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WEAK CONVERGENCE OF A DIRICHLET-MULTINOMIAL
PROCESS
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Abstract. We present a random probability distribution which approxi-
mates, in the sense of weak convergence, the Dirichlet process and supports
a Bayesian resampling plan called a proper Bayesian bootstrap.
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1. Introduction

The purpose of this paper is to throw light on a random probability distri-
bution called the Dirichlet-multinomial process that approximates, in the sense
of weak convergence, the Dirichlet process. A Dirichlet-multinomial process is
a particular mixture of Dirichlet processes: in two previous works [11, 12] we
showed that the process supports a Bayesian resampling plan which we called a
proper Bayesian bootstrap suitable for approximating the distribution of func-
tionals of the Dirichlet process and therefore being of interest in the context of
Bayesian nonparametric inference.

Under different names, variants of the Dirichlet-multinomial model have been
recently considered by other authors: see, for instance, [7] and the references
therein. In fact, it has been pointed out that the Dirichlet-Multinomial model
is equivalent to Fisher’s species sampling model [5] recently reconsidered by
Pitman among those extending the Blackwell and MacQueen urn scheme [13].
However none of these works allude to a connection between the Dirichlet-
multinomial model and Bayesian bootstrap resampling plans. Recent applica-
tions of our proper Bayesian bootstrap include those in [3] for the approximation
of the posterior distribution of the overflow rate in discrete-time queueing mod-
els.

In Section 2 we define the Dirichlet-multinomial process and we show that it
can be used to approximate a Dirichlet process. Section 3 is dedicated to the
proper Bayesian bootstrap algorithm and its connections with the Dirichlet-
multinomial process.

2. A Convergence Result

Let P be the class of probability measures defined on the Borel σ-field B of
<; for the reason of simplicity we work with < but all the arguments below still
hold if < is replaced by a separable metric space. Endow P with the topology
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of weak convergence and write σ(P) for the Borel σ-field in P . With these
assumptions P becomes a separable and complete metric space [14].

A useful random probability measure P ∈ P is the Dirichlet process intro-
duced by Ferguson [4]. When α is a finite, nonnegative, nonnull measure on
(<,B) and P is a Dirichlet process with parameter α, we write P ∈ D(α). We
want to define a random element of P that is a mixture of Dirichlet processes;
according to [1] we thus need to specify a transition measure and a mixing
distribution.

Given w > 0, let αw : P × B → [0, +∞) be defined by setting, for every
P ∈ P and B ∈ B,

αw(P, B) = wP (B).

The function αw is a transition measure. Indeed, for every P ∈ P , αw(P, ·) is
a finite, nonnegative and nonnull measure on (<,B) whereas, for every B ∈ B,
αw(·, B) is measurable on (P , σ(P)) since σ(P) is a smallest σ-field in P such
that the function P → P (B) is measurable, for every B ∈ B.

Given a probability distribution P0, let X∗
1 , . . . , X

∗
m be an i.i.d. sample of size

m > 0 from P0. Assume P ∗
m ∈ P to be the empirical distribution of X∗

1 , . . . , X
∗
m

defined by

P ∗
m =

1

m

m∑
i=1

δX∗
i
,

where δx denotes the point mass at x. Write H∗
m for the distribution of P ∗

m on
(P , σ(P)).

Roughly, the following definition introduces a process P such that, condition-
ally on P ∗

m, P ∈ D(wP ∗
m).

Definition 2.1. A random element P ∈ P is called a Dirichlet-multino-
mial process with parameters (m,w, P0) (P ∈ DM(m,w, P0)) if it is a mixture
of Dirichlet processes on (<,B) with mixing distribution H∗

m and transition
measure αw.

Remark 2.2. We call the process P defined above Dirichlet-multinomial since,
as it will be seen in a moment, given any finite measurable partition B1, . . . , Bk

of <, the distribution of (P (B1), . . . , P (Bk)) is a mixture of Dirichlet distribu-
tions with multinomial weights. This process must not be confused with the
Dirichlet-multinomial point process of Lo [9, 10] whose marginal distributions
are mixtures of multinomial with Dirichlet weights.

It follows from the definition that if P ∈ DM(m, w, P0), for every finite
measurable partition B1, . . . , Bk of < and (y1, . . . , yk) ∈ <k,

Pr (P (B1) ≤ y1, . . . , P (Bk) ≤ yk)

=

∫

P
D(y1, . . . , yk|αw(u,B1), . . . , αw(u,Bk)) dH∗

m(u),

where D(y1, . . . , yk|α1, . . . , αk) denotes the Dirichlet distribution function with
parameters (α1, . . . , αk) evaluated at (y1, . . . , yk). With different notation, we
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may say that the vector (P (B1), . . . , P (Bk)) has a distribution

Dirichlet
(
w

M1

m
, . . . , w

Mk

m

) ∧

(M1,...,Mk)

multinomial (m, (P0(B1), . . . , P0(Bk))) ;

i.e., a mixture of Dirichlet distributions with multinomial weights.
For our purposes, the introduction of the Dirichlet-Multinomial process is

justified by the following theorem.

Theorem 2.3. For every m > 0, let Pm ∈ P be a Dirichlet-multinomial
process with parameters (m,w, P0). Then, when m → ∞, Pm converges in dis-
tribution to a Dirichlet process with parameter wP0.

The result appears in [11] as well as in [13]. See also [8]. For ease of reference
we sketch a simple argument, inspired by [16], that we consider as a nice didactic
illustration of Prohorov’s Theorem.

Proof. Given any finite measurable partition B1, . . . , Bk of <, the distribution
of the vector (Pm(B1), . . . , Pm(Bk)) weakly converges to a Dirichlet distribution
with parameters (wP0(B1), . . . , wP0(Bk)) when m →∞. In order to prove that
Pm weakly converges to a Dirichlet process with parameter wP0 it is therefore
enough to show that the sequence of measures induced on (P , σ(P)) by the
processes Pm, m = 1, 2, . . . , is tight. Given ε > 0, let Kr, r = 1, 2, . . . , be a
compact set of < such that P0(K

c
r) ≤ ε/r3 and define

Mr =
{

P ∈ P : P (Kc
r) ≤

1

r

}
.

The set M =
⋂∞

r=1 Mr is compact in P . For m = 1, 2, . . . and r = 1, 2, . . . ,
E[Pm(Kc

r)] = P0(K
c
r) and thus

Pr
(
Pm(Kc

r) >
1

r

)
≤ rP0(K

c
r) ≤

ε

r2
.

Hence, for every m = 1, 2, . . . ,

Pr(Pm ∈ M) ≥ 1−
∞∑

r=1

Pr
(
Pm(Kc

r) >
1

r

)
≥ 1− ε

∞∑
r=1

1

r2
. ¤

3. Connections with the Proper Bayesian Bootstrap

Let T : P → < be a measurable function and P ∈ D(wP0) with w > 0, P0 ∈
P . It is often difficult to work out analytically the distribution of T (P ) even
when T is a simple statistical functional like the mean [6, 2]. However, when P0

is discrete with finite support one may produce a reasonable approximation of
the distribution of T (P ) by a Monte Carlo procedure that obtains i.i.d. samples
from D(wP0). If P0 is not discrete, we propose to approximate the distribution of
T (P ) by the distribution of T (Pm), where Pm is a Dirichlet-multinomial process
with parameters (m,w, P0) and m is large enough.

Of course, since the Continuous Mapping Theorem does not apply to every
function T, the fact that Pm converges in distribution to P does not always
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imply that the distribution of T (Pm) is close to that of T (P ). However, we
proved in [12] that this is in fact the case when T belongs to a large class of
linear functionals or when T is a quantile. In [12] we also tested by means of a
few numerical examples a bootstrap algorithm that generates an approximation
of the distribution of T (P ) in the following steps:

(1) Generate an i.i.d sample X∗
1 , . . . , X

∗
m from P0.

(2) Generate an i.i.d. sample V1, . . . , Vm from a Gamma( w
m

, 1).
(3) Compute T (Pm), where Pm ∈ P is defined by

Pm =
1∑m

i=1 Vi

m∑
i=1

ViδX∗
i
.

(4) Repeat steps (1)–(3) s times and approximate the distribution of T (P )
with the empirical distribution of the values T1, . . . , Ts generated at step
(3).

It is easily seen that the probability distribution Pm generated in step (3)
is in fact a trajectory of the Dirichlet-multinomial process with parameters
(m,w, P0). We may therefore conclude that the previous algorithm aims at ap-
proximating the distribution of T (P ) by distribution of T (Pm), where Pm ∈
DM(m,w, P0), and approximates the latter by means of the empirical distribu-
tion of the values T1, . . . , Ts generated in step (3).

Remark 3.1. Step (1) is useless when P0 is discrete with finite support
{z1, . . . , zm} and P0(zi) = pi, i = 1, . . . , m, with

∑m
i=1 pi = 1. In fact, in this

case one may generate at step (3) a trajectory of P ∈ D(wP0), by taking

Pm =
1∑m

i=1 Vi

m∑
i=1

Viδzi

where V1, . . . , Vm, are independent and Vi has distribution Gamma(wpi, 1), i =
1, . . . , m.

We call the algorithm (1)–(4) the proper Bayesian bootstrap. To understand
the reason for this name consider the following situation. A sample X1, . . . , Xn

from a process P ∈ D(kQ0), with k > 0 and Q0 ∈ P , has been observed and
the problem is to compute the posterior distribution of T (P ) where T is a
given statistical functional. Ferguson [4] proved that the posterior distribution
of P is again a Dirichlet process with parameter kQ0 +

∑n
i=1 δXi

. In order to
approximate the posterior distribution of T (P ) our algorithm generates an i.i.d.
sample X∗

1 , . . . , X
∗
m from

k

k + n
Q0 +

n

k + n

(
1

n

n∑
i=1

δXi

)

and then, in step (3), produces a trajectory of a process that, given X∗
1 , . . . , X

∗
m,

is Dirichlet with parameter = (k+n)m−1
∑m

i=1 δX∗
i

and evaluates T with respect
to this trajectory. The algorithm is therefore a bootstrap procedure since it
samples from a mixture of the empirical distribution function generated by
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X1, . . . , Xn and Q0 which, together with the weight k, elicits the prior opinions
relative to P. Because it takes into account prior opinions by means of a proper
distribution function, the procedure was termed proper.

The name proper Bayesian bootstrap also distinguishes the algorithm from
the Bayesian bootstrap of Rubin [15] that approximates the posterior distribu-
tion of T (P ) by means of the distribution of T (Q) with Q ∈ D(

∑n
i=1 δXi

). We
already noticed in the previous work [12] that there are no proper priors for P
which support Rubin’s approximation and that the proper Bayesian bootstrap
essentially becomes the Bayesian bootstrap of Rubin when k tends to 0 or n is
very large.
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