|Γ)Γ

λl − λ
− (u0, ul)Ω

]
ul(x)

∣∣
Γ
,

and the regularization is essentially performed by the subtraction of a series
with zero sum from (13) (see [6]).
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Regularization is even more important in the case of the boundary value
problem considered in [13] and [7] for the 4 × 4 homogeneous Dirac system
(which is of first order). If u and v are the upper and lower halves, respectively,
of the column vector w(x) of unknown functions in the Dirac system, then the
boundary condition has the form

b(x)v(x)
∣∣
Γ
− µu(x)

∣∣
Γ

= g,

where b(x) is some nondegenerate 2× 2 matrix function. The operator g 7→ u|Γ
is called the R-matrix (again see [13] and references therein). To construct it,
one uses an orthonormal basis formed in the space L2(Ω) (of two-dimensional
vector functions) by the parts ul of the eigenfunctions wl. The passage to the
boundary is performed again but cannot be justified without subtracting an
appropriate function w0 from the solution. It is convenient to take w0 with zero
upper component and with the boundary condition b(x)v0|Γ = g. See details
in [7].
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