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CRITERIA OF WEIGHTED INEQUALITIES IN ORLICZ
CLASSES FOR MAXIMAL FUNCTIONS DEFINED ON
HOMOGENEOUS TYPE SPACES

A. GOGATISHVILI AND V. KOKILASHVILI

ABSTRACT. The necessary and sufficient conditions are derived in or-
der that a strong type weighted inequality be fulfilled in Orlicz classes
for scalar and vector-valued maximal functions defined on homoge-
neous type space. A weak type problem with weights is solved for
vector-valued maximal functions.

§ 0. INTRODUCTION

The main goal of this paper is to obtain criteria for the validity of an
inequality of the form

/ S(Mf (2))w(x) dp < ¢ / o ())wl(z) du (0.1)

X X

for maximal functions defined on homogeneous type spaces.

The solution of a strong type one-weighted problem for classical maximal
functions in reflexive Orlicz spaces was obtained for the first time by R.
Kerman and A. Torchinsky [5]. This investigation was further developed in
[6], [7]). Quite a simple criterion established in this paper in the general
case is the new one for Hardy—Littlewood—Wiener maximal functions as well.
Our present investigation is a natural continuation of the non-weighted case
[1], [2], [3], [4]. Conceptually it is close to [2], [8], [9], [15], [16].

For vector-valued Hardy—Littlewood—Wiener maximal functions in the
non-weighted case the boundedness in LP, 1 < p < oo, was established
in [9]. A weighted analogue of this result was obtained in [10] (see also
[11], [12], [13]). Finally, we should mention [14], [15], [16] containing the
full descriptions of functions ¢ and a set of weight functions ensuring the
validity of a weak type weighted inequality for maximal functions.
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We shall now make some comments on how this paper is organized. The
introduction contains some commonly known facts on homogeneous type
spaces and weight functions defined in such spaces. Here the reader will
also find the definition of quasi-convex functions and a brief discussion of
some of their simple properties. The main results are formulated at the end
of the introduction. In §1 we describe the class of quasi-convex functions,
also functions which are quasi-convex to some degree less than 1. A number
of useful properties to be used in our further discussion are established for
such functions. The further sections contain the proofs of the main results.

Let (X, d, 1) be a homogeneous type space (see, for example, [17], [19]). It
is a metric space with a complete measure p such that the class of compactly
supported continuous functions is dense in the space L'(X,pu). It is also
assumed that there is a nonnegative real-valued function d : X x X — R!
satisfying the following conditions:

(i) d(z,z) =0 for all z € X;

(ii) d(z,y) > 0 for all x # y in X;

(iii) there is a constant ag such that d(x,y) < apd(y,z) for all x,y in X;

(iv) there is a constant a1 such that d(x,y) < a1(d(z, z) + d(z,y)) for all
x,y,z in X;

(v) for each neighbourhood V of x in X there is an r > 0 such that the
ball B(z,r) = {y € X; d(z,y) < r} is contained in V;

(vi) the balls B(z,r) are measurable for all z and r > 0;

(vii) there is a constant b such that uB(z,2r) < buB(z,r) for all x € X
and r > 0.

An almost everywhere positive locally p-summable function w : X — R!
will be called a weight function. For an arbitrary p-measurable set E we
shall assume

wE = / w(@) du.
E

By definition, the weight function w € A,(X) (1 < p < o0) if

1 1 ~1/(p-1) , \P~*
sup (NBB/UJ(HC)d,u) (M73 / (w(z)) du) < oo for 1<p< oo,

B

where the supremum is taken over all balls B C X and
L/w(x)al < cessinfw(y) for p=1
LB LS A Y p=1
B

In the latter inequality ¢ does not depend on B. The above conditions are
analogues of the well-known Muckenhoupt’s conditions.
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Let us recall the basic properties of classes A, (see [17], [20], [23]). If
w € A, for some p € [1,00), then w € A, for all s € [p,00) and there is an
€ > 0 such that w e A,_..

By definition, the weight function w belongs to A (X) if to each € €
(0,1) there corresponds ¢ € (0, 1) such that if B C X is a ball and E is any
measurable set of B, then uF < duB implies wE < ewB.

On account of the well-known properties of classes A, we have

Ax(X) = U A,(X)

(see [17], [20], [21].)

In what follows we shall use the symbol ® to denote the set of all functions
¢ : R! — R! which are nonnegative, even and increasing on (0, c0) such
that ¢(0+) = 0, lim;_,~ ¢(t) = co. For our purpose we shall also need the
following basic definition of quasi-convex functions:

A function w is called a Young function on [0, 00) if w(0) = 0, w(co) = o
and it is not identically zero or co on (0, 00); it may have a jump up to oo
at some point ¢ > 0 but in that case it should be left continuous at ¢ (see
18]).

A function ¢ is called quasi-convex if there exist a Young function w and
a constant ¢ > 1 such that w(t) < p(t) < w(ct), t > 0. Clearly, »(0) =0
and for s <t we have p(s) < p(ct).

To each quasi-convex function ¢ we can put into correspondence its com-
plementary function ¢ defined by

P(t) = sup (st —(s))- (0.2)

The subadditivity of the supremum readily implies that ¢ is always a Young

function and §§ . This equality holds if ¢ itself is a Young function. If
©1 < 2, then @o < @1, and if ¢1(t) = ap(bt) then

Bi(t) = ap ().

Hence and from (0.2) we have

&(E) < B(t) < &) (0.3)

Now from the definition of ¢ we obtain the Young inequality
st < o(s) +@(t), s,t>0.

By definition, the function 1 satisfies the global condition Ay (1) € Ag)
if there is ¢ > 0 such that ¥(2t) < cip(t), ¢t > 0.
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If ¢ € Ay, then there are p > 1 and ¢ > 1 such that

Y(ta) _ cy(ty)

t5 t

< for 0 <ty <ty (04)
(see [3], Lemma 1.3.2).

Given locally integrable real functions f on X, we define the maximal
function M f(x) by

M/ (z) = sup(uB)~" / FW)dp, z e X,
B

where the supremum is taken over all balls B containing x.

As is well-known (see [20]), for the operator M : f — Mf inequality
(0.1) is fulfilled when p(u) =u? (1 < p < 00) and w € A,(X). Now we are
ready to formulate the main results of this paper.

Theorem I. Let ¢ € ®. The following conditions are equivalent:
(i) there is a constant ¢ > 0 such that for any function f : X — R!
locally summable in the sense of p-measure we have the inequality

/ P(MF(2))w(x) dy < ¢ / o(F(@))w(z) dy, (0.5)
x X

(0%

(ii) ¢ is quasi-convex for some a, 0 < a < 1, and w € Ap(,y where

1
—— =inf{a : ¢ is quasi-convex}. 0.6
o) { 1 (0.6)

Theorem II. Let o € ®, 1 < 0 < co. In order that there exist a constant
¢ > 0 such that the inequality

()" Yoy <

X i=1

<e [o((S1mer) " ut an 0.7
X i=1

be fulfilled for any vector-function f = (f1, fo,...) with locally summable
components, it is necessary and sufficient that the following conditions be
fulfilled: @ € A, % is quasi-convex for some o, 0 < a < 1, and w €

Ap(e)-
Theorem III. Let ¢ € ®. Then the following conditions are equivalent:
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(i) there is a constant ¢y > 0 such that the inequality
Mf(x c1f(x
/90( w{i)))w(x) dp < cl/w( ;{;)))w(w) dp
X b'e

holds for any pu-measurable f : X — R!;
(i) p® is quasi-convez for some o € (0,1) and w € A
(i)
such that

(ks A er)on s {2 i

for any A > 0 and ball B;
(iv) ¢ is quasi-convex for some o € (0,1) and there exists a constant
c3 > 0 such that

p(3)’

* is quasi-convez for some « € (0,1) and there is a constant ca > 0

/w(%)w(w) dp < esp(A)wB
B

for any A > 0 and ball B.

Theorem IV. Let ¢ and v be nonnegative nondecreasing on [0, 0]
functions. Further we suppose that v is a quasi-convex function and ) € As.
If 0 < 0 < 1, then the following conditions are equivalent:

(i) there exists a constant ¢ > 0 such that the inequality

e\ {xeX (i (M (2 )1/9>)\}<
<c / < (i | fi )1/9>w(x) du (0.8)
X =1

is fulfilled for any A > 0 and vector-function f = (f1,..., fn,...) with
locally summable components;
(ii) there is a € > 0 such that

sup sup
B s>0 QO U}B

/w - ug}qﬁx))w(x) dp < 0. (0.9)

In this paper the letter ¢ may denote different positive constants which are
independent of the meaningful variables in the present context. Throughout
this paper we take 0 - co to be zero.
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8 1. SOME PROPERTIES OF QUASI-CONVEX FUNCTIONS

In this paragraph we describe the class of quasi-convex functions.

Lemma 1.1. Let ¢ € ®. Then the following conditions are equivalent:
(i) ¢ is quasi-conve;
(ii) there is a constant ¢y > 0 such that

p(t1) p(eitz)

< 1.1
ST, (1.1)

is fulfilled for any t1 and ty provided that t1 < to;
(ill) there is a constant co > 0 such that

olt) <P (cat), > 0; (1.2)
(iv) there are positive € and c3 such that

3 22) <exptt), >0 (1.3)

(v) there is a constant ¢4 > 0 such that

w(ulBZf(y) du) < :4319/@(04]”@)) du (1.4)

for any locally summable function f and an arbitrary ball B.

Proof. For the equivalency of the conditions (i) and (ii) see [3], Lemma 1.1.1.
We shall prove that the conditions (i) and (iii) are equivalent. Indeed, if the
function ¢ is quasi-convex, then for some convex function w and constant
co we have p(t) < w(eat) =& (cat) <@ (cot). Conversely, let (iii) hold. The
function ¥ is convex and ¥< ¢. Therefore by (iii) @(t) <@ (cot) < @(cat),
which means the quasi-convexity of the function .

Now we shall show that (i)<(iv). The condition (i) implies that there is
a convex function w such that for some ¢ > 0 w(t) < p(t) < w(et), t > 0.

The function @ is convex and @(t) < &(¢t). Therefore we have (see Lemmas
2.1 and 2.2 from [16])

G(e @) < &(e <p(t)) < 0) @(Ecw(Ct)> < p(t),

t /7 w(et) ct

provided that ce < 1. We have thereby proved the implication (i)=-(iv).
Let us now assume that the condition (iv) holds. By the Young inequality
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we have for s < t
1 2 1 _ 1 2
p(s) _ . PLs) 23, @(Ew(8)>+ (gt) <
s 2c3t s € 2c3t S 2c3t €
1 o(s) 1 (203 )
= — o =2t).
2 s + 203t 4 3

<

Hence we obtain

<—p

S cst

€

o(s) 1 (203 t)
which means the fulfilment of (ii) and, accordingly, of (i). The equivalency
of the conditions (i) and (v) is proved as in [3], Lemma 1.1.1. W

Corollary 1.1. For a quasi-convex function ¢ we have the estimates

ep(t) < p(cet), t>0, e>1,
o(yt) <yplet), t>0, v<1,

where the constant ¢ does not depend on t.

Corollary 1.2. Let ¢ € ® and ¢ be quasi-convex. Then there is a con-
stant € > 0 such that for an arbitrary t > 0 the following inequalities are
fulfilled:

@(e*iff)) < o(t) < 3(2 ‘iff)) (15)
o(= ) < 5ty < o (2210). (1.6)

Proof. The right-hand inequality of (1.5) is contained in Lemma 1.1. Fur-
ther, the convexity of the function ¢ implies

& (@) <3(t), t>0,
while by Lemma 1.1 the quasi-convexity of the function ¢ implies
o(t) <P (ct), >0,
for some ¢ > 0. Therefore, choosing € > 0 such that ce < 1, we obtain
(e A0) <5 10 <5 (20) < 0,

thereby proving the left-hand inequality of (1.6).
Next, by virtue of the Young inequality

o) < 23220 4 Lo,

t
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Hence
o) < (2 21),
Analogously, we obtain
51) < o (2 21),
thereby also proving the right-hand sides of inequalities (1.5) and (1.6). W

Lemma 1.2. Let ¢ € ®. Then the following conditions are equaivalent:
(i) the function ©* is quasi-convex for some a, 0 < a < 1;

(ii) the function @ is quasi-convex and @ € Ag;

(iil) there is a a > 1 such that

plat) = 2ap(t), t>0; (L.7)

(iv) there is a constant ¢ > 0 such that for any t we have

t
t
/ 90(5) ds < C(p(c ) (1.8)
s t
0
Proof. The equivalency of the conditions (i), (iii) and (iv) is proved in [3]
(Theorem 1.2.1). It remains for us to assume that each of these conditions

is equivalent to the condition (ii). We shall show that (ii)<>(iii). Assume
that (iii) holds. Then

@(2t) = sup (2ts — ¢(s)) = sup (2ats — p(as)) <

s>0 s>0
< sup (2ats — 2ap(s)) = 2a(t).
s>0

Let now @(2t) < ¢1p(t) for some constant ¢; and an arbitrary ¢ > 0.

Since ¢ is quasi-convex, then by Lemma 1.1 ¢ (ct) > p(t) for some ¢ > 0
and any t > 0.
For the constant a; with the condition 2a; > ¢; we have

¢ (art) = sup (arts — @(s)) = sup (2a1ts — §(2s)) >
5>0 s>0

> sup (2a1ts — 0135(5)) > 2a4 ; (t).
s>0

Further,
©(calt) ZZ (a¥et) > 2Fak ?0 (ct) > 2kako(t).

For 2% > 2¢ the latter estimate implies (at) > 2ap(t), where a = ca¥. W
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8§ 2. A WEAK TYPE ONE-WEIGHTED PROBLEM IN ORLICZ CLASSES
FOR MAXIMAL FUNCTIONS (THE SCALAR CASE)

We begin by presenting two results to be used in our further reasoning.
The first of them describes the class of those functions ¢ from ¢ for which
a strong type inequality is fulfilled in the nonweighted case.

Theorem A. Let ¢ € @, uE > 0. Then the conditions below are equiv-
alent:
(i) the inequality

/ P(Mf(x)) dp < c / o(cf(x)) du

E E

holds for an arbitrary p-measurable function f with the condition supp f C
E and with the constant ¢ not depending on f;

(ii) % is quasi-convex for some a, 0 < a < 1.

For E = X the proof of Theorem A is given in [4]. In the general case
the proof is nearly the same and we therefore leave it out.

Theorem B. Let ¢ € ®. Then the conditions below are equivalent:
(i) there is a ¢1 > 0 such that the inequality

e wlz e X Mf(z) > A} > o / ol f@)w)de  (21)
X

is fulfilled for any X\ > 0 and locally summable function f : X — R!;
(ii) there are positive constants € and ¢y such that the inequality

[ AN %)wm d < cap(NwB (2.2)

1s fulfilled for any ball B and positive number \;
(iii) there is a positive constant c3 such that the inequality

o(=5 Z flaydn) < 22 [ pleaf(e)ut) du (2.3

B

18 fulfilled for any ball B and nonnegative measurable locally summable func-
tion f with the condition supp f C B.

Theorem B is the particular case of Theorem 5.1 from [16] for 6(u) = u,
v =0,ds =wdy®dy, n =1, Y(t) = p(t) and v(z) = o(x) = w(x), where
dp is the Dirac measure supported at the origin.

Now we shall prove several lemmas on which the proof of Theorem I
rests.
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Lemma 2.1. If condition (2.2) is fulfilled for ¢ from ® and the weight
function w, then the function ¢ is quasi-convex and w € Ay for an arbitrary
s > p(p) where p(yp) is defined by (0.6).

Proof. We shall show in the first place that in the conditions of the theorem
¢ is quasi-convex. Let E = {1 < w(z) < k} be such that the set has a
positive p-measure. Choose a ball such that uB N E > 0. From (2.2) we
have BAE B \

SRS k) < e,
which means that there are positive numbers €; and co such that we have

5(51 SD()\)\)) < cap(A)

for any A > 0. By virtue of Lemma 1.1 the latter inequality is equivalent to
the quasi-convexity of .

The definition of the number p(y) implies that the function goﬁ is not
quasi-convex for anyone of o € (0,1). Therefore, according to Lemma 1.2,
for an arbitrary a > 1 there exists a ¢t > 0 such that

gpﬁ(at) < 2a<pﬁ¢>(t)
or, which is the same thing,
plat) < (2a)" (1), (2.4)

Let B be an arbitrary ball and E be its any u-measurable subset. Using
the Young inequality and condition (2.2), we obtain

1 2¢o  uB p(t) wB
B=—"+/[—t—e————wx)dy <
262¢(t)E/ () dis <

e wE  t pBw(x)
1 2¢o  pB 1 /~ ep(t) wB
< —t— <
T 2¢00(t) gp( € t uE)wE+ 2c20(t) J <p( t pBw(zx) )w(x)d,u_

2
(Et@)wE—F LB
e ukE 2

<
~ 2c20(t) v

from which we conclude that

wB

Rl < aplalp o). (2.5)

Let a = 62% and t be a corresponding number such that (2.4) holds.

On substituting this value of ¢ in (2.5), we get

_ < — < —_—
wE o(t) < 6290(02ME t) < e (C2ME> o(t)
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from which we conclude that

wB uBNP(e)

D < (1)

wk uE
This means (see [21]) that w € A, for an arbitrary s > p(yp) when p(¢) > 1
and w € A; when p(p)=1. R

Lemma 2.2. Let condition (2.2) be fulfilled and ¢ € Ag. If
1
then the function ¥ (tw) € A uniformly with respect to t, t > 0.
Proof. Let B be an arbitrary ball and E be its any p-measurable subset.

The convexity of the function ¢ implies that @ increases. Using this fact
and the condition ¢ € Ay, from (2.2) we obtain

Jo(5 s Jute) du < o (2.
B
where ¢ does not depend on A\, B and E.
Setting
e\ wE 1
A wB ot
we have

1
ol —— )t dp < ctp(NwE.
/“"(tw(z)) w(z) dp < ctp(Mw
B
From the expression for ¢t and the Young inequality we obtain

to(MwE < %cp(/\)wE + %/6(2% twl(x))tw(m) dps.
E

Hence we conclude that

~ 1 (puB 1
— Vtw(w)dp < (252 Jtw(z) dp. 2.7
[ @ dn<e [ G52 s wwan @)
B E

The condition ¢ € Ay implies that (see [3], Lemma 1.3.2)
Plar) < c1a”p(7), (2.8)
where the constant ¢; does not depend on a > 1 and 7 > 0. If in the latter

inequality we take a = Z—g and 7 = ﬁ, we shall obtain

uB

J(% tw(@)tu(r) ) < C(E)p&(tw(@). (2.9)
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Using (2.9), from the inequality (2.7) we obtain
uBA\P
[ ot dn < o(A2)" [ o) an
B E

Thus ¥ (tw) € Ay uniformly with respect to ¢t. B

Lemma 2.3. Let ¢ € ® and ¢“ be quasi-convex for some o, 0 < o < 1.
If now condition (2.2) is fulfilled, then there is a convex function ¢ such
that p(¢) > p(pe) > 1 and condition (2.2) with ¢ replaced by g is fulfilled.

Proof. By Lemma 2.2 the function 9 (tw) € A, uniformly with respect to
t. Therefore (see [17], [20]) the reverse Holder inequality

(MLB/qué(tw(:c)) du)l—HS < C(ﬂ%/¢(tw($)) dl‘) (2.10)
5 B

holds, where the constant ¢ does not depend on t.
We set

@1+6(t) .

Yo(t) = 10

(2.11)

Since the function ¢ is convex, ¥y will be convex, too. Therefore if pg =

zzo, we shall have @ zlzoz 1. Moreover, the condition ¢ € Ay implies
©®o € Ag. By Lemma 1.2 hence it follows that p(pg) > 1.
Substituting ¢ = —= 22 into (2.10) and making use of (2.11), we obtain

wo(\) wB
1 (N B =
~ (¥o w
d <
wo(M)wB B/Qﬁo( A qu(m))w(x) a -
i -1 [ ~/po(A) wB
< T .
< eATH (po(N)wB) /go( 3 qu(I))w(x) du (2.12)
B
Let s be such that for a given A
po(A) _ p(s)
A s

Then by virtue of (1.5) and the condition @ € Ag we have
¢(s) ~(%0(A)
< _ _— =
o) <3(257) <3 (F7)

P <
- () () <
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Therefore
)
AT 1
<c—r. (2.13)
wo(A) ~p(s)
Now from (2.13) and (2.12) we conclude that
wB
du < c. 2.14
B/ ) s e du < (2.14)

Thus (2.2) holds, where ¢ is replaced by the convex function ¢g. Now it
remains for us to show that p(¢) > p(yg). First, we shall prove that there
are constants ¢; and co such that

cltﬁw(cltﬁ) < o(t) < czt%go(cﬂﬁ). (2.15)
Using (1.5), (1.6) and the Young inequality, on the one hand, we have

po(t) = i 2 Ly tf@( <,00t( )> +t1%¢(1tﬁ16> -
g

7 (tﬁ)—éew(tﬁ)i<i (i)+i~ (W(tl}fé)>
’ T2 s e s e T\ g )T
1 L
:iwo( 2! )+£(5<‘0(t1+5))75~1+6<5¢ tr )) <
2 elt? 2 tTH s )

€ 2 1 Loy i

This implies
5 2
tT 5¢(t1+5) <e gpo( 5 t).
Inequality (2 15) is therefore proved. From the definition of p(yg) the func-

enE is quasi-convex for an arbitrary sufficiently small € > 0 . By

tion ¢
1
Lemma 1.1 this is equivalent to the fact that the function ¢t ~1p?0—= (¢) al-

most increases. On account of (2.15) this means that the function
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1 1)
te=P(P0) (¢t TH5 )t T+ is almost increasing. Therefore the function
@(u)u~((P(po)=e)(14+0)=0) almost increases. The latter conclusion is equiv-

alent to the fact that the function <p<1+5><1’<v1’0>*5>*5 is quasi-convex. From
the definition of p(y) we have p(¢) > (14 6)(p(po) —e) — 6 for a sufficiently
small e. Since p(pg) > 1, we conclude that p(p) > p(¢g). W

Proof of Theorem 1. First, we shall prove that (ii)=-(i). By virtue of the A,-

condition there is a p; < p(y) such that w € A,,. On the other hand, the
1

definition of p(y) implies that the function ¢?1 is quasi-convex. Applying

the definition of quasi-convexity, the Jensen inequality and the fact that the

operator M : f — MFf is bounded in L} (X) for w € A,, (see [20]), we

obtain

X X
< c/ (M(goﬁ(cf(x))))plw(m) dr < c¢; /gp(clf(x)w(x) dx.
X X

Next we shall show that (i)=(ii). Choose k& > 0 such that the set E =
{k=! < w(x) <k} have a positive measure. Then from the condition (i) it
follows that

[ ets@)au< ok [ otes@)au

E E
for an arbitrary f provided that supp f C E. By Theorem A hence we
conclude that ¢ is quasi-convex for some «, 0 < a < 1. Now let us prove
that w € Ap,). The condition (i) implies that inequality (2.2) is fulfilled.
Applying Lemma 2.3, we arrive at the existence of a convex function (g

such that N
~ ®o A wB
T <
/cp(e 5y ’qu(wa(x) dp < capo(NwB,

B
where the constant co; does not depend on A and the ball B and, besides,
p(¢) > p(po) > 1. But in that case, according to Lemma 2.1, the function
w € A, for any s > p(¢po) and therefore w € Ap,). W
Finally, we wish to make some useful remarks.

Proposition 2.4. Fither of conditions (2.1) and (2.2) is equivalent to
the fact that the function ¢ is quasi-conver and w € Ay(y,).

Proof. The fact that the condition w € Ay, implies (2.2) (and, accord-
ingly, 2.1) can be proved directly.

Let w € Ap) and p(e) > 1. Then there is a p» < p(¢) such that
w € A,,. The definition of p(p) implies the existence of a p; such that ps <
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p1 < p(p) and the function gaﬁ is quasi-convex. Therefore by Corollary 1.1
we have sP1p(t) < p(cst), s > 1. Hence for a > 1 we obtain

p(at) = sup(sat — ¢(s)) = sup (a%tcs - @(am%lcs) <

s>0 >0
b1 _p1_ P
< sup (am—lcts —ari-1 <p(s)) =ari-1 p(ct).
s>0

From the latter estimate, inequality (1.5) and the condition w € A,, we

derive
- wB
<
/ cp(e)\ qu(m))w(x) dx <
{m:“é"TEEw)>l}
< @(eeN) / (ﬂ) pfilw(w) dp < cp(MNwB.
- pBuw(z) -
B
Thus

~ wB 0 2 g
[ B(er s Ju@) do < BB + e (uB < I )

wB
rBw(z)

constant independent of B and we have (2.16).

Let now p(¢) = 1. Then the function is bounded on B by a

Further, if in inequality (2.16) we replace A by 50@ where g is the
respective constant from (1.3) and in the right-hand side use the above-

mentioned inequality, then we shall obtain (2.2). W

Proposition 2.5. Let ¢ be quasi-convex. The conditions below are equiv-
alent:
(i) there are constants 1 and c1 such that

® %Z@(@)w(m)du wBSqB/G(w?x))w(x)d,u (2.17)

for any ball B and number A\ > 0;
(ii) there are constants e5 and co such that

Z 3(=> %)w(w) di < exF(NwB (2.18)

for any ball B and number \ > 0;
(i) w € Ay,
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Proof. Tt is easy to show that (i)=-(ii). To this effect in (2.17) it is sufficient

to replace A by 2’2‘1”[133. Then (2.17) can be rewritten as

oy [l )

o /~(i>‘w3)w(x)d <A (2.19)
AwB v 2c, uB a

B

Taking into account that @ increases and using inequality (1.5), we con-
clude from (2.19) that (2.18) is valid.

The implication (ii)=>(iii) is obtained as follows. In Proposition 2.4 it
was actually proved that (ii)=(2.2). By Lemma 2.4 it follows from (2.2)
that w € A,(,). The reverse statement was shown in proving Proposition
24. 1

Now we proceed to proving Theorem III. The proof will be based on the
following propositions.

Proposition 2.6. Let ¢ € . Then the statements below are equivalent:
(i) there is a constant ¢ such that the inequality

/ w(ﬁ)w(m) dp < c/ap(c i((i))>w(x) du

{z:Mf(z)>\} X

is fulfilled for any p-measurable function f : X — R! and an arbitrary
A>0;

(i) the function ¢ is quasi-convex and there are positive constants € > 0
and ¢1 > 0 such that

? A;B/@(w?x)>w(x) du | wB < Cl/‘P(w(wa(x) dp.

B B

Since the proof of this proposition repeats that of Theorem 5.1 from [16],
we leave it out. N

If in Proposition 2.6 we replace ¢ by ¢ and take into account that N %)
for a quasi-convex function ¢ (see Lemma 1.1), then by Proposition 2.5 we
conclude that the following proposition is valid.

Proposition 2.7. Let p € ®. The conditions below are equivalent:
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(i) the function ¢ is quasi-conver and there is a constant ¢ > 0 such
that the inequality

{x:Mf(z)>A\}

is fulfilled for any X > 0 and p-measurable function f: X — R!;
(ii) there is a constant ca > 0 such that the inequality

o [ e@disa [ i@
{(#:Mf(2)>A} X

is fulfilled for an arbitrary A > 0;
(iii) the function ¢ is quasi-convex and there are positive numbers € and
c3 such that

(s 3y o) = [5( 2 oo

B B

is fulfilled for any A > 0 and an arbitrary ball B;
(iv) there are positive numbers € and ¢4 such that the inequality

/«Z(@ ¢(\) wB )w(g;) dp < csp(N)wB
B

X w(z)uB

is fulfilled for any A > 0 and ball B;
(v) the function ¢ is quasi-convex and w € Ap(y)-

Proof of Theorem III. First, we shall prove the implication (i)=-(iii). From
the condition (i) we obtain a weak type inequality. Moreover, the same
condition implies that ¢® is quasi-convex. Indeed, the condition (i) implies
that the inequality

/ P(Mf(z)) du < / p(cf (@) dy

E E

is fulfilled on the set E = {1 < w(z) < k} where k is a number such that
uwE > 0. Therefore on account of Theorem A the function ¢ is quasi-
convex for some «, 0 < o < 1. Further by Lemma 1.2 the quasi-convexity
of p* (0 < o < 1) implies ® € Ag. Now by Proposition 2.6 from (i) we
conclude that (iii) is valid.

The implication (iii)=(iv) follows from Proposition 2.5. We shall prove
the validity of the implication (iv)=-(i). By virtue of Lemma 2.1 the condi-
tion (iv) implies w € Ao. Now we shall use the method developed in [25].
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Let BJ’AC and Ejk (j € N, k € Z) be respectively balls and sets from Lemma
2 of [2]. We set
1
mp.(f) = —% /f(y) dp
J /LB] 2

Applying the above-mentioned lemma, we obtain

/@(I\:IU{( ) z)dp < Z/ ’ mBk w(ﬂc)du. (2.20)

X ’Ek

Now in the condition (iv) we set
5 [ 1fwld
Bk
wB; 2

and use the resulting inequality to estimate the right-hand side of (2.20).
This leads us to the estimates

/soczm z()
X

|f ) k
< E?.

We set )
M. f(a) = sup — / Fw)hoty) di
B

which implies that

[oCatwin <o [o(a(5) puterin <
X

On the other hand, the function ¢® is quasi-convex for some a € (0,1)
and w € Ay. The latter condition implies that w satisfies the doubling
condition. Therefore we are able to apply Theorem A to the right-hand
side of the above inequality. As a result, we conclude that

/@(%{Sbw(@ dp < czw(ci((i)))w(x) . W

X
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§ 3. CRITERION OF A STRONG TYPE ONE-WEIGHTED INEQUALITY FOR
VECTOR-VALUED FUNCTIONS. THE PROOF OF THEOREM II

Let f = (f1,f2s---s fn,...) where f; : X — R! are p-measurable locally
summable functions for each i = 1,2,...,n. For 0, 1 < 8 < co, and x € X

we set
IF@)llo = (X151

Let Mf = (Mfl, Mfg, ey an, e )
The proof of Theorem II will be based on some auxiliary results to be
discussed below.

Theorem 3.1. Let 1 < p,0 < oo. Then the following conditions are
equivalent:
(i) there is a constant ¢ > 0 such that the inequality

/ IMf (@) 2w (z) dp < / 1 £ (@5 () dp (3.1)
X X

1s fulfilled for any vector-function f;
(i) w e A,(X).

To prove the theorem we need the following lemmas:

Lemma A ([17], Lemma 2). Let F be a family {B(x,r)} of balls with
bounded radii. Then there is a countable subfamily {B(x;,1;)} consisting of
pairwise disjoint balls such that each ball in F is contained in one of the
balls B(x;,ar;) where a = Sa% + 2agpaq.

Lemma 3.1. Let 1 <p<oo, f: X - R, o: X — R! be non-negative
measurable functions. Then there is a constant ¢ > 0, not depending on f
and ¢, such that

Joas@yedn < [ Mot du.
X

X

Proof. This lemma is well-known for classical maximal functions and so we
give its proof just for the sake of completeness of our discussion.

As can be easily verified, for any nonnegative locally summable function
¢ we have the estimate

where ¢ does not depend on the ball B.
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Further, let A > 0 and By be a fixed ball in X. We set
H*={z € X : Mf(z) > A} N By.

Obviously, for an arbitrary point z € H> there is a ball B(x,r,) such that

1
B | S0w

B(z,rsz)

According to Lemma A, from the family {B(x,r,)} we can choose pair-
wise disjoint balls B(z;,ar;) such that each chosen ball will be contained
in one of the balls B(xj,ar;) where a is the absolute constant. Applying
the Holder inequality, the doubling property of the measure p and (3.2), we
obtain

p(z)dp < i p(x)dp < \7F i i p(z) dp x
/ , / , pB; /

j=1

HX ]:13(1370,”) B(zj,ar;)
1 _ 1 p—1
g p—1 <
(- f P M) dn) (o [ M) )" <
B(xj,rj) B
<ary [ reMe i< [ 7)Mot du
=B @) X

Now to complete the proof we only have to apply Marcinkiewicz’ interpo-
lation theorem. M

Proof of Theorem 3.1. Let 1 < p < 6§ < oo and w € A,(X). Since inequality
(0.1) is fulfilled for ¢(u) = uP, 1 < p < oo, and w € A, (see [20]), we have

/HMf(w)Hﬁw(w)dwSCl/Hf(x)llﬁw(w)dx
X X

and also

/(Stl}pri(x))pw(x) dx < / (M(sgp fi(@)) w(z) dx <

X X

< cx [ (sup fi@)) () do.

X

If we apply an interpolation theorem of the Marcinkiewicz type (see, for
example, [24]), (3.1) will hold for an arbitrary 6, 1 < p < 8 < oc.

Next let 1 < § < p < co. By virtue of the property of the class A,(X)
there is a number 6y < p such that w € A,y for an arbitrary 6, 1 < 6 <
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0o < p. It will be now shown that (3.1) holds for an arbitrary 6 provided
that 1 < 6 <6y < p.
We have

/HMf () ) —sup\/qu )G (x) dul,

where the least upper bound is taken with respect to all functions ¢ : X —
R! for which

P __6
[ et (wia)) Fau< 1 (33)
X
By virtue of (3.2) we obtain

/(ZMGJ‘Z )Iso )| dp = Z/M% Ye() du <

le

<3 [ @Mt du—C/IIf )EMp () du

i= 1X
Applying the Holder inequality to the latter expression, we have

0/p

/(ij@fz-(x)w Nduzel| [( Zm e | x
i=1

X
p—6

p

[ et w @y (34)

The fact w € A, /9 implies w™ 7= = A e_. Taking into account (3.3), wi
estimate the second multiplier in the rlght hand side of (3.4) as follows:

/ I™MF () [ / IMI@le@dn<e( [Il7@)5utan)""
X

provided that 1 < 6 < 6.

Now let us show that (3.1) holds for 8y < 6 < p as well. Consider two
pairs of numbers, (p,6y) and (p,p). By virtue of the above reasoning and
the well-known result in the scalar case we have the inequalities

[IM7@) 0w i < e [ 1@ () da
X X
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and

/HMf(x)HZ"LU(x) duSCQ/IIf(z)IIZw(I) dp.
X X

The proof is completed by applying Marcinkiewicz’ interpolation theorem.
|

Theorem 3.2. Letp € ® and1 < 0 < oco. Then the following conditions
are equivalent:
(i) there exists a constant ¢ > 0 such that

gp()\)w{x cX : (i_o: (M(pi(x))e) e > )\} <
<cf o(e( S @) Yoo dn (3.5)
i=1

X
for all A > 0 and vector-functions f;

(ii) the function ¢ is quasi-conver and @ € A,.

Proof. The quasi-convexity follows from (3.5) by virtue of Lemma 2.1. We
shall prove that ¢ € As.
Let 29 € X and p{z} > 0. We set 1o = 1 and

1
r =sup{r : pB(zo,r) < %,uB(xo,rk,l)}, k=1,2,...,

where the constant b is taken from the doubling condition of the measure
. Obviously, by the definition of numbers r; we shall have

uB(xo, i) \B (20, k1) = pB(2o, 1) — pB(20, 1k41) = pB(20,78) —
—buB(xo, %rkﬂ) > uB(xo,1E) — %/LB(.’E(),T;C) = %MB(ZC(),T]C).
Therefore
uB(xo, :)\B(zo, re+1) > %,uB(:co,rk). (3.6)

Let us define the vector-function f = (f1,..., fn,...) where

t
fj (.’L‘) = EXB(:EO,TJ-)\B(:LO,T]-+1) (1’),

with the constant ¢ taken from the condition (i).
Obviously,

(i |fj($)|g)1/9 = z,uB(xo,ﬁ).
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At the same time, for any « € B(zo,r;), ( = 1,2,...), we have on account
of (3.6)

pB(xo,7)\B(Z0,7j+1)
puB(xo,rj)

MJ(x) > - >

t
2¢

Now let & > 4c¢. Then it is obvious that

(

for an arbitrary « € B(zg, k).
Next set A = 2¢ in (3.5). By (3.7) we obtain the estimate

16 Kkt
> —>2 (3.7)

i

(M5 (2))")

j=1

e(2t)wB(xo, 1) < cp(t)wB(zg, r1).

Therefore ¢ € As.

The implication (ii)=-(i) can be proved by the arguments used in proving
Theorem 1.3.1 from [3]. W

Proof of Theorem II. The necessary condition for the function ¢ to be
quasi-convex for some a, 0 < a < 1, and w € A, () follows from the scalar
case (Theorem I).

Assume that these conditions are fulfilled. Then there is an € > 0 such
that w € Ap(,)—-. The definition of the number p(p) implies that there is
a po such that p(p) — e < pg < p(¢) and the function QD% is quasi-convex.
The function fz(,z) almost increases by virtue of Lemma 1.1. Therefore for
p1 with the condition p(p) — e < p; < p we have

u

[l e, [ e,

tP1 uP1 tp1i—1 - uP
0 0
(w [ d (w)
p(u t _ plu
+pl uPo /uplfp(lfl =c ubt ’ (38)
0

On the other hand, since w € A,,, by Theorem 3.1 we obtain

w{x eX : (i (ij(x))e)l/e > )\} <
<o [ (Sl wie) du (39)

X J
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At the same time, by the condition of the theorem we have ¢ € Ay. There-

fore there is a p such that Wt(pt) almost decreases. Setting po = max{p(y¢), p},
we have

oo

do(t)  [edt o) [ dt  cpo o)
_/ P2 sz/tp2_1 <ep2 up Jte2p=1 T po—p yp2 (3.10)
u u u

Since pp > p, the function w € A, and again by Theorem 3.1 we have

w{xeX : (i(ij(aj))g)l/0>)\}§

</ (S 1h@1)" wie)dn (3.11)
X

sp o @) 1@ > A
it {0 if || f(2)]lo < A,
B i @l <A,
A {0 it |7(2)llo >

Assume that xf = (3 f1,-- -, afir--- ) 2 = O f1,.. ., 4, .. .). Tt is obvious
that

Mfj(x) < My fj(z) + M fj(x)
and hence, by Marcinkiewicz’ inequality,
IMLf ()]l < M f ()]l + M ()]]o-
Therefore
A
pNw{z € X : |[Mf(z)llo > A} <pNw{z e X : M f(z)]o > 5} +

eufz € X ¢ M@ > 2
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Further,
/ o(IMF (@)|ls)w(z) do < / wlz e X ¢ [Mf()lly > \ydp()) <
X 0

< O/w{x € X ¢ M () > 2 ho(M) +

r A
+/w{x e X : ||M)\f($)H9 > 5}6[(,0()\) =1+ Is.
0
Applying (3.9) and (3.8), we obtain

Ail (/ 1 f(2)[[§ w(=) dac)dnp()\) —
X

I;<¢

00
0

—o [ (] W@ e ) -
0 {z:|[f(z)lo>A}

17 (2)le

o 1@y ([ L o= [ olls@ ) s

0 X

Analogously, applying (3.11) and (3.10), we ascertain that the estimate

L<e / (1 £ (@) lo)w(z) da

X
isvalid. W

8 4. WEAK TYPE INEQUALITIES FOR VECTOR-VALUED MAXIMAL
FuNcTIONS

This paragraph will be devoted to proving Theorem IV. To this end we
need several well-known facts.

Proposition 4.1 (see [19], p. 623). Let ) be an open set in X. Then
there is a sequence (Bj) = (B(xj,r;)) such that

() Q= U B;;
j=1

(ii) there exists a constant & > 0 such that

Y X, (@) <&
j=1
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(iii) for each j = 1,2,..., we have B; N (X\Q) # @, where B; =
B(z;,3a17;) and the constant aq is from the definition of the space X.

Proposition 4.2 (see [17], Lemma 1). For each number a > 0 there
is a constant ag such that if B(xz,r) N B(y,r") # @ and r < ar’, then
B(x,7) < B(y,asr’). Note that as = a2(1 + a) + apaya.

Proposition 4.3 ([16], Lemma 3.2). If condition (0.8) is fulfilled,
then there is a constant ¢ > 0 such that

¢(s) < ct—lq/;(cL), 0<s<t. (4.1)

s v(s)

We start with an extension of Theorem B. The following statement is in
fact the sharpening of Theorem 5.1 from [16] for maximal functions in the
case 0(u) = u, df = wdp Q dy.

Theorem 4.1. Let ¢ and~y be nondecreasing functions defined on [0, 00),
¥ be a quasi-conver function. Further assume that w, v and o are weight
functions. Then the following statements are equivalent:

(i) there is a positive constant ¢y such that the inequality

e M@ >N <o [ ¢(clf(fj2§§x>)a<m>du
X

is fulfilled for any X\ > 0 and locally summable function f: X — R!;
(ii) there is a positive constant € such that

sup sup ()\;wB /J(6¢(A))\7()\) wB )0(1’)d,u < 0.
B

B A>0 pBo(z)v(x)

Proof. Since in the proof of Theorem 5.1 the quasi-convexity of v was
used only to show that the implication (i)=-(ii) is valid, now it is sufficient
to prove this implication by our weakened assumptions.

Let B be a fixed ball and s > 0. Given k € N, put B, = {z € B :
o(z)v(z) > £} and

ooy = (22D

: ALBU(I’)V(x))qu(&(p(S)’Y(S) wB

with € to be specified later.
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In our notation we have

I:/i(gw(S)v(S) wB )U(x)du:

s uBo(z)v(x)

_ ¢(s) wB [ g(x)

s EB v(z)

If B and s are chosen such that

uB ) v(x)
B
then we obtain the estimate
I < o(s)wB
Let now
1 z
E J %du > s.

By the condition (i) for the function

Fla) = 23(}59/9(@”) du)*lg(fﬁ)
B

v(z) v(z)
and Corollary 1.1 we derive the estimates

p(s) 1 [9(@) : 11 [y
< . MBB/w{xEX.Mf(x)>s}d,u§ SNBB/)dMX

v(x) v(z

o [0 S35 o

B
()
< clx/z/J(2clcrgy(s))o(ﬂc)du.

Therefore

v(s)

Choose ¢ so small that 2c;c?c < 1. By Corollaries 1.1 and 1.2 and the
definition of g we obtain, from the above inequality, the estimate

I <p(s)wB+ /w(2010@>0(x)dp.
X

I < p(s)wB + cel. (4.2)
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Now we shall show that [ is finite for a small . Let ¢(t) - t~! — oo as
t — oo; then % is finite everywhere and thus
o(s)v(s) wB

E)UB < 00,

1< J(ak

since ¢ and w are locally integrable.
Let now 9 (t) < At, A > 0. Then the condition (i) implies

Tl € X Mf(a) > 5} < e [ F@)vaota)dn
X

If in this inequality we put f(x) = sﬁ—gXE(z), where E is a measurable
subset of B, we shall obtain the inequality

M Z—ﬁ < ,uiE /J(x)y(x)du

which yields the estimate

pls)y(s)  wB
s uBa(o)y(x)

<c

almost everywhere on B. Here the constant ¢ does not depend on B and s.
Therefore we conclude that

I < (ec)oB.

Choosing e so small that ¥)(ec) < oo, we see that I is finite.
Further, if ce < 1, then inequality (4.2) implies

/{5(5@(5)’7(8) LR
B

o(s)wB.

s uBo(x)v(x) 1—ce

Passing here to the limit as k — oo, we derive the desired inequality (ii). W

In the same manner we can generalize Theorem 5.1 from [16] to its full
extent.
Proof of Theorem IV. Let A > 0 and

Oy ={zeX: M(|flo)x) > A}.

Let further (B;); be a sequence from Proposition 4.1. We set G, = X\,
and introduce the notation fi = fx, = (lec;A N ) R ), fo= [Xq-
Condition (0.9) readily implies that w € A, and therefore w € A, for some
p > 1. Let a number p be chosen so that the function ¢7Pt(¢) almost
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decreases. This is possible due to the condition ¢ € As. As can be easily
verified,

(e [M()o > A} < pWuwfe : MA@ > 3} +

rowle : MA@ > 3} (43)

By Theorem 3.1

eOule: MA@ > 3} < L [ r@lguae (44
G

Next, since ||f(z)|ls < A for z € G, from (4.1) and the As-condition we
obtain the estimate

ety
O [t < o [ ) i) o <
G

gx

<o [ o( M oy c [ (LY 0

(€3N X

Therefore (4.4) implies

£ ()l
Y(A)

eNw{zeX : ||Mf1(x)||9>%}§c/w( )w(ac)du. (4.5)
b'e

We set f: (fl,...,fj,...), where
- 1
Fo =% (5 B/ 15wl ., ().

Let By, = B(xg,2a171%). We set Q) = UpBy and Gy = X\ﬁ)\.
Now it will be shown that

M(fiXa,)(@) < Mfj(z) (j=1,2,...) (4.6)

forz € G A

Let x € Gy and B = B(y,r) be an arbitrary ball containing the point
and BN Q) # @. It will be shown that for an arbitrary k € S, S = {k €
N: By N B # @}, we have By, C a2B, where ay is an absolute constant not
depending on k. Since = € é,\, it is obvious that = € B\Ek. Therefore

d(zg, ) > 2a17).
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Let z € B N B. We have

d(z,z) < ai(d(z,y) +d(y,z)) < ai(ap + 1)r

and
2a171, < d(xg, ) < ar(d(zg, 2) + d(z,2)) < ar(r + ai(ag + 1)r).

Hence it follows that r, < aq(ag + 1)r. Now on account of Proposition
4.2 we have By C asB, where ay = a?(ai(ag + 1)) + apa3(ap + 1), aaB =
B(y,agr).

By virtue of the latter inclusion and doubling condition for u we derive
the inequalities

B kesS pAB

1 c 1
= uB = B <
~ uB ]; /f](y)dﬂ = s B Z (MBk /f](y)du)u &

By, 3,

¢ 1

~ paxB / <zk:(HBk/f](y)dM)>XBk du <
(LQB Eh
c
(y)du <M ’

= jas /B f3(y) dp < Mfj()

thereby proving (4.6).
Taking (4.3) into account, we obtain

ol e X+ M)y > 3} < p(ud +
+oNw{z € Gy @ [|MF(z)]ls > A} (4.7)

Since condition (0.8) ensures the belonging of the function w to the class
Ao, this function will satisfy the doubling condition. Therefore

wQy, < Zwék < Zka < / ZXBk dp < 16wy, (4.8)

k=1 k=1 B,k
k

Further by virtue of Theorem 3.1 we have
eNw{z € Gy IMf(z)|o > cA} <

<af2 [ 17w s (49)
Qx
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Applying the Minkowski inequality and taking into account that B NG #
@ and M(||f(z)]le)(z) < A for z € G, we find that for x € Q)

Il = (1) " =

Il
[]e
[]¢
—~
|-
—
Sh
S
=y
=
=
s
®
N———
(el
INA

Il
[]e
|-
h
[]¢
/N
—
o)
S
=
=
N———
(e
Z
(el
>~
8]
ol
&
|

Thus (4.9) implies
e(Mw{z € Gy : IMf(z)]o > A} < esp(ANwy.
Due to the latter estimate (4.7) yields

eNw{z e X : [Mfa(x)lo > %} < c3p(AN)wy. (4.10)

By virtue of the respective result in the scalar case (see Theorem 4.1) we
have

e(AM)wy < 04/1/1(%9)10(30) du. (4.11)
X

Now, from (4.3), (4.5), (4.10), (4.11) we obtain the validity of the desired
inequality. W
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