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OSCILLATION THEOREMS OF NONLINEAR DIFFERENCE
EQUATIONS OF SECOND ORDER

S. H. SAKER

Abstract. Using the Riccati transformation techniques, we establish some
new oscillation criteria for the second-order nonlinear difference equation

∆2xn + F (n, xn, ∆xn) = 0 for n ≥ n0.

Some comparison between our theorems and the previously known results
in special cases are indicated. Some examples are given to illustrate the
relevance of our results.
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1. Introduction

In recent years, the oscillation and asymptotic behavior of second order dif-
ference equations has been the subject of investigations by many authors. In
fact, in the last few years several monographs and hundreds of research papers
have been written, see, e.g., the monographs [1–8].

Following this trend in this paper, we consider the nonlinear difference equa-
tion

∆2xn + F (n, xn, ∆xn), n ≥ n0, (1.1)

where n0 is a fixed nonnegative integer, ∆ denotes the forward difference oper-
ator ∆xn = xn+1 − xn.

Throughout, we shall assume that there exists a real sequence {qn} such that

F (n, u, v) sign u ≥ qn |u|β for n ≥ n0 and u, v ∈ R, (1.2)

where qn ≥ 0 and not identically zero for large n, and β > 0 is a positive integer.
We say that equation (1.1) is strictly superlinear if β > 1, strictly sublinear if
β < 1 and linear if β = 1.

By a solution of (1.1) we mean a nontrivial sequence {xn} satisfying equation
(1.1) for n ≥ n0. A solution {xn} of (1.1) is said to be oscillatory if for every
n1 > n0 there exists n ≥ n1 such that xnxn+1 ≤ 0, otherwise it is nonoscillatory.
Equation (1.1) is said to be oscillatory if all its solutions are oscillatory.

Different kinds of the dynamical behavior of solutions of second order differ-
ence equations are possible; here we shall only be concerned with the conditions
which are sufficient for all solutions of (1.1) to be oscillatory.

Our concern is motivated by several papers, especially by Hooker and Patula
[11], Szmanda [13], Wong and Agarwal [14] and Fu and Tsai [10].
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Our aim in this paper is to establish some new oscillation criteria for equa-
tion (1.1) by using the Riccati transformation techniques. Some comparison
between our theorems and the previously known results [10, 11, 13] are indi-
cated. Examples are given to illustrate the relevance of our results.

2. Main Results

In what follows we shall assume that equation (1.1) is strictly superlinear,
strictly sublinear or linear.

First, we consider the case where (1.1) is strictly superlinear. As a variant
of the Riccati transformation techniques, we shall derive new oscillation crite-
ria which can be considered as a discrete analogue of Philos condition for the
oscillation of second-order differential equations [12].

Theorem 2.1. Assume that (1.2) holds, and let {ρn} be a positive sequence.
Furthermore, assume that there exists a double sequence {Hm,n : m ≥ n ≥
0}such that

(i) Hm,m = 0 for m ≥ 0,
(ii) Hm,n > 0 for m > n > 0,
(iii) ∆2Hm,n = Hm,n+1 −Hm,n.
If

lim
m→∞

sup
1

Hm,0

m−1∑
n=0

[
Hm,nρnqn − (ρn+1)

2

4
−
ρn

(
hm,n − ∆ρn

ρn+1

√
Hm,n

)2
]

= ∞, (2.1)

where
−
ρn= 21−βMβ−1ρn, hm,n = −∆Hm,n√

Hm,n

. (2.2)

for some positive constant M , then every solution of equation (1.1) oscillates.

Proof. Suppose the contrary that {xn} is an eventually positive solution of (1.1),
say, xn > 0 for all n ≥ n1 ≥ n0. We shall consider only this case, because the
proof when xn < 0 is similar. From equations (1.1) and (1.2) we have

∆2xn ≤ −qnx
β
n ≤ 0 for n ≥ n1 (2.3)

and so {∆xn} is a nonincreasing sequence. We first have to show that ∆xn ≥ 0
for n ≥ n1. Indeed, if there exists an integer n2 ≥ n1 such that ∆xn2 = c < 0,
then ∆xn ≤ c for n ≥ n2, that is

xn ≤ xn2 + c(n− n0) → −∞ as n →∞, (2.4)

which contradicts the fact that xn > 0 for n ≥ n1. Therefore we have

∆xn ≥ 0 and ∆2xn ≤ 0 for n ≥ n1. (2.5)

Define the sequence

wn = ρn
∆xn

xβ
n

. (2.6)
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Then wn > 0 and

∆wn = ∆xn+1∆

[
ρn

xβ
n

]
+

ρn∆2xn

xβ
n

;

this and (2.4) imply

∆wn ≤ −ρnqn +
∆ρn

ρn+1

wn+1 − ρn∆xn+1∆(xβ
n)

xβ
nxβ

n+1

. (2.7)

But (2.5) implies that xn+1 ≥ xn; then from (2.7) we have

∆wn ≤ −ρnqn +
∆ρn

ρn+1

wn+1 − ρn∆xn+1∆(xβ
n)

(xβ
n+1)

2
. (2.8)

Now, by using the inequality

xβ − yβ > 21−β(x− y)β for all x ≥ y > 0 and β > 1

we find that

∆(xβ
n) = xβ

n+1 − xβ
n > 21−β(xn+1 − xn)β = 21−β (∆xn)β , β > 1. (2.9)

Substituting (2.9) in (2.8), we have

∆wn ≤ −ρnqn +
∆ρn

ρn+1

wn+1 − ρn
21−β (∆xn)β ∆xn+1(

xβ
n+1

)2 . (2.10)

From (2.5) and (2.10) we obtain

∆wn ≤ −ρnqn +
∆ρn

ρn+1

wn+1 − ρn
21−β (∆xn+1)

2β

(
xβ

n+1

)2

(∆xn+1)
β−1

;

this and (2.6) imply that

∆wn ≤ −ρnqn +
∆ρn

ρn+1

wn+1 − 21−βρn

(ρn+1)
2w2

n+1

1

(∆xn+1)
β−1

. (2.11)

Since ∆2xn ≤ 0, from (2.5) it follows that ∆xn is a nonincreasing and positive
sequence and there exists sufficiently large n2 ≥ n1 such that ∆xn ≤ M for
some positive constant M and n ≥ n2, and hence ∆xn+1 ≤ M so that

1

(∆xn+1)
β−1

> M
β−1

. (2.12)

Now, from (2.11) and (2.12), we have

ρnqn ≤ −∆wn +
∆ρn

ρn+1

wn+1 −
−
ρn

(ρn+1)
2 w2

n+1. (2.13)
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Therefore
m−1∑
n=n2

Hm,nρnqn ≤ −
m−1∑
n=n2

Hm,n∆wn +
m−1∑
n=n2

Hm,n
∆ρn

ρn+1

wn+1

−
m−1∑
n=n2

Hm,n

−
ρn

(ρn+1)
2 w2

n+1, (2.14)

which yields after summing by parts
m−1∑
n=n2

Hm,nρnqn

≤ Hm,n2wn2 +
m−1∑
n=n2

wn+1∆2Hm,n +
m−1∑
n=n2

Hm,n
∆ρn

ρn+1

wn+1

−
m−1∑
n=n2

Hm,n

−
ρn

(ρn+1)
2w2

n+1

= Hm,n2wn2 −
m−1∑
n=n2

hm,n

√
Hm,nwn+1 +

m−1∑
n=n2

Hm,n
∆ρn

ρn+1

wn+1

−
m−1∑
n=n2

Hm,n

−
ρn

(ρn+1)
2w2

n+1

= Hm,n2wn2 −
m−1∑
n=n2




√
Hm,n

−
ρn

ρn

wn+1

+
ρn+1

2

√
Hm,n

−
ρn

(
hm,n

√
Hm,n − ∆ρn

ρn+1

Hm,n

)


2

+
1

4

m−1∑
n=n2

(ρn+1)
2

−
ρn

(
hm,n − ∆ρn

ρn+1

√
Hm,n

)2

< Hm,n2wn2 +
1

4

m−1∑
n=n2

(ρn+1)
2

−
ρn

(
hm,n − ∆ρn

ρn+1

√
Hm,n

)2

.

Therefore
m−1∑
n=n2

[
Hm,nρnqn − (ρn+1)

2

4
−
ρn

(
hm,n − ∆ρn

ρn+1

√
Hm,n

)2
]

< Hm,n2wn2 ≤ Hm,0wn2

which implies that
m−1∑
n=0

[
Hm,nρnqn − (ρn+1)

2

4
−
ρn

(
hm,n − ∆ρn

ρn+1

√
Hm,n

)2
]

< Hm,0

(
wn2 +

n2−1∑
n=0

ρnqn

)
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Hence

lim
m→∞

sup
1

Hm,0

m−1∑
n=0

[
Hm,nρnqn − (ρn+1)

2

4
−
ρn

(
hm,n − ∆ρn

ρn+1

√
Hm,n

)2
]

<

(
wn2 +

n2−1∑
n=0

ρnqn

)
< ∞,

which contradicts (2.1). Therefore every solution of (1.1) oscillates. ¤

Remark 2.1. From Theorem 2.1 we can obtain different conditions for oscil-
lation of all solutions of equation (1.1) when (1.2) holds by different choices of
{ρn} and Hm,n.

Let Hm,n = 1. By Theorem 2.1 we have the following result.

Corollary 2.1. Assume that (1.2) holds. Furthermore, assume that there
exists a positive sequence {ρn}such that for some positive constant M

lim
n→∞

sup
n∑

l=n0

[
ρlql − (∆ρl)

2

23−βMβ−1ρl

]
= ∞. (2.15)

Then every solution of equation (1.1) oscillates.

Let ρn = nλ, n ≥ n0, λ > 1 be a constant and Hm,n = 1; then from Theorem
2.1 we have the following result.

Corollary 2.2. Assume that all the assumptions of Theorem 2.1 hold except
that condition (2.1) is replaced by

lim
n→∞

sup
n∑

s=n0

[
sλqs − ((s + 1)λ − sλ)2

23−βMβ−1sλ

]
= ∞. (2.16)

Then every solution of equation (1.1) oscillates.

Remark 2.2. Note that when F (n, u, v) = qnu, equation (1.1) reduces to the
linear difference equation

∆2xn + qnxn = 0, n = 0, 1, 2, . . . , (2.17)

and condition (2.15) reduces to

lim
n→∞

sup
n∑

l=n0

[
ρlql − (∆ρl)

2

4ρl

]
= ∞. (2.18)

Then Theorem 2.1 is an extension of Theorem 4 in [13] and improves Theorem
A in [10].

Remark 2.3. If F (n, u, v) = qnu
β, then equation (1.1) reduces to the equation

∆2xn + qnxβ
n = 0, n = 0, 1, 2, . . . ,
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and condition (2.1) reduces to

lim
n→∞

sup
n∑

l=n0

[
ρlql − (∆ρl)

2

23−βMβ−1ρl

]
= ∞,

which improves Theorem 4.1 in [11].

The following example is illustrative.

Example 2.1. Consider the discrete Euler equation

∆2xn +
µ

n2
xn = 0, n ≥ 1. (2.19)

Here β = 1,

F (n, xn, ∆xn) =
µ

n2
xn,

where µ > 1
4
. Thus qn = µ

n2 . Therefore if ρn = n, then (2.18) becomes

lim
n→∞

sup
n∑

l=n0

[
ρlql − (∆ρl)

2

4ρl

]
= lim

n→∞
sup

n∑
s=n0

[
µ

s
− 1

4s

]

= lim
n→∞

sup
n∑

s=n0

4µ− 1

s
→∞.

By Corollary 2.1, every solution of the discrete Euler equation oscillates. It is
known [15] that when µ ≤ 1

4
, the discrete Euler equation has a nonoscillatory

solution. Hence Theorem 2.1 and Corollary 2.1 are sharp.

Remark 2.4. We can use a general class of double sequences {Hm,n} as the pa-
rameter sequences in Theorem 2.1 to obtain different conditions for oscillation
of equation (1.1). By choosing specific sequence {Hm,n}, we can derive sev-
eral oscillation criteria for equation (1.1). Let us consider the double sequence
{Hm,n} defined by

Hm,n = (m− n)λ, m ≥ n ≥ 0, λ ≥ 1,

Hm,n =
(
log m+1

n+1

)λ
, m ≥ n ≥ 0, λ ≥ 1.

(2.20)

Then Hm,m = 0 for m ≥ 0, and Hm,n > 0 and ∆2Hm,n ≤ 0 for m > n ≥ 0.
Hence we have the following results.

Corollary 2.3. Assume that all the assumptions of Theorem 2.2 hold except
that condition (2.1) is replaced by

lim
m→∞

sup
1

mλ

m∑
n=0

[
(m− n)λρnqn

− ρ2
n+1

4
−
ρn

(
λ(m− n)

λ−2
2 − ∆ρn

ρn+1

(m− n)
λ
2

)2 ]
= ∞. (2.21)

Then every solution of equation (1.1) oscillates.
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Corollary 2.4. Assume that all the assumptions of Theorem 2.2 hold except
that condition (2.1) is replaced by

lim
m→∞

sup
1

(log(m + 1))λ

m∑
n=0

[(
log

m + 1

n + 1

)λ

ρnqn −
ρ2

n+1Am,n

4
−
ρn

]
= ∞, (2.22)

where

Am,n =

(
λ

n + 1

(
log

m + 1

n + 1

)λ−2
2

− ∆ρn

ρn+1

(
log

m + 1

n + 1

)λ
2

)2

.

Then every solution of equation (1.1) oscillates.

Another Hm,n may be chosen as

Hm,n = φ(m− n), m ≥ n ≥ 0,

or

Hm,n = (m− n)(λ), λ > 2, m ≥ n ≥ 0,

where φ : [0,∞) → [0,∞) is a continuously differentiable function which
satisfies φ(0) = 0 and φ(u) > 0, φ′(u) ≥ 0 for u > 0, and (m − n)(λ) =
(m− n)(m− n + 1) · · · (m− n + λ− 1) and

∆2(m− n)(λ) = (m− n− 1)(λ) − (m− n)(λ) = −λ(m− n)(λ−1).

The corresponding corollaries can also be stated.
Now, we consider the case where (1.1) is strictly sublinear.

Theorem 2.2. Assume that (1.2) holds, and let {ρn} be a positive sequence.
Furthermore, assume that there exists a double sequence {Hm,n : m ≥ n ≥ 0}
such that

(i) Hm,m = 0 for m ≥ 0,
(ii) Hm,n > 0 for m > n > 0,
(iii) ∆2Hm,n = Hm,n+1 −Hm,n.
If

lim
m→∞

sup
1

Hm,0

m−1∑
n=0

[
Hm,nρnqn −

ρ2
n+1

4Pn

(
hm,n − ∆ρn

ρn+1

√
Hm,n

)2
]

= ∞, (2.23)

where Pn = βρn

b1−β(n+1)1−β , then every solution of equation (1.1) oscillates.

Proof. Proceeding as in the proof of Theorem 2.1, we assume that equation
(1.1) has a nonoscillatory solution xn > 0 for all n≥ n0. Defining again wn by
(2.6), we obtain (2.8). Now, using the inequality (cf. [9, p. 39]),

xβ − yβ > βxβ−1(x− y) for all x 6= y > 0 and 0 < β ≤ 1

we find that

∆(xβ
n) = xβ

n+1 − xβ
n > β (xn+1)

β−1 (xn+1 − xn) = β (xn+1)
β−1 (∆xn) . (2.24)
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Substituting (2.24) in (2.8), we have

∆wn ≤ −ρnqn +
∆ρn

ρn+1

wn+1 − ρnan
β (xn+1)

β−1 (∆xn) (∆xn+1)(
xβ

n+1

)2 .

From (2.5) and the last inequality we obtain

∆wn ≤ −ρnqn +
∆ρn

ρn+1

wn+1 − βρn

(ρn+1)
2 (xn+1)

1−β

(ρn+1)
2 (∆xn+1)

2

(
xβ

n+1

)2 .

Hence

∆wn ≤ −ρnqn +
∆ρn

ρn+1

wn+1 − βρn

(ρn+1)
2 (xn+1)

1−β
w2

n+1 . (2.25)

From (2.5) we conclude that

xn ≤ xn0 + ∆xn0(n− n0), n ≥ n0,

and consequently there exists n1 ≥ n0 and an appropriate constant b ≥ 1 such
that

xn ≤ bn for n ≥ n1.

This implies that

xn+1 ≤ b(n + 1) for n ≥ n2 = n1 − 1

and hence
1

(xn+1)
1−β

≥ 1

b1−β(n + 1)1−β
. (2.26)

From (2.25) and (2.26) we obtain

ρnqn ≤ −∆wn +
∆ρn

ρn+1

wn+1 − Pn

(ρn+1)
2 w2

n+1. (2.27)

The remainder of the proof is similar to that of the proof of Theorem 2.1 and
hence is omitted. ¤

From Theorem 2.2 we can obtain different conditions for oscillation of all
solutions of equation (1.1) when (1.2) holds by different choices of {ρn} and
Hm,n. Let Hm,n = 1. By Theorem 2.2 we have the following result.

Corollary 2.5. Assume that (1.2) holds. Furthermore, assume that there
exists a positive sequence {ρn} such that for every b ≥ 1

lim
n→∞

sup
n∑

l=0

[
ρlql − b1−β(l + 1)1−β(∆ρn)2

4βρl

]
= ∞. (2.28)

Then every solution of equation (1.1) oscillates.

Remark 2.5. Corollary 2.5 improves Theorem 4.3 in [11].

Let Hm,n = 1 and ρn = nλ, n ≥ n0 and λ > 1 be a constant; then we have
the following result.
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Corollary 2.6. Assume that all the assumptions of Theorem 2.3 hold except
that condition (2.28) is replaced by

lim
n→∞

sup
n∑

s=n0

[
sλqs − b1−β(s + 1)1−β((s + 1)λ − sλ)2

4βsλ

]
= ∞. (2.29)

Then every solution of equation (1.1) oscillates.

Example 2.2. Consider the difference equation

∆2xn +
2n + 1

[n(n + 1)2]
1
3

(xn)
1
3 = 0, n ≥ 1.

Since β = 1
3
, we have

qn =
1 + 2n

[n(n + 1)2]
1
3

.

By choosing ρn = n + 1 and b = 1, we have

n∑
s=1

[
ρsqs − (s + 1)1−β(∆ρl)

2

4βρl

]
=

n∑
s=1

[
(1 + 2s)− 3(s + 1)

2
3

4(s + 1)

]

≥
n∑

s=1

[
(1 + 2s)− 3(s + 1)2

4(s + 1)

]
→∞

as n → ∞. So according to Corollary 2.6 every solution of this equation
oscillates.

The following corollaries follow immediately from Theorem 2.2.

Corollary 2.7. Assume that all the assumptions of Theorem 2.2 hold except
that condition (2.23) is replaced by

lim
m→∞

sup
1

mλ

m∑
n=0

[
(m− n)λρnqn−

ρ2
n+1

4Pn

(
λ(m−n)

λ−2
2 −∆ρn

ρn+1

(m− n)
λ
2

)2
]

=∞.

Then every solution of equation (1.1) oscillates.

Corollary 2.8. Assume that all the assumptions of Theorem 2.2 hold except
that condition (2.23) is replaced by

lim
m→∞

sup
1

(log(m + 1))λ

m∑
n=0

[(
log

m + 1

n + 1

)λ

ρnqn −
ρ2

n+1Am,n

4Pn

]
= ∞,

where Am,n is as defined in Corollary 2.4. Then, every solution of equation (1.1)
oscillates.
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