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GENERAL M-ESTIMATORS IN THE PRESENCE OF
NUISANCE PARAMETERS. SKEW PROJECTION

TECHNIQUE

N. LAZRIEVA AND T. TORONJADZE

Abstract. A multidimensional parametric filtered statistical model is con-
sidered, the notions of the regularity and ergodicity of the model, as well as
the notion of a general M -estimator are studied. A skew projection tech-
nique is proposed, by which we construct an M -estimator of the parameter
of interest in the presence of nuisance parameters, which is asymptotically
normal with the zero mean and the same covariance matrix as the corre-
sponding block of the asymptotic covariance matrix of the full parameter’s
M -estimator.

2000 Mathematics Subject Classification: 65F12.
Key words and phrases: General M -estimator, nuisance parameter, pro-
jection.

1. Introduction

The well-known problem of the statistical estimation theory concerns the
construction of estimators of parameter of interest in the presence of nuisance
parameters. The projection technique is a frequently used for constructing
efficient in the Fisher sense estimators in various observations (e.g., i.i.d., re-
gression, etc.) schemes [1], [10], [3].

On the other hand, the key object in robust statistics is M -estimator, intro-
duced by Huber [4] in the case of i.i.d. observations (see also [2], [8] for filtered
statistical models). Hence to construct robust estimators in the presence of
nuisance parameters it seems necessary to construct M -estimators in such a
situation. For these purposes one needs to adopt the projection technique for
M -estimators. As it will be shown below one need to use a skew projection of
partial scores on the remainder terms of a full score (see (3.4)) rather than an
orthogonal projection as in the case of MLE construction.

In the present paper a multidimensional parametric filtered statistical model
is considered, notions of the regularity and ergodicity of models, a notion of
general M -estimator are introduced (see Section 2).

In Section 3 a skew projection technique is proposed, which allows us to con-
struct an estimator of a parameter of interest solving a d-dimensional equation
(d is dimension of a parameter of interest) instead of a (d+m)-dimensional esti-
mational equation for a M -estimator of the full (d+ m)-dimensional parameter
(see, e.g., (3.10) and (3.3), respectively, for d = 1).
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In Theorem 3.1 we prove that under some regularity and ergodicity conditions
the constructed estimator is asymptotically normal with the zero mean and the
same covariance matrix as the corresponding (d × d)-dimensional block of the
asymptotic covariance matrix of the M -estimator of the full parameter (see
(3.32) for d = 1).

In Theorem 3.2 we establish asymptotic properties of the estimator of a
parameter of interest constructed by the one-step approximation procedure,
where the score martingale constructed by skew projection is used (see (3.33)
for d = 1).

Appendix is devoted to formulation of the key Lemma which is the base of
the proofs of Theorems.

2. Specification of the Model, Regularity, Ergodicity

We consider a filtered statistical model

E =
(
Ω,F , F = (Ft)t≥0, {Pθ, θ ∈ Θ ⊂ Rd+m}, P)

, d ≥ 1, m ≥ 1, (2.1)

where (Ω,F , F = (Ft)t≥0, P ) is a stochastic basis satisfying the usual conditions,
{Pθ, θ ∈ Θ ⊂ Rd+m} is a family of probability measures on (Ω,F) such that

Pθ
loc∼ P for each θ ∈ Θ, Θ is an open subset of Rd+m. Denote by

ρ(θ) =

(
ρt(θ) =

dPθ,t

dPt

)

t≥0

the density (likelihood) ratio process, where

Pθ,t = Pθ | Ft, Pt = P | Ft

are, respectively, the restriction of measures Pθ and P on the σ-algebra Ft.
In the sequel we assume for simplicity that Pθ,0 = P0 for all θ ∈ Θ.
As is well-known [9], there exists M(θ) = (Mt(θ))t≥0 ∈Mloc(P ) such that

ρ(θ) = E(M(θ)), (2.2)

where E(·) is the Dolean exponential, i.e.,

Et(M(θ)) = exp

{
Mt(θ)− 1

2
〈M c(θ)〉t

}∏
s≤t

(
1 + ∆Ms(θ)

)
e−∆Ms(θ)

(for all unexplained notation see, e.g., [9], [5]).
Then

ln ρ(θ) = M(θ)− 1

2
〈M c(θ)〉+

∑
s≤·

(
ln(1 + ∆Ms(θ))−∆Ms(θ)

)
. (2.3)

Definition 2.1. We say that model (2.1) is regular if the following conditions
are satisfied:

(1) for each (t, ω) the mapping θ Ã Mt(ω, θ) is differentiable and Ṁ(θ) ∈
Mloc(P ), where Ṁ(θ) =

(
∂

∂θ1
M(θ), . . . , ∂

∂θd+m
M(θ)

)′
,1

1In the sequel all vectors are assumed to be column-vectors, “′” is transposition sign.
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(2) for each (t, ω) the mapping θ Ã ρt(ω, θ) is differentiable and

∂

∂θ
ln ρ(θ) = L

(
Ṁ(θ),M(θ)

)
,

i.e., ∂
∂θi

ln ρ(θ) = L
(

∂
∂θi

M(θ),M(θ)
)
, where for m,M ∈ Mloc(P )

L(m,M) is the Girsanov transformation defined as

L(m,M) : = m− (1 + ∆M)−1 ◦ [m,M ]

= m− 〈mc,M c〉 −
∑
s≤·

∆ms ∆Ms

1 + ∆Ms

, (2.4)

(3) L(Ṁ(θ),M(θ)) ∈M2
loc(Pθ).

Recall that if m ∈ Mloc(P ), Q is some measure such that dQ
dP

= E(M), then
L(m,M) ∈Mloc(Q) (see, e.g., [5]).

Define the (d + m) × (d + m)-matrix-valued Fisher information process and
the Fisher information matrix as follows:

Ît(θ) = 〈L(Ṁ(θ),M(θ))〉t, t ≥ 0,

It(θ) = Eθ Ît(θ), t ≥ 0,

where Eθ stands for expectation w.r.t. Pθ.

Remark 2.1. Consider the case where model (2.1) is associated with a k-
dimensional, k ≥ 1, F-adapted CADLAG process X = (Xt)t≥0 in the following
way: for each θ ∈ Θ Pθ is a unique measure on (Ω,F) such that X is a Pθ-
semimartingale with the triplet of predictable characteristics (B(θ), C(θ), νθ)
w.r.t. the standard truncation function h(x) = xI{|x|≤1}, where | · | is the
Euclidean norm in Rk.

In what follows we assume that Pθ′
loc∼ Pθ for each pair (θ, θ′) ∈ Rd+m×Rd+m

and all measures Pθ coincide on F0.
Fix some θ∗ ∈ Θ and let P := Pθ∗ , (B,C, ν) := (B(θ∗), C(θ∗), νθ∗). Without

loss of generality we can assume that there are a predictable process c = (cij)i,j≤k

with values in the set of all symmetric nonnegative definite k × k-matrices and
an increasing continuous F-adapted process A = (At)t≥0 such that

C = c ◦ A P -a.s.

The following relationship between triplets (B(θ), C(θ), νθ) and (B, C, ν) is

well known (see, e.g., [9]): there exists a P̃-measurable positive function Y (θ) ={
Y (ω, t, x; θ) : (ω, t, x) ∈ Ω×R+×Rk

}
and a predictable k-dimensional process

β(θ) = (βt(θ))t≥0 with ∣∣h(x)(Y (θ)− 1)
∣∣ ∗ ν ∈ A+

loc(Pθ),(
β′(θ)cβ(θ)) ◦ A ∈ A+

loc(Pθ)

such that
(1) B(θ) = B + cβ(θ) ◦ A + h(x)(Y (θ)− 1) ∗ ν,
(2) C(θ) = C,
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(3) νθ = Y (θ) · ν,

and, in addition, at := ν
({t}, Rk

)
= 1 ⇒ at(θ) := νθ

({t}, Rk
)

= Ŷt(θ) = 1.

Here for a given P̃-measurable function W , Ŵt =
∫

W (t, x)ν({t}, dx).
It is also well known (see, e.g., [6], [9]) that the Pθ-local martingale M(θ) in

(2.2) can be writing explicitly as

M(θ) = β′(θ) ·Xc +

(
Y (θ)− 1 +

Ŷ (θ)− a

1− a
I(0<a<1)

)
∗ (µ− ν), (2.5)

where Xc is the continuous martingale part of X under P .
Suppose that the following conditions are satisfied:

1) for all (ω, t, x) the functions β : θ Ã βt(ω, θ) and Y : θ Ã Y (ω, t, x; θ)

are differentiable (notation: β̇(θ) = ∂
∂θ

β(θ) = (β̇ij(θ))i≤k, j≤d+m with

β̇ij(θ) = ∂
∂θj

βi(θ), Ẏ (θ) = ∂
∂θ

Y (θ) =
((1)

Y (θ), . . . ,
(d+m)

Y (θ)
)′

with
(j)

Y (θ) =
∂

∂θj
Y (θ), 1 ≤ j ≤ d + m,

2) Ṁ(θ) := ∂
∂θ

M(θ) = β̇′(θ) ·Xc +
(
Ẏ (θ) + ȧ(θ)

1−a

)
∗ (µ− ν) ∈Mloc(P ),

3) ∂
∂θ

ln ρ(θ) = L
(
Ṁ(θ),M(θ)

)
∈M2

loc(Pθ).

Then model (2.1) associated with the semimartingale X is regular in the sense
of Definition 2.1.

It is not difficult to verify that

L(θ) := L
(
Ṁ,M(θ)

)
= β̇′(θ) · (Xc − cβ(θ) ◦ A) + Φ(θ) ∗ (µ− νθ),

where

Φ(θ) =
Ẏ (θ)

Y (θ)
+

ȧ(θ)

1− a(θ)

and I{a(θ)=1}ȧ(θ) = 0.
Another definition of the regularity of a statistical model associated with the

semimartingale X is given in [7]. Namely, suppose that the following conditions
are satisfied: for each θ ∈ Θ there exist a predictable k× (d+m)-matrix-valued

process β̇(θ) and a predictable (d + m)-dimensional vector function W (θ) with

∣∣∣β̇′(θ) c β̇(θ)
∣∣∣ ◦ At < ∞, |W (θ)|2 ∗ νt < ∞, t ≥ 0, P -a.s.
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and such that for all t ≥ 0 we have

(1)

[ (
β(θ′)− β(θ)− β̇(θ)(θ′ − θ)

)′
×

c
(
β(θ′)− β(θ)− β̇(θ)(θ′ − θ)

) ]
◦ At

/
|θ′ − θ|2 Pθ→ 0,

(2)

(√
Y (θ′)
Y (θ)

− 1− 1

2
W ′(θ)(θ′ − θ)

)2

∗ νθ,t

/
|θ′ − θ|2 Pθ→ 0,

(3)

[ ∑
s≤t

as(θ)<1

(√
1− as(θ′)−

√
1− as(θ)

+
1

2

Ŵ θ
T√

1− as(θ)
(θ′ − θ)

)2
]/

|θ′ − θ| Pθ→= 0

(2.6)

as θ′ → θ, where Ŵ θ
T (θ) =

∫
W (t, x, θ)νθ({t}, dx).

In this case as it is proved in [7] model (2.1) is regular in the following sense:

at each point θ ∈ Θ the process
√

ρ(θ′)
ρ(θ)

is locally (in time) differentiable w.r.t.

θ′ with derivative (d + m)-dimensional process L̃(θ) = (L̃t(θ))t≥0 ∈ M2
loc(Pθ)

defined as follows:

L̃(θ) = β̇′(θ) · (Xc − cβ(θ) ◦ A) +

(
W (θ) +

Ŵ θ(θ)

1− a(θ)

)
∗ (µ− νθ).

The Fisher information (d+m)× (d+m)-matrix-valued process is defined as

Î(θ) := 〈L̃(θ), L̃(θ)〉 =
(
β̇′(θ)cβ(θ)

)
◦A+W (θ)W (∗θ)′ ∗ ν +

∑
s≤·

Ŵ θ
s (θ)Ŵ θ′

s (θ)

1− as(θ)
.

Denote

Φ̃(θ) = W (θ) +
Ŵ θ(θ)

1− a(θ)
.

Then
L̃(θ) = β̇′(θ) · (Xc − cβ(θ) ◦ A) + Φ̃(θ) ∗ (µ− νθ).

It should be noticed that if the model is regular in both above-given senses,
then

W (θ) =
Ẏ (θ)

Y (θ)
, Ŵ θ(θ) = ȧ(θ), Φ(θ) = Φ̃(θ).

To preserve these notation for the second variant of regularity (regularity in
the Jacod sense) let us formally define Ẏ (θ) and ȧ(θ) as

Ẏ (θ) = 2
√

Y (θ)
∂

∂θ

√
Y (θ), ȧ(θ) = −2

√
1− a(θ)

∂

∂θ

√
1− a(θ) , (2.7)

where ∂
∂θ

√
Y (θ) = W (θ)

√
Y (θ), ∂

∂θ

√
1− a(θ) = −1

2

cW θ(θ)√
1−a(θ)

.
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Then we have W (θ) = Ẏ (θ)
Y (θ)

, Ŵ (θ) = ȧ(θ). Ṁ(θ) can also be defined formally
as

Ṁ(θ) = β̇′(θ) ·Xc +

(
Ẏ (θ) +

ȧ(θ)

1− a(θ)

)
∗ (µ− ν),

where β̇(θ) is defined from (1) of (2.6) and Ẏ (θ) and ȧ(θ) from (2.7). In this
case it is not difficult to verify that

L̃(θ) = L
(
Ṁ(θ),M(θ)

)
.

Many problems of asymptotic statistics have a natural setting in the scheme
of series. We will now give the definition of the ergodicity of statistical models
in terms of the scheme of series.

For this consider the scheme of series of regular statistical models

E=(En)n≥1 =
(
Ωn,Fn, Fn = (Fn

t )0≤t≤T , {P n
θ , θ ∈ Θ ⊂ Rd×m}, P n

)
n≥1

, T >0,

where it is assumed that P n
θ ∼ P n for each n ≥ 1, d ≥ 1, m ≥ 1, and θ ∈ Θ.

Definition 2.2. We say that the series of filtered statistical models E =
(En)n≥1 is ergodic if there exists a numerical sequence (Cn)n≥1 such that Cn > 0,
lim

n→∞
Cn = 0 and for each θ ∈ Θ ⊂ Rd×m

C2
nÎ

n
T (θ)

P n
θ→ IT (θ), C2

nIn
T (θ) → IT (θ) as n →∞,

where IT (θ) is a finite positive definite matrix. In the sequel the subscript “T”
will be omitted.

Denote `n
j (θ) = L

( (j)

Mn(θ),Mn(θ)
)
, where

(j)

Mn(θ) = ∂
∂θj

Mn(θ), j ≤ d + m.

Obviously,

În
ij(θ) = 〈`n

i (θ), `n
j (θ)〉, În

ij(θ) = Eθ〈`n
i (θ), `n

j (θ)〉
and as n →∞

C2
n〈`n

i (θ), `n
j (θ)〉 P n

θ→ Iij(θ), C2
nEθ〈`n

i (θ), `n
j (θ)〉 → Iij(θ), i, j = 1, d + m.

M-estimators. If model (2.1) is regular, the maximum likelihood (ML)
equation (w.r.t. (θ)) takes the form

Lt

(
Ṁ(θ),M(θ)

)
= 0, t ≥ 0.

Let {m(θ), θ ∈ Θ ⊂ Rd+m} be a family of (d + m)-dimensional P -local
martingales such that L(m(θ),M(θ)) ∈M2

loc(Pθ). Consider the following (esti-
mational) equation w.r.t. θ:

L (m(θ),M(θ)) = 0. (2.8)

Definition 2.3. Any solution (θt)t≥0 of equation (2.8) is called an M -
estimator.
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To preserve the classical terminology we will say that the family {m(θ), θ ∈
Θ} of P -martingales define the M -estimator, and Pθ-martingale L(m(θ),M(θ))
is an influence (score) martingale.

We say that the family {m(θ), θ ∈ Θ} is regularly related to the regular
model (2.1) if the following conditions are satisfied:

(1) for all (ω, t) the mapping θ Ã m(ω, t, θ) is continuously differentiable

and
(i)
m(θ) ∈ Mloc(P ), where

(i)
m(θ) = ∂

∂θi
m(θ). Denote ṁ(θ) =

((1)
m(θ), . . . ,

(d+m)
m (θ)

)′
.

(2) for all (ω, t) the mapping θ Ã Lt(m(θ), M(θ)) is continuously differen-
tiable and

∂

∂θ
L(m(θ),M(θ)) = L (ṁ(θ),M(θ))

−
[
L(m(θ),M(θ)), L

(
Ṁ(θ),M(θ)

)]
,

where ∂
∂θ

L(m(θ),M(θ)) :=
((1)

L (m(θ),M(θ)), . . . ,
(d+m)

L (m(θ),M(θ))
)′

is
a (d + m)× (d + m) matrix-valued process,

(i)

L(m(θ),M(θ)) =
∂

∂θi

L(m(θ),M(θ))

and for M,N ∈ Mloc(P ), [M, N ] = 〈M c, N c〉 +
∑
s≤·

∆Ms∆Ns, M c is

the continuous martingale part of M . Note that ∂
∂θi

L(mj(θ),M(θ)) =

L
((i)
mj(θ),M(θ)

)− [
L(mj(θ),M(θ)), L

( (i)

M(θ),M(θ)
)]

.

3. Skew Projection Technique

In this section, for exposition simplicity, we consider the case d = 1, Θ =
Rm+1.

Consider the series of regular statistical models

E = (En)n≥1 =
(
Ωn,Fn, Fn = (Fn

t )t∈[0,T ], {P n
θ , θ ∈ Rm+1}, P n

)
n≥1

,

m ≥ 1, T > 0.

Represent θ ∈ Rm+1 in the form θ = (θ1, θ
′
2)
′ where θ1, θ1 ∈ R1, is a parameter

of interest, θ 2 = (θ2, . . . , θm+1)
′ is a nuisance parameter.

Let for each n ≥ 1 {mn(θ), θ ∈ Rm+1} be a family of (m + 1)-dimensional
P n-martingales regularly related to the model En.

Denote

hn
i (θ) = L (mn

i (θ),Mn(θ)) , n ≥ 1, i = 1,m + 1.
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In the sequel we assume that for each θ ∈ Rm+1, hn
i (θ) ∈ M2

loc(P
n
θ ), i =

1,m + 1, n ≥ 1, and the following ergodicity conditions are satisfied:

P n
θ - lim

n→∞
C2

n〈hn
i (θ), hn

j (θ)〉 = Γij(θ), (3.1)

P n
θ - lim

n→∞
C2

n〈hn
i (θ), `n

j (θ)〉 = γij(θ), (3.2)

i, j = 1,m + 1, where Γ(θ) = (Γij(θ)) and γ(θ)+γ′(θ)
2

with γ(θ) = (γij(θ)) are
finite positive matrices continuous in θ.

We assume also that the Lindeberg condition L is satisfied:

L. for each ε > 0

P n
θ - lim

n→∞

∫∫ T

0

|x|2 I{|x|>ε}ν
n
θ (ds, dx) = 0,

where νn
θ is a P n

θ -compensator of the jump measure of the 2(m + 1)-

dimensional P n
θ -martingale Cn

(
L(Ṁn(θ),Mn(θ)), L(mn(θ),Mn(θ))

)
.

Further, consider the following estimational equation

L
(
mn(θ),Mn(θ)

)
= 0, n ≥ 1. (3.3)

Under suitable regularity conditions it can be proved (see Lemma A from
the Appendix) that there exists a sequence (θn)n≥1 of asymptotic solutions of
equation (3.3) (M -estimators) such that

L{
C−1

n (θn − θ) | P n
θ

} ⇒ N
(
0, γ−1(θ)Γ(θ)(γ−1(θ))′

)
as n →∞.

The skew projection technique proposed in this section allows us to construct
an estimator (θ1,n)n≥1 of the parameter of interest θ1, solving a one-dimensional
equation (see equation (3.10) below), which is asymptotically normal with zero
mean and the same variance as the first component of the (m + 1)-dimensional
estimator (θn)n≥1 of θ, i.e.,

L{
C−1

n (θ1,n − θ1) | P n
θ

} ⇒ N
(
0,

(
γ−1(θ)Γ(θ)

(
γ−1(θ)

)′)
11

)
.

Under the skew projection we mean the projection of hn
1 (θ) onto h n

2 (θ) =
(hn

2 (θ), . . . , hn
m+1(θ))

′ in the direction defined by the relations

P n
θ - lim

n→∞
C2

n〈hn
1 (θ)− b′h n

2 (θ), `n
j (θ)〉 = 0, j = 2,m + 1, (3.4)

where b ∈ Rm.
(3.4) implies that

b′ = γ 12(θ)γ
−1
22 (θ),

where γ 12(θ) and γ 22(θ) correspond to the partition of γ(θ):

γ(θ) =

(
γ11(θ) γ 12(θ)
γ 21(θ) γ 22(θ)

)
.

Remark 3.1. Roughly speaking, the direction defined by (3.4) is orthogonal to
the linear space spanned by ` n

2 (θ) = (`n
2 (θ), . . . , `n

m+1(θ))
′ rather than by h n

2 (θ).



GENERAL M -ESTIMATORS. SKEW PROJECTION TECHNIQUE 279

In the case of MLE (i.e., when hn
i (θ) = `n

i (θ), i = 1,m + 1) we come to the
well-known orthogonal projection of `n

1 (θ) onto ` n
2 (θ) (see, e.g., [10]) and arrive

to the efficient score function for θ1:

`n
1 (θ)− I 12(θ)I

−1
22 (θ)` n

2 (θ),

where I 12(θ) and I 22(θ) correspond to the partition of

I(θ) =

(
I11(θ) I 12(θ)
I 21(θ) I 22(θ)

)
.

Denote
Hn(θ) = hn

1 (θ)− γ 12(θ)γ
−1
22 (θ)h n

2 (θ),

nn(θ) = mn
1 (θ)− γ 12(θ)γ

−1
22 (θ)m n

2 (θ),
(3.5)

where m n
2 (θ) = (mn

2 (θ), . . . m2
m+1(θ))

′. Then

Hn(θ) = L
(
nn(θ),Mn(θ)

)
. (3.6)

It should be noted that

P n
θ - lim

n→∞
C2

n〈Hn(θ), ` n
2 (θ)〉 = 0. (3.7)

Remark 3.2. One can consider the case when θ ∈ Θ ⊂ Rd+m, and assume
that θ = (θ 1, θ 2), where θ 1 = (θ1, . . . , θd)

′ is a parameter of interest, θ 2 =
(θd+1, . . . , θd+m)′ is a nuisance parameter.

In this case

Hn(θ) = h n
1 (θ)− γ 12(θ)γ

−1
22 (θ)h n

2 (θ), (3.8)

where h n
1 (θ) = (hn

1 (θ), . . . , hn
d(θ))′, h n

2 (θ) = (hn
d+1(θ), . . . , h

n
d+m(θ))′ and γ 12(θ),

γ 22(θ) and γ 21(θ) corresponds to the partition of γ(θ) = (γij(θ))i,j=1,d+m,

γ(θ) =

( d×d d×m

γ 11(θ) γ 12(θ)
γ 21(θ) γ 22(θ)

m×d m×m

)
.

Now let (θ 2,n)n≥1 be a Cn-consistent estimator of θ 2, i.e.,

C−1
n (θ 2,n − θ 2) = OP n

θ
(1). (3.9)

Consider the following estimational equation (w.r.t. θ1)

Hn(θ1, θ 2,n) = 0. (3.10)

Our goal is to study the problem of solvability of equation (3.10) as well as
the asymptotic properties of solutions.

Introduce the conditions:

(1) For each n ≥ 1 the family {mn(θ), θ ∈ Rm+1} is regularly related to En.
(2) The mapping θ Ã γ 12(θ)γ

−1
22 (θ) is continuously differentiable.
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(3) For any θ ∈ Rm+1 and x ∈ R1 there exists a function ∆(x, θ) such that

P n
θ - lim

n→∞
C2

nHn(x, θ 2,n) = ∆(x, θ)

and the equation (w.r.t. x)

∆(x, θ) = 0

has a unique solution θ∗1 = b(θ) ∈ R1.
(4) For each θ ∈ Rm+1

P n
θ - lim

n→∞
C2

nLn

((i)
nn(θ),Mn(θ)

)
= 0, i = 1,m + 1,

where
(i)
nn(θ) = ∂

∂θi
nn(θ).

(5) For any θ ∈ Rm+1, N > 0 and ρ > 0

lim
n→∞

P n
θ

{
sup

y:|y−θ 2|≤CnN

C2
n

∣∣(i)

Hn(θ1, y)−
(i)

Hn(θ1, θ 2)
∣∣ > ρ

}
= 0, i = 1,m + 1.

(6) For any θ ∈ Rm+1, N > 0 and ρ > 0

lim
n→∞

P n
θ

{
sup

x∈R1, y∈Rm

|x−θ1|≤r
|y−θ 2|≤CnN

C2
n

∣∣(1)

Hn(x, y)−
(1)

Hn(θ1, y)
∣∣ > ρ

}
= 0.

Remark 3.3. If L
((i)
nn(θ),Mn(θ)

) ∈ M2
loc(P

n
θ ), then condition (4) will be

satisfied if for any θ ∈ Rm+1, N > 0 and ρ > 0

P n
θ - lim

n→∞
C2

n

〈
L

((i)
nn(θ),Mn(θ)

)〉
= 0

(see, e.g., [6]).

Theorem 3.1. Let conditions (1)–(6) be satisfied. Then for each θ ∈ Rm+1,
θ = (θ1, θ

′
2)
′, there exists a sequence (θ1,n)n≥1 of random variables such that

I. lim
n→∞

P n
θ

{
Hn(θ1,n, θ 2,n) = 0

}
= 1,

II. P n
θ - lim

n→∞
θ1,n = θ1,

III. if there exists another sequence θ̃1,n with properties I, II, then

lim
n→∞

P n
θ

{
θ̃1,n = θ1,n

}
= 1,

IV. if the sequence of distributions L{CnHn(θ) | P n
θ } converges weakly to a

certain distribution Φ, then

L{
γp(θ)C

−1
n (θ1,n − θ1) | P n

θ

} ⇒ Φ,

where

γp(θ) = γ11(θ)− γ 12(θ)γ
−1
22 (θ)γ 21(θ) > 0. (3.11)
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Proof. Keeping Remark A of Appendix in mind refer to Lemma A and put
` = m + 1, k = 1, Qn

θ = P n
θ , Ln(θ) = Ln(θ1) = Hn(θ1, θ 2,n), θ = (θ1, θ

′
2)
′.

Now in order to prove the theorem we have to verify that all conditions of
Lemma A are satisfied (for Ln(θ1)).

Since Ln(θ1) = Hn(θ1, θ 2,n) the continuous differentiability of Ln(θ1) in θ1 is
a trivial consequence of (3.8), conditions (1) and (2). Hence condition b) of
Lemma A is satisfied.

Further, let us show that for any θ ∈ Rm+1, θ = (θ1, θ
′
2)
′,

P n
θ - lim

n→∞
Cn

(
Ln(θ1)−Hn(θ)

)
= 0. (3.12)

Using the Taylor expansion, we obtain

C2
n

(
Ln(θ1)−Hn(θ)

)
= Cn

(
Hn(θ1, θ 2,n)−Hn(θ1, θ 2)

)

= C2
n

∗
H ′

n(θ)C−1
n (θ 2,n − θ 2) + C2

n

( ∗
H ′

n(θ1, vn)−
∗
H ′

n(θ1, θ 2)
)
C−1

n (θ 2,n − θ 2),

where
∗
Hn(θ) =

((2)

Hn(θ), . . . ,
(m+1)

Hn (θ)
)
, vn = θ 2 + α(θ 2,n − θ 2), random variable

α ∈ [0, 1].
Consequently, since C−1

n (θ 2,n−θ 2) = OP n
θ
(1) for (3.12) it is sufficient to show

that

P n
θ - lim

n→∞
C2

n

∗
Hn(θ) = 0 (3.13)

and

P n
θ - lim

n→∞
C2

n

( ∗
Hn(θ1, vn)−

∗
H(θ1, θ 2)

)
= 0. (3.14)

From (3.6) and conditions (1), (2) we have

C2
n

∗
Hn(θ) = C2

nL
( ∗
nn(θ), Mn(θ)

)− C2
n

[
Hn(θ), ` n

2 (θ)
]
.

Condition L and (3.7) ensure that (see, e.g., [6])

P n
θ - lim

n→∞
C2

n

[
Hn(θ), ` n

2 (θ)
]

= P n
θ - lim

n→∞
C2

n〈Hn(θ), ` n
2 (θ)〉 = 0.

Now (3.13) directly follows from condition (4).
As for (3.14) observe that for any N > 0 and ρ > 0

lim
n→∞

P n
θ

{
C2

n

∣∣ ∗Hn(θ1, vn)−
∗
Hn(θ1, θ 2)

∣∣ > ρ
}

= lim
n→∞

P n
θ

{
C2

n

∣∣ ∗Hn(θ1, vn)−
∗
Hn(θ1, θ 2)

∣∣ > ρ, C−1
n |θ 2,n − θ 2| ≤ N

}

+ lim
n→∞

P n
θ

{
C2

n

∣∣ ∗Hn(θ1, vn)−
∗
Hn(θ1, θ 2)

∣∣ > ρ, C−1
n |θ 2,n − θ 2| > N

}

≤ lim
n→∞

P n
θ

{
sup

y:|y−θ 2|≤CnN

C2
n

∣∣ ∗Hn(θ1, vn)−
∗
Hn(θ1, θ 2)

∣∣ > ρ
}

+ lim
n→∞

P n
θ

{
C−1

n |θ 2,n − θ 2| > N
}
.
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From this inequality using condition (5) we obtain

lim
n→∞

P n
θ

{
sup

y:|y−θ 2|≤CnN

C2
n

∣∣ ∗Hn(θ1, vn)−
∗
H(θ1, θ 2)

∣∣ > ρ
}

≤ lim
n→∞

P n
θ

{
C−1

n |θ 2,n − θ 2| > N
}
. (3.15)

Letting N →∞ in (3.15) and taking into account (3.9) we get (3.14). Thus
(3.12) is proved.

From (3.12) it follows that

P n
θ - lim

n→∞
C2

nLn(θ1) = P n
θ - lim

n→∞
C2

nHn(θ). (3.16)

On the other hand, by using the ergodicity conditions (3.1) and (3.2) one can
easily check that

P n
θ - lim

n→∞
〈CnHn(θ)〉 = P n

θ - lim
n→∞

C2
n〈Hn(θ)〉 = Γp(θ), (3.17)

where

Γp(θ) = Γ11(θ)− 2γ 12(θ)γ
−1
22 (θ)Γ ′

12(θ)

+ γ 12(θ)γ
−1
22 Γ 22(θ)

(
γ 12(θ)γ

−1
22 (θ)

)′
, (3.18)

Γ 12(θ) and Γ 22(θ) correspond to the partition of Γ(θ):

Γ(θ) =

(
Γ11(θ) Γ 12(θ)
Γ 21(θ) Γ 22(θ)

)
.

Recall that Γ ′
12(θ) = Γ 21(θ).

From (3.17) it follows that

P n
θ - lim

n→∞
〈C2

nHn(θ)〉 = P n
θ - lim

n→∞
C4

n〈Hn(θ)〉 = 0,

from which we obtain that (see, e.g., [9])

P n
θ - lim

n→∞
C2

nHn(θ) = 0. (3.19)

Now combining (3.12) and (3.19) we get

P n
θ - lim

n→∞
C2

nLn(θ1) = ∆(θ1, θ) = 0

and in view of condition (3) we aventually conclude that condition c) of Lemma
A is satisfied with θ∗1(θ) = θ1.

The next step is to verify condition d) of Lemma A.
By arguments similar to those we have used in the proof of (3.12) one can

show that

P n
θ - lim

n→∞
C2

n

(
L̇n(θ1)−

(1)

Hn(θ)
)

= 0. (3.20)
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Indeed, for any ρ > 0 we have

P n
θ

{
C2

n

∣∣L̇n(θ1)−
(1)

Hn(θ)
∣∣ > ρ

}

= P n
θ

{
C2

n

∣∣(1)

Hn(θ1, θ 2, n)−
(1)

Hn(θ1, θ 2)
∣∣ > ρ

}

≤ P n
θ

{
sup

|y−θ 2|≤CnN

C2
n

∣∣(1)

Hn(θ1, y)−
(1)

Hn(θ1, θ 2)
∣∣ > ρ

}

+ P n
θ

{
C−1

n |θ 2,n − θ 2| > N
}
.

Therefore (3.14) follows from conditions (5) and (3.9).
At the same time, by

(1)

Hn(θ) = L
((1)
nn(θ),Mn(θ)

)− [
Hn(θ), `n

1 (θ)
]

condition (4) together with condition L imply

P n
θ - lim

n→∞
C2

n

(1)

Hn(θ) = −P n
θ - lim

n→∞
C2

n

[
Hn(θ), `n

1 )
]

= −P n
θ - lim

n→∞
C2

n〈hn
1 (θ)− γ 12γ

−1
22 h n

2 , `
n
1 〉

= γp(θ),

where γp(θ) > 0 is defined by (3.11). In view of this equality we conclude that

P n
θ - lim

n→∞
C2

nL̇n(θ1) = −γp(θ) < 0. (3.21)

Thus condition d) of Lemma A is satisfied.
It remains to check condition e) of Lemma A.
For any ρ > 0, r > 0 and N > 0 we have

lim
n→∞

P n
θ

{
sup

|x1−θ1|≤r

C2
n

∣∣L̇n(x1)− L̇n(θ1)
∣∣ > ρ

}

= lim
n→∞

P n
θ

{
sup

|x1−θ1|≤r

C2
n

∣∣ ∗Hn(x1, θ 2,n)−
∗
Hn(θ1, θ 2,n)

∣∣ > ρ
}

≤ lim
n→∞

P n
θ

{
sup

|x1−θ1|≤r
|y−θ 2|≤CnN

C2
n

∣∣ ∗Hn(x1, y)−
∗
Hn(θ1, y)

∣∣ > ρ
}

+ lim
n→∞

P n
θ

{
C−1

n |θ 2,n − θ 2| > N
}
,

which in view of (3.9) and condition (6) implies that

lim
r→0

lim
n→∞

P n
θ

{
sup

|x1−θ1|≤r

∣∣L̇n(x1)− L̇n(θ1)
∣∣ > ρ

}
= 0.

Thus condition e) of Lemma A is also satisfied. ¤
Corollary 3.1. Under the conditions of Theorem 3.1

L{
C−1

n (θ1,n − θ1) | P n
θ

} ⇒ N
(
0, Γp(θ)/γ

2
p(θ)

)
, (3.22)

where γp(θ) and Γp(θ) are defined by (3.11) and (3.18), respectively.
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Proof. Using CLT for locally square integrable martingales [6], from (3.17),
condition L we have

L{
CnHn(θ) | P n

θ

} ⇒ N
(
0, Γp(θ)

)
, (3.23)

from which, taking into account (3.12), we get

L{
CnLn(θ1) | P n

θ

} ⇒ N
(
0, Γp(θ)

)
. (3.24)

Finally, combining (3.24) with assertion IV of Theorem 3.1 we obtain the
desirable convergence (3.22). ¤

Remark 3.4. As it has been mentioned above, if we consider system (3.3) of
estimational equations

hn
i (θ) = 0, i = 1,m + 1, n ≥ 1,

and suppose that all conditions of Lemma A with ` = m+1, Qn
θ = P n

θ , Ln(θ) =
(hn

1 (θ), . . . , hn
m+1(θ))

′ are satisfied, then all assertions of Lemma A hold true,

i.e., for any θ ∈ Rm+1 there exists a sequence (θ̂n)n≥1 with properties I and II
(of Lemma A) and such that

L{
γ(θ)C−1

n (θ̂n − θ) | P n
θ

} ⇒ Φ as n →∞, (3.25)

where Φ is defined as

L{
Cn(hn

1 (θ), . . . , hn
m+1(θ))

′ | P n
θ

} ⇒ Φ as n →∞. (3.26)

Now the ergodicity conditions, condition L and CLT for locally square inte-
grable martingales imply that

Φ = N(0, Γp(θ)), (3.27)

and, hence with (3.25) and (3.27) in mind it follows that

L{
C−1

n (θ̂n − θ) | P n
θ

} ⇒ N
(
0, γ−1(θ)Γp(θ)(γ

−1(θ))′
)

as n →∞. In particular,

L{
C−1

n (θ̂1,n − θ1) | P n
θ

} ⇒ N
(
0,

(
γ−1(θ)Γp(θ)(γ

−1(θ))′
)
11

)
. (3.28)

On the other hand, from (3.25), (3.26) and (3.27) it directly follows that

L{
ξn
1 (θ)− γ 12(θ)γ

−1
22 (θ)ξ n

2 (θ) | P n
θ

} ⇒ Φ̃, (3.29)

where

ξn
1 (θ) = γ11(θ)C

−1
n (θ̂1,n − θ1) + γ 12(θ)C

−1
n (θ̂ 2,n − θ 2),

ξ n
2 (θ) = γ 21(θ)C

−1
n (θ̂1,n − θ1) + γ 22(θ)C

−1
n (θ̂ 2,n − θ 2),

and Φ̃ is a weak limit of the sequence of distributions

L{
Cn(hn

1 (θ)− γ 12(θ)γ
−1
22 (θ)h n

2 (θ) | P n
θ

}
= L{

CnHn(θ) | P n
θ

}
as n →∞,

i.e. (see (3.23)),

Φ̃ = N(0, Γp(θ)). (3.30)
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But

ξn
1 (θ)− γ 12(θ)γ

−1
22 (θ)ξ n

2 (θ) =
(
γ11(θ)− γ 12(θ)γ

−1
22 (θ)γ 21(θ)

)
C−1

n (θ̂1,n − θ1)

= γp(θ)C
−1
n (θ̂1,n − θ1).

Adding to this equality (3.29) and (3.30) we obtain

L{
C−1

n (θ̂1,n − θ1) | P n
θ

} ⇒ N

(
0,

Γp(θ)

(γp(θ))2

)
. (3.31)

Now after comparing (3.28) and (3.31), one can conclude that
(
γ−1(θ)Γ(θ)

(
γ−1(θ)

)′)
11

=
Γp(θ)

(γp(θ))2
(3.32)

and thus the estimator (θ1,n)n≥1 constructed by the skew projection technique

has the same asymptotic variance as the first component (θ̂1,n)n≥1 of the esti-

mator (θ̂n)n≥1 constructed by solving the full system (3.3).

If equation (3.10) has a unique solution θ1,n, then Theorem 3.1 establishes

the asymptotic distribution of the normed sequence (C−1
n (θ1,n − θ1))n≥1 (see

(3.22)).
To avoid the problem of the solvability of equation (3.10) one can consider

the following one-step approximation procedure: let (θn)n≥1 be a Cn-consistent
estimator of a full parameter θ ∈ Rm+1. i.e., C−1

n (θn − θ) = OP n
θ
(1).

Define an estimator θ1,n of θ1 by the one-step procedure

θ1,n = θ1,n + γ−1
p (θn)C2

nHn(θn). (3.33)

Theorem 3.2. Let conditions (1), (2), (4) and (5) of Theorem 3.1 be satisfied
as well as the condition

(6′) for any θ ∈ Rm+1, N > 0 and ρ > 0

lim
n→∞

P n
θ

{
sup

x:|x−θ1|≤CnN
y:|y−θ 2|≤CnN

C2
n

∣∣(1)

Hn(x, y)−
(1)

Hn(θ1, y)
∣∣ > ρ

}
= 0.

Then,

L{
C−1

n (θ1,n − θ1) | P n
θ

} ⇒ N

(
0,

Γp(θ)

γ2
p(θ)

)

as n →∞.

Proof. (3.33) yields

C−1
n (θ1,n − θ1) = C−1

n (θ1,n − θ1) + γ−1
p (θ)CnHn(θn)

+
(
γ−1

p (θn)− γ−1
p (θ)

)
CnHn(θn)

= C−1
n (θ1,n − θ1) + γ−1

p (θ)CnLn(θ1,n)

+
(
γ−1

p (θn)− γ−1
p (θ)

)
CnLn(θ1,n), (3.34)

where Ln(θ1) = Hn(θ1, θ 2,n).
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Using the Taylor expansion, we have

Ln(θ1,n) = Ln(θ) + L̇n(xn)(θ1,n − θ1), (3.35)

where L̇(θ1) = ∂
∂θ

Ln(θ1) =
(1)

Hn(θ1, θ 2,n), xn = θ1 − α(θ1,n − θ1), α ∈ [0, 1].
Substituting (3.35) in (3.34), we obtain

C−1
n (θ1,n − θ1) = γ−1

p (θ)CnLn(θ1) + εn(xn, θ) + δ(θn, θ), (3.36)

where

εn(xn, θ) = γ−1
p (θ)

(
γp(θ) + C2

nL̇(xn)
)
C−1

n (θ1,n − θ1),

δn(θn, θ) =
(
γ−1

p (θn)− γ−p (θ)
)
CnLn(θ1,n).

Now if we prove that

P n
θ - lim

n→∞
εn(xn, θ) = 0, (3.37)

P n
θ - lim

n→∞
δn(θn, θ) = 0, (3.38)

then the desirable convergence (the assertion of Theorem 3.2) follows from (3.36)
and (3.24).

First we prove (3.37).
Using a standard technique we have for any ρ > 0 and N > 0

lim
n→∞

P n
θ

{
C2

n

∣∣L̇n(xn)− L̇n(θ1)
∣∣ > ρ

}

= lim
n→∞

P n
θ

{
C2

n

∣∣(1)

Hn(xn, θ 2,n)−
(1)

Hn(θ1, θ 2,n)
∣∣ > ρ

}

≤ lim
n→∞

P n
θ

{
sup

x:|x−θ1|≤CnN
y:|y−θ 2|≤CnN

C2
n

∣∣(1)

Hn(xn, y)−
(1)

Hn(θ1, y)
∣∣ > ρ

}

+ lim
n→∞

P n
θ

{
C−1

n | |θ 2,n − θ 2| > N
}

= lim
n→∞

P n
θ

{
C−1

n | |θ 2,n − θ 2| > N
}
, (3.39)

where the last equality follows from condition (6′). Letting N → ∞ in (3.39)
we obtain

P n
θ - lim

n→∞
C2

n

∣∣L̇n(xn)− L̇n(θ1)
∣∣ = 0. (3.40)

In view of (3.21), (3.40) implies

P n
θ - lim

n→∞
(
γp(θ) + C2

nL̇n(xn)
)

= 0 (3.41)

from which taking into account that C−1
n (θ1,n − θ1) = OP n

θ
(1) we get (3.37).

As for (3.38) in view of (3.41) and (3.24) it evidently follows from (3.35) that
the sequence (CnLn(θ1,n))n≥1 is bounded in probability. It remains to notice
that γ−1

p (θ) is continuous in θ. Theorem is proved. ¤
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Appendix

Let for every θ ∈ Θ ⊂ R`, ` ≥ 1, a sequence of probability measures (Qn
θ )n≥1,

(Qn
θ ∼ P n) and a `-dimensional random vectors Ln(θ), n ≥ 1, as well as a

sequence of positive numbers (Cn)n≥1 be given on a measurable space (Ωn,Fn
T ).

We are interested in the of solvability of the system of equations

Ln(θ) = 0 (A.1)

and asymptotic behavior of solutions as n →∞.
The following lemma is proved in [2].

Lemma A. Let the following conditions be satisfied:

a) lim
n→∞

Cn = 0;

b) for each n ≥ 1 the mapping θ Ã Ln(θ) is continuously differentiable
P n-a.s.;

c) for each pair (θ, y), θ ∈ Θ, y ∈ Θ there exists a function ∆Q(θ, y) such
that

Qn
θ - lim

n→∞
C2

nLn(y) = ∆Q(θ, y)

and the equation (w.r.t. y)

∆Q(θ, y) = 0

has a unique solution θ∗ = b(θ) ∈ Θ;
d) for each θ ∈ Θ

Qn
θ - lim

n→∞
C2

nL̇n(θ∗) = −γQ(θ),

where γQ(θ) is a positive definite matrix, L̇n(θ) =
(

∂
∂θi

Ln,j(θ)
)

i,j=1,d
;

e) for each θ ∈ Θ and ρ > 0

lim
r→0

lim
n→∞

Qn
θ

{
sup

y:|y−θ∗|≤r

|L̇n(y)− L̇n(θ∗)| > ρ

}
= 0.

Then for any θ ∈ Θ there exists a sequence of random vectors θ̂ = (θ̂n)n≥1

taking values in Θ such that

I. lim
n→∞

Qn
θ{Ln(θ̂n) = 0} = 1,

II. Qn
θ - lim

n→∞
θ̂n = θ∗,

III. if θ̃ = (θ̃n)n≥1 is another sequence with properties I and II, then

lim
n→∞

Qn
θ{θ̃n = θ̂n} = 1,

IV. if the sequence of distributions L{CnLn(θ∗) | Qn
θ} converges weakly to a

certain distribution Φ, then

L{
γQ(θ)C−1

n (θ̂n − θ∗) | Qn
θ

} ⇒ Φ as n →∞.
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Remark. By the same arguments as used in the proof of Lemma A one
can easily verify that all assertions of Lemma A hold true of instead of `-
dimensional function Ln(θ) we consider a k-dimensional, k < `, function Ln(θ)
such that Ln(θ) = Ln(θ1, . . . , θk), θ = (θ1, . . . , θk, . . . , θ`)

′, with Ln(θ1, θ2, . . . , θk)
being continuously differentiable in each point θi, i ≤ k, and assume that all
conditions of Lemma A are satisfied with k-dimensional function ∆Q(θ, y) =
∆Q(θ, y1, y2, . . . , yk), y = (y1, . . . , yk, . . . , y`) ∈ Θ, and

L̇(θ) =

(
∂

∂θi

Ln,j(θ1, . . . , θk)

)

i,j≤k

.

It should be noticed that a function Ln(θ) is defined on projection of set
Θ ⊂ Rk ×R`−k onto Rk.
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