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SINGULAR INTEGRALS IN WEIGHTED LEBESGUE SPACES
WITH VARIABLE EXPONENT

V. KOKILASHVILI AND S. SAMKO

Abstract. In the weighted Lebesgue space with variable exponent the bound-
edness of the Calderón–Zygmund operator is established. The variable ex-
ponent p(x) is assumed to satisfy the logarithmic Dini condition and the
exponent β of the power weight ρ(x) = |x − x0|β is related only to the
value p(x0). The mapping properties of Cauchy singular integrals defined on
the Lyapunov curve and on curves of bounded rotation are also investigated
within the framework of the above-mentioned weighted space.
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1. Introduction

The generalized Lebesgue spaces Lp(·)(Ω) and the related Sobolev type spaces
Wm,p(x)(Ω) with variable exponent have proved to be an appropriate tool in
studying models with non-standard local growth (in elasticity theory, fluid me-
chanics, differential equations, see for example Ružička [18], [6] and the refer-
ences therein).

These applications stimulate a quick progress of the theory of the spaces
Lp(·)(Ω) and Wm,p(x)(Ω). We mention the papers by Sharapudinov [23] (1979),
[24] (1996), Kováčik and Rákosńık [17] (1991), Edmunds and Rákosńık [11]
(1992), Samko [19]–[20] (1998), [21] (1999), Edmunds, Lang, and Nekvinda [8]
(1999), Cruz-Uribe, Fiorenza, and Neugebauer [3] (2002), Diening [4]–[5] (2002),
Diening and Ružička [6] (2002), Edmunds abd Nekvinda [10] (2002), Edmunds
and Meskhi [9], Fiorenza [12](2002), Kokilashvili abd Samko [14]–[16] (2002),
see also the references therein.

Although the spaces Lp(·)(Ω) possess some undesirable properties (functions
from these spaces are not p(x)-mean continuous, the space Lp(·)(Ω) is not trans-
lation invariant, convolution operators in general do not behave well and so
on), there is an evident progress in their study, stimulated by applications, first
of all for continuous exponents p(x) satisfying the logarithmic Dini condition.
We mention in particular the result on the denseness of C∞

0 -functions in the
Sobolev space Wm,p(x)(Ω), see [21], and the breakthrough connected with the
study of maximal operators in [4], [5].

Because of applications, the reconsideration of the main theorems of har-
monic analysis is topical in order to find out what theorems remain valid for
variable exponents or to find their substituting analogs. Among the challenging
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problems there were: a Sobolev type theorem for the Riesz potential operator
Iα and the boundedness of singular integral operators. A Sobolev type theorem
for bounded domains is proved in [19] under the condition that the maximal
operator is bounded in the spaces Lp(·). This condition is fulfilled due to the
result on maximal operators obtained in [4]–[5] (we refer also to [3] for maximal
operators on unbounded domains).

Singular operators were treated in [6] and [16] within the framework of the
spaces with variable exponents.

The main goal of the present paper is to establish the boundedness of Cal-

derón–Zygmund singular operators in weighted spaces L
p(·)
ρ . In particular, we

obtain a weighted mapping theorem for finite Hilbert transform and apply this
result to the boundedness of Cauchy singular operators on curves in the complex
plane.

2. Preliminaries

Let Ω be a bounded open subset of Rn and p(x) a measurable function on Ω
such that

1 < p ≤ p(x) ≤ p < ∞, x ∈ Ω (2.1)

and

|p(x)− p(y)| ≤ A

ln 1
|x−y|

, |x− y| ≤ 1

2
, x, y ∈ Ω. (2.2)

We denote by P = P(Ω) the set of functions p(x) satisfying conditions (2.1)–
(2.2). We refer to Appendix A for examples of non-Hölderian functions satisfy-
ing condition (2.2). By Lp(·) we denote the space of functions f(x) on Ω such
that

Ap(f) =

∫

Ω

|f(x)|p(x)dx < ∞.

This is a Banach function space with respect to the norm

‖f‖Lp(·) = inf

{
λ > 0 : Ap

(
f

λ

)
≤ 1

}
(2.3)

(see, e.g., [5]). We denote
1

q(x)
= 1− 1

p(x)
.

Under condition (2.1) the space Lp(·) coincides with the space
{

f(x) :

∣∣∣∣
∫

Ω

f(x)ϕ(x) dx

∣∣∣∣ < ∞ for all ϕ(x) ∈ Lq(·)(Ω)

}
(2.4)

up to the equivalence of the norms

‖f‖Lp(·) ∼ sup
‖ϕ‖

Lq(·)≤1

∣∣∣∣
∫

Ω

f(x)ϕ(x) dx

∣∣∣∣ ∼ sup
Aq(ϕ)≤1

∣∣∣∣
∫

Ω

f(x)ϕ(x) dx

∣∣∣∣ , (2.5)

see [17], Theorem 2.3 or [20], Theorem 3.5.
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Let ρ be a measurable almost everywhere positive integrable function. Such

functions are usually called weights. The weighted Lebesgue space L
p(·)
ρ is de-

fined as the set of all measurable functions for which

‖f‖
L

p(·)
ρ

= ‖ρf‖Lp(·) < ∞.

The space L
p(·)
ρ is a Banach space.

We deal with the following integral operators:
the Calderón–Zygmund singular operator

Tf(x) =

∫

Ω

K(x, y)f(y) dy, (2.6)

(as treated in [6]), the maximal operator

Mf(x) = sup
r>0

1

|B(x, r)|
∫

B(x,r)

|f(y)| dy, (2.7)

the Riesz potential operator

Iαf(x) =

∫

Ω

f(y)

|x− y|n−α
dy, α > 0,

and the Cauchy singular operator

SΓf(t) =

∫

Γ

f(τ)dτ

τ − t
, t = t(s), 0 ≤ s ≤ `, (2.8)

along a finite rectifiable Jordan curve Γ of the complex plane on which the
arc-length is chosen as a parameter starting from any fixed point.

In the definition of the maximal function we assume that f(x) = 0 when
x /∈ Ω.

In [5] the boundedness of the maximal operator in the space Lp(·) was proved.
Later in [6] an analogous result for Calderón–Zygmund operator (2.6) was ob-
tained.

The boundedness of the maximal operator M in the weighted Lebesgue space

L
p(·)
ρ with the power weight ρ(x) = |x− x0|β was established by the authors in

[15], see also [14]. The main point of the result in [14], [15] is that the exponent β
is related to the value of p(x) at the point x0. Recently, we have also established
the boundedness of various integral operators, in particular Calderón–Zygmund
operators, in weighted Lorentz type spaces with variable exponent [15], see also
[16]. However the result of [15], [16] does not imply the boundedness of singular
operators in the Lebesgue spaces with variable exponent.

3. Statements of the Main Results

Let

T ∗f(x) = sup
ε>0

|Tεf(x)|
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be a maximal singular operator, where Tεf(x) is the usual truncation

Tεf(x) =

∫

|x−y|≥ε

K(x, y)f(y) dy

and we assume that f(x) = 0 outside Ω. In what follows,

ρ(x) =
m∏

k=1

|x− ak|βk , (3.1)

where ak ∈ Ω, k = 1, · · · ,m.

Theorem 1. Let p(x) ∈ P(Ω) and ρ(x) be weight function (3.1). Then the

operators T and T ∗ are bounded in the space L
p(·)
ρ (Ω) if

− n

p(ak)
< βk <

n

q(ak)
, k = 1, . . . , m. (3.2)

Besides operator (2.8), we also consider the corresponding maximal singular
operator

S∗f(t) = sup
ε>0

∣∣∣∣
∫

|s−σ|>ε

f [τ(σ)]τ ′(σ)

τ(σ)− τ(s)
dσ

∣∣∣∣ (3.3)

where it is supposed that f [t(σ)] = 0 when s /∈ [0, `].
We remind that Γ is called the Lyapunov curve if t′(s) ∈ Lip γ, 0 < γ ≤ 1

and that in this case

t′(s)
t(σ)− t(s)

=
1

σ − s
+ h(s, σ), with |h(s, σ)| ≤ c

|σ − s|1−γ
(3.4)

see [13]; observe that

h(s, σ) =
1

t(σ)− t(s)

∫ 1

0

[t′(s)− t′(s + ξ(σ − s))] dξ (3.5)

from which the estimate for h(s, σ) follows.
If t′(s) is a function of bounded variation, Γ is called a curve of bounded

rotation. When Γ is a curve of bounded rotation without cusps, Γ satisfies the
chord-arc condition ∣∣∣∣

t(s)− t(σ)

s− σ

∣∣∣∣ ≥ m > 0. (3.6)

Thus we have |t(s)− t(s0)| ≈ |s− s0|.
When dealing with the operators S and S∗, we assume the functions p(s) and

ρ(s) ≥ 0 to be defined on [0, `] and put

Lp(·)
ρ = {f : ‖f [t(s)]ρ(s)‖Lp(s) < ∞} .

In the next theorem we take

ρ(s) =
m∏

k=1

|t(s)− t(ck)|βk ≈
m∏

k=1

|s− ck|βk , (3.7)

where ck ∈ [0, `], k = 1, 2, . . . , m.
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Theorem 2. Let Γ be a Lyapunov curve or a curve of bounded rotation
without cusps and let p(s) ∈ P. The operators SΓ and S∗ are bounded in the

space L
p(·)
ρ (Γ) with the weight function (3.7) if and only if

− 1

p(ck)
< βk <

1

q(ck)
, k = 1, 2, . . . ,m. (3.8)

4. Auxiliary Results

In this section we present some basic results which we need to prove our main
statements. Let

Mβf(x) = sup
r>0

|x− x0|β
|B(x, r)|

∫

B(x,r)

|f(y)| dy

|y − x0|β , (4.1)

where x0 ∈ Ω.

Theorem A ([15]). Let p(x) ∈ P. The operator Mβ with x0 ∈ Ω is bounded
in the space Lp(·)(Ω) if and only if

− n

p(x0)
< β <

n

q(x0)
. (4.2)

When x0 ∈ ∂Ω, condition (4.2) is sufficient in the case of any point x0 and
necessary if the point x0 satisfies the condition |Ωr(x0)| ∼ rn, where Ωr(x0) =
{y ∈ Ω : r < |y − x0| < 2r}.

Theorem B ([15]). Let p(x) ∈ P. The Riesz potential operator Iα acts

boundedly from the space L
p(·)
ρ (Ω) with the weight ρ(x) = |x − x0|β, x0 ∈ Ω,

into itself if condition (4.2) is satisfied.

Let F ∈ Lloc(R1) and

F#(x) = sup
r>0

1

|B(x, r)|
∫

B(x,r)

|F (y)− FB(x,r)| dy, (4.3)

where

FB(x,r) =
1

|B(x, r)|
∫

B(x,r)

f(z) dz.

Proposition A ([1]). Let T be a Calderón–Zygmund operator. Then for
arbitrary s, 0 < s < 1, there exists a constant cs > 0 such that

[
(|Tf |s)#(x)

] 1
s ≤ csMf(x)

for all f ∈ C∞
0 (Rn), x ∈ Rn.

The following statement holds (see [4], Lemma 3.5).

Proposition B. Let p(x) ∈ P . Then for all f ∈ Lp(·)(Ω) and g ∈ Lq(·)(Ω)
there holds ∣∣∣∣

∫

Ω

f(x)g(x) dx

∣∣∣∣ ≤ c

∫

Ω

f#(x)Mg(x) dx

with a constant c > 0 not depending on f .
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Lemma 4.1. Let p(x) ∈ P, w(x) = |x − x0|γ, x0 ∈ Ω, − n
p(x0)

< γ < n
q(x0)

.

Then
‖fw‖Lp(·) ≤ c‖f#w‖Lp(·)

with a constant c > 0 not depending on f .

Proof. By (2.5) we have

‖fw‖Lp(·) ≤ c sup
‖g‖

Lq(·)≤1

∣∣∣∣
∫

Ω

f(x)g(x)w(x) dx

∣∣∣∣ .

According to Proposition B,

‖fw‖Lp(·) ≤ c sup
‖g‖

Lq(·)≤1

∣∣∣∣
∫

Ω

f#(x)w(x)[w(x)]−1M(gw) dx

∣∣∣∣ .

Making use of the Hölder inequality for Lp(·), we derive

‖fw‖Lp(·) ≤ c sup
‖g‖

Lq(·)≤1

‖f#w‖Lp(·)‖w−1M(gw)‖Lq(·) .

We observe that − 1
q(x0)

< −γ < 1
p(x0)

. Therefore we may apply Theorem A for

the space Lq(·) with β = γ and conclude that

‖fw‖Lp(·) ≤ c sup
‖g‖

Lq(·)≤1

‖f#w‖Lp(·)‖g‖Lq(·) ≤ ‖f#w‖Lp(·) .

¤
Lemma 4.1 in the case of the constant p(·) and w ≡ 1 is well known [25]. For

variable exponent and w ≡ 1 it was proved in [6].

Theorem 4.1. Let p(x) be a measurable function on Rn such that 1 ≤ p ≤
p(x) < p < ∞, ρ(x) ≥ 0 and |{x ∈ Rn : ρ(x) = 0}| = 0 and

w(x) = [ρ(x)]p(x) ∈ L1
loc(Rn). (4.4)

Then C∞
0 (Rn) is dense in the space L

p(·)
ρ (Rn).

Proof. I. First we prove that the class C0(Rn) of continuous functions with a

compact support is dense in the space L
p(·)
ρ (Rn).

Let f ∈ L
p(·)
ρ (Rn). Since |{x ∈ Rn : ρ(x) = 0}| = 0, the function f(x) is a.e.

finite.

1st step. The functions fN(x) =

{
f(x), |x| < N

0, |x| > N
approximate f in L

p(·)
ρ

since Ap(ρ|f − fN |) → 0 as N →∞. Therefore there exists a function g ∈ L
p(·)
ρ

with a compact support such that ‖f − g‖
L

p(·)
ρ

< ε.

2nd step. The function g can be approximated in L
p(·)
ρ by the bounded

functions with a compact support g̃N(x) =

{
g(x), |g(x)| < N

0, |g(x)| > N
. Indeed, the

passage to the limit

Ap(ρ|g − g̃N |) =

∫

Rn

w(x)|g(x)− g̃N(x)|p(x) dx → 0 as n →∞ (4.5)
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is justified by the Lebesgue dominated convergence theorem since w(x)|g(x)−
gN(x)|p(x) ≤ 2w(x)|g(x)|p(x) and the integrand tends to zero a.e. (at any point
x at which f(x) is finite). So we choose g̃N such that ‖g − g̃N‖L

p(·)
ρ

< ε.

3rd step. To approximate the function g̃N by continuous bounded functions,
we choose δ > 0 so that ∫

E

w(x) dx < ε1 =
ε

(2N)p
(4.6)

for any measurable set E ⊂ supp g with |E| < δ, which is possible by (4.4).
Then we choose a function ϕ(x) ∈ C(Rn) with ‖ϕ‖C ≤ N which coincides with
g̃N(x) everywhere except possibly for the set A ⊂ supp g with |A| < δ, by the
Luzin theorem. Then

Ap(ρ|g̃N − ϕ|) =

∫

A

w(x)|g̃N(x)− ϕ(x)|p(x) dx ≤ (2N)p

∫

A

w(x) dx < ε .

4th step. It remains to approximate in L
p(·)
ρ the function ϕ by a continuous

function with a compact support, which is done in the standard way by means
of smooth truncation.

II. Approximation in L
p(·)
ρ of a continuous function with a compact support

by C∞
0 -functions can already be realized via the identity approximation

Ktϕ =
1

tn

∫

Rn

a
(y

t

)
ϕ(x− y) dy, t > 0,

with a(x) ∈ C∞
0 and

∫
Rn a(x) dx = 1. Obviously, Ktϕ ∈ C∞

0 for ϕ ∈ C0(Rn)
and |Ktϕ− ϕ| < ε as t → 0 uniformly on any given compact set. Therefore,

Ap(ρ|Ktϕ− ϕ|) =

∫

B

w(x)|Ktϕ− ϕ(x)|p(x) dx ≤ εp

∫

B

w(x) dx

for t small enough, B being a sufficiently large ball. ¤

Corollary. Let p(x) and ρ(x) satisfy the assumptions of Theorem 4.1 in Ω.

Then the set C∞(Ω) is dense in the space L
p(·)
ρ (Ω).

Indeed, it suffices to observe that functions from C∞(Ω) can be continued
outside Ω as C∞

0 (Rn)-functions; likewise, p(x) and ρ(x) can be continued with
preservation of their properties.

The statement of Theorem 4.1 is well known in the case of constant exponent,
while in the case of variable exponent and ρ(x) ≡ 1 it was proved in [17]. The
denseness of C∞

0 (Rn) in non-weighted Sobolev spaces Wm,p(·) was proved in
[21]–[22].

5. Proofs of the Main Results

It suffices to deal with a weight of the form ρ(x) = |x − x0|β because the
general case (3.1) is easily reduced to this special case by separation of the
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points ak by means of the partition of unity, which provides the representation
∏m

k=1 |x− ak|βk

∏m
k=1 |y − ak|βk

=
m∑

k=1

ck(x, y)
|x− ak|βk

|y − ak|βk

with bounded “coefficients” ck(x, y).

Proof of Theorem 1. Let us consider the operator T . Let f ∈ C∞(Ω) and 0 <
s < 1. Obviously,

‖ρTf‖Lp(·) = ‖ρs|Tf |s‖
1
s

L
p(·)

s

. (5.1)

Applying Lemma 4.1 with w(x) = [ρ(x)]s and p(·) replaced by p(·)
s

, we obtain

‖ρTf‖Lp(·) ≤ c
∥∥ρs(|Tf |s)#

∥∥ 1
s

L
p(·)

s

,

which is possible since the condition

− n
p(x0)

s

< sβ <
n(

p(x0)
s

)′

is satisfied. Thus we have

‖ρTf‖Lp(·) ≤ c
∥∥∥ρ

[
(|Tf |s)#

] 1
s

∥∥∥
Lp(·)

(5.2)

because ‖f‖
1
s

L
p(·)

s

= ‖|f | 1s‖Lp(·) . Since a function f ∈ C∞(Ω) can be continued

outside Ω as a C∞
0 (Rn)-function, Proposition A is applicable. Therefore, by

Proposition A, from estimate (5.2) we get

‖ρTf‖Lp(·) ≤ c ‖ρ(Mf)‖Lp(·) .

Now we apply Theorem A and conclude that

‖ρTf‖Lp(·) ≤ c ‖ρf‖Lp(·)

for all f ∈ C∞
0 (Rn). Since C∞

0 (Rn) is dense in L
p(·)
ρ by Theorem 4.1, we complete

the proof of Theorem 1. ¤

The boundedness of the operator T ∗ follows from the known estimate

T ∗f(x) ≤ c[M(Tf)(x) + Mf(x)],

from Theorem A and Theorem 1.

Corollary 1. Let Ω = [a, b], ρ(x) =
∏m

k=1 |x−ak|βk , ak ∈ [a, b], k = 1, . . . ,m,
and p(x) ∈ P. Then the finite Hilbert transform and its maximal version

H[a,b]f =

∫ b

a

f(y) dy

y − x
and H∗

[a,b] = sup
ε>0

∣∣∣∣
∫

|y−x|>ε

f(y) dy

y − x

∣∣∣∣ (5.3)

are bounded in the space L
p(·)
ρ (a, b), if − 1

p(ak)
< βk < 1

q(ak)
, k = 1, 2, . . . , m.
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Proof of Theorem 2. We assume the function p(s) to be defined on [0, l]. The
function f(t(σ)) will be denoted by f0(σ). In the case of a Lyapunov curve we
use equality (3.4) and apply Corollary 1 and Theorem B, which immediately
gives the statement of Theorem 2.

Let Γ be a curve of bounded rotation without cusps and let V be the total
variation of t′(s) on [0, l]. In this case the function h(s, σ) can be estimated as

|h(s, σ)| ≤ c
V (s)− V (σ)

s− σ
(5.4)

according to (3.5) and (3.6) (see [13], Chapter II, Subsection 2.3). Then we
have ∣∣∣∣

∫

|s−σ|>ε

f0(σ) dσ

t(σ)− t(s)

∣∣∣∣

≤ c

∣∣∣∣
∫

|s−σ|>ε

f0(σ) dσ

σ − s

∣∣∣∣ + c

∫

|s−σ|>ε

|f0(σ)| (V (σ)− V (s))

σ − s
dσ

≤ c

∣∣∣∣
∫

|s−σ|>ε

f0(σ) dσ

σ − s

∣∣∣∣ + cV (s)

∣∣∣∣
∫

|s−σ|>ε

|f0(σ)| dσ

σ − s

∣∣∣∣

+ c

∣∣∣∣
∫

|s−σ|>ε

|f0(σ)|V (σ)

σ − s
dσ

∣∣∣∣ .

From here by Corollary 1 and the boundedness of the function V (s) we conclude

that the operator S∗Γ is bounded in L
p(·)
ρ .

Let us prove the necessity part. From the boundedness of SΓ in L
p(s)
ρ it follows

that SΓf(t) exists almost everywhere for arbitrary f ∈ L
p(s)
ρ . Thus ρ should be

such that f ∈ L1(Γ) for arbitrary f ∈ L
p(s)
ρ . The function f = fρρ−1 belongs

to L1(Γ) for arbitrary f ∈ L
p(s)
ρ if and only if ρ−1 ∈ Lq(s), which follows from

equivalence (2.5). Then function ρ−1(s) = |s − s0|−β, s0 ∈ [0, l], belongs to
Lq(s)[0, l] if and only if β < 1

q(s0)
. Indeed, we have

|s− s0|−βq(s) = m(s)|s− s0|−βq(s0),

where the function m(s) = |s− s0|−β(q(s)−q(s0)) satisfies the condition

0 < c ≤ m(s) ≤ C < ∞
in view of (2.2). On the other hand, from |s−s0|−βq(s0) ∈ Lq(s) we have β < 1

q(s0)
.

The necessity of the condition − 1
p(s0)

< β follows from the duality argument.

¤

6. Appendix

The following is an example of the function which satisfies condition (2.2)
but is not a Hölder function:

p(x) = a(x) +
b(x)(

ln A
|x|

)γ , x ∈ Ω, (6.1)
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where a(x) and b(x) are Hölder functions, a(x) ≥ 1, b(x) ≥ 0, A > sup
x∈Ω

|x| and

γ ≥ 1. One may write a little bit more complicated example:

p(x) = a(x) +
b(x)(

ln A
|x|

)γ

(
ln ln ln · · · ln C

|x|
)µ

(6.2)

with arbitrary sufficiently large C > 1 and µ > 0, and the same assumptions
on a(x), b(x), and A, but γ > 1. It is also possible to take different powers of
different logarithms as factors or superpositions in (6.2).

To prove condition (2.2) for functions (6.1) or (6.2) or functions of a similar
type, we do not need to check condition (2.2) directly. For this purpose we
can use properties of continuity moduli. It suffices to deal with the case where
a(x) ≡ 0 and b(x) = 1 since we consider differences p(x)− p(y).

We remind that a non-negative function f(t) on [0, `] is called a continuity
modulus if

ω(f, h) ∼ f(h),

where ω(f, h) = sup
|t1−t2|≤h
t1,t2∈[0,`]

|f(t1)−f(t2)| . The sufficient conditions for a function

f(x) to be a continuity modulus are known, see, for example [2] or [7]:
1) f(x) is continuous on [0, `],
2) f(0) = 0 and f(x) > 0 for x > 0,

3) f(x) is non-decreasing and f(x)
x

is non-increasing in a neighborhood of the
point x = 0. It is easy to check that functions (6.1)–(6.2) satisfy the above
conditions 1)-3).
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