WEAK CONVERGENCE OF A DIRICHLET-MULTINOMIAL PROCESS

PIETRO MULIERE AND PIERCESARE SECCHI

Abstract. We present a random probability distribution which approximates, in the sense of weak convergence, the Dirichlet process and supports a Bayesian resampling plan called a proper Bayesian bootstrap.

2000 Mathematics Subject Classification: 62G09, 60B10. Key words and phrases: Dirichlet process, proper Bayesian bootstrap.

1. Introduction

The purpose of this paper is to throw light on a random probability distribution called the *Dirichlet-multinomial process* that approximates, in the sense of weak convergence, the Dirichlet process. A Dirichlet-multinomial process is a particular mixture of Dirichlet processes: in two previous works [11, 12] we showed that the process supports a Bayesian resampling plan which we called a *proper Bayesian bootstrap* suitable for approximating the distribution of functionals of the Dirichlet process and therefore being of interest in the context of Bayesian nonparametric inference.

Under different names, variants of the Dirichlet-multinomial model have been recently considered by other authors: see, for instance, [7] and the references therein. In fact, it has been pointed out that the Dirichlet-Multinomial model is equivalent to Fisher's species sampling model [5] recently reconsidered by Pitman among those extending the Blackwell and MacQueen urn scheme [13]. However none of these works allude to a connection between the Dirichlet-multinomial model and Bayesian bootstrap resampling plans. Recent applications of our proper Bayesian bootstrap include those in [3] for the approximation of the posterior distribution of the overflow rate in discrete-time queueing models.

In Section 2 we define the Dirichlet-multinomial process and we show that it can be used to approximate a Dirichlet process. Section 3 is dedicated to the proper Bayesian bootstrap algorithm and its connections with the Dirichlet-multinomial process.

2. A Convergence Result

Let \mathcal{P} be the class of probability measures defined on the Borel σ -field \mathcal{B} of \Re ; for the reason of simplicity we work with \Re but all the arguments below still hold if \Re is replaced by a separable metric space. Endow \mathcal{P} with the topology

of weak convergence and write $\sigma(\mathcal{P})$ for the Borel σ -field in \mathcal{P} . With these assumptions \mathcal{P} becomes a separable and complete metric space [14].

A useful random probability measure $P \in \mathcal{P}$ is the Dirichlet process introduced by Ferguson [4]. When α is a finite, nonnegative, nonnull measure on (\Re, \mathcal{B}) and P is a Dirichlet process with parameter α , we write $P \in \mathcal{D}(\alpha)$. We want to define a random element of \mathcal{P} that is a mixture of Dirichlet processes; according to [1] we thus need to specify a transition measure and a mixing distribution.

Given w > 0, let $\alpha_w : \mathcal{P} \times \mathcal{B} \to [0, +\infty)$ be defined by setting, for every $P \in \mathcal{P}$ and $B \in \mathcal{B}$,

$$\alpha_w(P,B) = wP(B).$$

The function α_w is a transition measure. Indeed, for every $P \in \mathcal{P}$, $\alpha_w(P,\cdot)$ is a finite, nonnegative and nonnull measure on (\Re, \mathcal{B}) whereas, for every $B \in \mathcal{B}$, $\alpha_w(\cdot, B)$ is measurable on $(\mathcal{P}, \sigma(\mathcal{P}))$ since $\sigma(\mathcal{P})$ is a smallest σ -field in \mathcal{P} such that the function $P \to P(B)$ is measurable, for every $B \in \mathcal{B}$.

Given a probability distribution P_0 , let X_1^*, \ldots, X_m^* be an i.i.d. sample of size m > 0 from P_0 . Assume $P_m^* \in \mathcal{P}$ to be the empirical distribution of X_1^*, \ldots, X_m^* defined by

$$P_m^* = \frac{1}{m} \sum_{i=1}^m \delta_{X_i^*},$$

where δ_x denotes the point mass at x. Write \mathcal{H}_m^* for the distribution of P_m^* on $(\mathcal{P}, \sigma(\mathcal{P}))$.

Roughly, the following definition introduces a process P such that, conditionally on P_m^* , $P \in \mathcal{D}(wP_m^*)$.

Definition 2.1. A random element $P \in \mathcal{P}$ is called a Dirichlet-multinomial process with parameters (m, w, P_0) $(P \in \mathcal{DM}(m, w, P_0))$ if it is a mixture of Dirichlet processes on (\Re, \mathcal{B}) with mixing distribution \mathcal{H}_m^* and transition measure α_w .

Remark 2.2. We call the process P defined above Dirichlet-multinomial since, as it will be seen in a moment, given any finite measurable partition B_1, \ldots, B_k of \Re , the distribution of $(P(B_1), \ldots, P(B_k))$ is a mixture of Dirichlet distributions with multinomial weights. This process must not be confused with the Dirichlet-multinomial point process of Lo [9, 10] whose marginal distributions are mixtures of multinomial with Dirichlet weights.

It follows from the definition that if $P \in \mathcal{D}M(m, w, P_0)$, for every finite measurable partition B_1, \ldots, B_k of \Re and $(y_1, \ldots, y_k) \in \Re^k$,

$$\Pr\left(P(B_1) \le y_1, \dots, P(B_k) \le y_k\right)$$

$$= \int_{\mathcal{P}} D(y_1, \dots, y_k | \alpha_w(u, B_1), \dots, \alpha_w(u, B_k)) d\mathcal{H}_m^*(u),$$

where $D(y_1, \ldots, y_k | \alpha_1, \ldots, \alpha_k)$ denotes the Dirichlet distribution function with parameters $(\alpha_1, \ldots, \alpha_k)$ evaluated at (y_1, \ldots, y_k) . With different notation, we

may say that the vector $(P(B_1), \ldots, P(B_k))$ has a distribution

Dirichlet
$$\left(w\frac{M_1}{m}, \dots, w\frac{M_k}{m}\right) \bigwedge_{(M_1,\dots,M_k)}$$
 multinomial $\left(m, \left(P_0(B_1), \dots, P_0(B_k)\right)\right)$;

i.e., a mixture of Dirichlet distributions with multinomial weights.

For our purposes, the introduction of the Dirichlet-Multinomial process is justified by the following theorem.

Theorem 2.3. For every m > 0, let $P_m \in \mathcal{P}$ be a Dirichlet-multinomial process with parameters (m, w, P_0) . Then, when $m \to \infty$, P_m converges in distribution to a Dirichlet process with parameter wP_0 .

The result appears in [11] as well as in [13]. See also [8]. For ease of reference we sketch a simple argument, inspired by [16], that we consider as a nice didactic illustration of Prohorov's Theorem.

Proof. Given any finite measurable partition B_1, \ldots, B_k of \Re , the distribution of the vector $(P_m(B_1), \ldots, P_m(B_k))$ weakly converges to a Dirichlet distribution with parameters $(wP_0(B_1), \ldots, wP_0(B_k))$ when $m \to \infty$. In order to prove that P_m weakly converges to a Dirichlet process with parameter wP_0 it is therefore enough to show that the sequence of measures induced on $(\mathcal{P}, \sigma(\mathcal{P}))$ by the processes P_m , $m = 1, 2, \ldots$, is tight. Given $\epsilon > 0$, let K_r , $r = 1, 2, \ldots$, be a compact set of \Re such that $P_0(K_r^c) \leq \epsilon/r^3$ and define

$$M_r = \left\{ P \in \mathcal{P} : P(K_r^c) \le \frac{1}{r} \right\}.$$

The set $M = \bigcap_{r=1}^{\infty} M_r$ is compact in \mathcal{P} . For $m = 1, 2, \ldots$ and $r = 1, 2, \ldots$, $E[P_m(K_r^c)] = P_0(K_r^c)$ and thus

$$\Pr\left(P_m(K_r^c) > \frac{1}{r}\right) \le rP_0(K_r^c) \le \frac{\epsilon}{r^2}.$$

Hence, for every $m = 1, 2, \ldots$,

$$\Pr(P_m \in M) \ge 1 - \sum_{r=1}^{\infty} \Pr(P_m(K_r^c) > \frac{1}{r}) \ge 1 - \epsilon \sum_{r=1}^{\infty} \frac{1}{r^2}.$$

3. Connections with the Proper Bayesian Bootstrap

Let $T: \mathcal{P} \to \Re$ be a measurable function and $P \in \mathcal{D}(wP_0)$ with w > 0, $P_0 \in \mathcal{P}$. It is often difficult to work out analytically the distribution of T(P) even when T is a simple statistical functional like the mean [6, 2]. However, when P_0 is discrete with finite support one may produce a reasonable approximation of the distribution of T(P) by a Monte Carlo procedure that obtains i.i.d. samples from $\mathcal{D}(wP_0)$. If P_0 is not discrete, we propose to approximate the distribution of T(P) by the distribution of $T(P_m)$, where P_m is a Dirichlet-multinomial process with parameters (m, w, P_0) and m is large enough.

Of course, since the Continuous Mapping Theorem does not apply to every function T, the fact that P_m converges in distribution to P does not always

imply that the distribution of $T(P_m)$ is close to that of T(P). However, we proved in [12] that this is in fact the case when T belongs to a large class of linear functionals or when T is a quantile. In [12] we also tested by means of a few numerical examples a bootstrap algorithm that generates an approximation of the distribution of T(P) in the following steps:

- (1) Generate an i.i.d sample X_1^*, \ldots, X_m^* from P_0 .
- (2) Generate an i.i.d. sample V_1, \ldots, V_m from a Gamma $(\frac{w}{m}, 1)$.
- (3) Compute $T(P_m)$, where $P_m \in \mathcal{P}$ is defined by

$$P_m = \frac{1}{\sum_{i=1}^m V_i} \sum_{i=1}^m V_i \delta_{X_i^*}.$$

(4) Repeat steps (1)–(3) s times and approximate the distribution of T(P) with the empirical distribution of the values T_1, \ldots, T_s generated at step (3).

It is easily seen that the probability distribution P_m generated in step (3) is in fact a trajectory of the Dirichlet-multinomial process with parameters (m, w, P_0) . We may therefore conclude that the previous algorithm aims at approximating the distribution of T(P) by distribution of $T(P_m)$, where $P_m \in \mathcal{D}M(m, w, P_0)$, and approximates the latter by means of the empirical distribution of the values T_1, \ldots, T_s generated in step (3).

Remark 3.1. Step (1) is useless when P_0 is discrete with finite support $\{z_1, \ldots, z_m\}$ and $P_0(z_i) = p_i, i = 1, \ldots, m$, with $\sum_{i=1}^m p_i = 1$. In fact, in this case one may generate at step (3) a trajectory of $P \in \mathcal{D}(wP_0)$, by taking

$$P_m = \frac{1}{\sum_{i=1}^m V_i} \sum_{i=1}^m V_i \delta_{z_i}$$

where V_1, \ldots, V_m , are independent and V_i has distribution $Gamma(wp_i, 1)$, $i = 1, \ldots, m$.

We call the algorithm (1)–(4) the proper Bayesian bootstrap. To understand the reason for this name consider the following situation. A sample X_1, \ldots, X_n from a process $P \in \mathcal{D}(kQ_0)$, with k > 0 and $Q_0 \in \mathcal{P}$, has been observed and the problem is to compute the posterior distribution of T(P) where T is a given statistical functional. Ferguson [4] proved that the posterior distribution of P is again a Dirichlet process with parameter $kQ_0 + \sum_{i=1}^n \delta_{X_i}$. In order to approximate the posterior distribution of T(P) our algorithm generates an i.i.d. sample X_1^*, \ldots, X_m^* from

$$\frac{k}{k+n}Q_0 + \frac{n}{k+n}\left(\frac{1}{n}\sum_{i=1}^n \delta_{X_i}\right)$$

and then, in step (3), produces a trajectory of a process that, given X_1^*, \ldots, X_m^* , is Dirichlet with parameter $= (k+n)m^{-1}\sum_{i=1}^m \delta_{X_i^*}$ and evaluates T with respect to this trajectory. The algorithm is therefore a bootstrap procedure since it samples from a mixture of the empirical distribution function generated by

 X_1, \ldots, X_n and Q_0 which, together with the weight k, elicits the prior opinions relative to P. Because it takes into account prior opinions by means of a proper distribution function, the procedure was termed proper.

The name proper Bayesian bootstrap also distinguishes the algorithm from the Bayesian bootstrap of Rubin [15] that approximates the posterior distribution of T(P) by means of the distribution of T(Q) with $Q \in \mathcal{D}(\sum_{i=1}^n \delta_{X_i})$. We already noticed in the previous work [12] that there are no proper priors for P which support Rubin's approximation and that the proper Bayesian bootstrap essentially becomes the Bayesian bootstrap of Rubin when k tends to 0 or n is very large.

ACKNOWLEDGEMENTS

We thank an anonymous referee for his helpful comments that greatly improved the paper. Both authors were financially supported by the Italian MIUR's research project *Metodi Bayesiani nonparametrici e loro applicazioni*.

References

- 1. C. Antoniak, Mixtures of Dirichlet processes with applications to Bayesian nonparametric problems. *Ann. Statist.* **2**(1974), 1152–1174.
- 2. D. M. CIFARELLI and E. REGAZZINI, Distribution functions of means of Dirichlet process. *Ann. Statist.* **18**(1990), No. 1, 429–442.
- 3. P. L. Conti, Bootstrap approximations for Bayesian analysis of Geo/G/1 discrete time queueing models. J. Statist. Plann. Inference, 2002 (in press).
- 4. T. S. Ferguson, A Bayesian analysis of some nonparametric problems. *Ann. Statist.* 1(1973), No. 2, 209–230.
- 5. R. A. FISHER, A. S. CORBET, and C. B. WILLIAMS, The relation between the number of species and the number of individuals in a random sample of animal population. *J. Animal Ecology* **12**(1943), 42–58.
- 6. R. C. Hannum, M. Hollander, and N. A. Langberg, Distributional results for random functionals of a Dirichlet process. *Ann. Prob.* **9**(1981), 665–670.
- 7. H. ISHWARAN and L. F. JAMES, Gibbs sampling methods for stick-breaking priors. *J. Amer. Statist. Assoc.* **96**(2001), 161–173.
- 8. H. ISHWARAN and M. ZAREPOUR, Exact and approximate sum-representations for the Dirichlet process. *Canad. J. Statist.* **30**(2002), 269–283.
- 9. A. Y. Lo, Bayesian statistical inference for sampling a finite population. *Ann. Statist.* **14**(1986), No. 3, 1226–1233.
- 10. A. Y. Lo, A Bayesian bootstrap for a finite population. *Ann. Statist.* **16**(1988), No. 4, 1684–1695.
- 11. P. Muliere and P. Secchi, A note on a proper Bayesian mootstrap. Technical Report #18, Dip. di Economia Politica e Metodi Quantitativi, Università di Pavia, 1995.
- 12. P. Muliere and P. Secchi, Bayesian nonparametric predictive inference and bootstrap techniques. *Ann. Inst. Statist. Math.* **48**(1996), No. 4, 663–673.
- 13. J. Pitman, Some developments of the Blackwell–MacQueen urn scheme. Statistics, probability and game theory, 245–267, IMS Lecture Notes Monogr. Ser., 30, Inst. Math. Statist., Hayward, CA, 1996.

- 14. Yu. V. Prohorov, Convergence of random processes and limit theorems in probability theory. *Theory Probab. Appl.* **1**(1956), 157–214.
- 15. D. M. Rubin, The Bayesian bootstrap. *Ann. Statist.* **9**(1981), No. 1, 130–134.
- 16. J. Sethuraman and R. C. Tiwari, Convergence of Dirichlet measures and the interpretation of their parameter. Statistical decision theory and related topics, III, Vol. 2 (West Lafayette, Ind., 1981), 305–315, Academic Press, New York-London, 1982.

(Received 3.10.2002; revised 23.01.2003)

Authors' addresses:

Pietro Muliere Università L. Bocconi Istituto di Metodi Quantitativi Viale Isonzo 25, 20135 Milano Italy

E-mail: pietro.muliere@uni-bocconi.it

Piercesare Secchi Politecnico di Milano Dipartimento di Matematica Piazza Leonardo da Vinci 32, 20132 Milano Italy

E-mail: secchi@mate.polimi.it