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NON-STATIONARY PROBLEMS OF GENERALIZED
ELASTOTHERMODIFFUSION FOR INHOMOGENEOUS

MEDIA

T. BURCHULADZE

Abstract. The method of investigation of non-stationary boundary
value problems of the theory of thermodiffusion using the Laplace
integral transform is described. In the classical theory of elasticity
this method was first used by V. Kupradze and the author.

The interconnection of deformation, thermal conductivity and diffusion
processes in an elastic isotropic solid body is described by a system of five
scalar partial differential equations of general type. In the classical case this
system is hyperbolic with respect to some part of components of an unknown
vector function and parabolic with respect to the rest components. A system
of equations of the conjugate (connected) theory of thermoelasticity is a
particular case [1–4].

In the classical theory of elastothermodiffusion it is assumed that prop-
agation velocity of heat and of diffusing substance is infinitely large.

In particular, however, it is often necessary to take into account the fact
that heat propagates not with an infinitely large but with a finite velocity.
The heat flux does not occur in the body instantly but is characterized by
the finite relaxation time.

The consideration of these physical factors makes the main system of
differential equations very complicated. There exist various generalizations
of this theory. Three-dimensional non-stationary problems of non-classical
(generalized) thermodiffusion are treated in [5–8].

In this paper the Green–Lindsay theory is generalized to problems of
elastothermodiffusion. Initial boundary value problems are investigated
for the considered physical system of differential equations in piecewise-
homogeneous media with boundary and contact conditions; a substantiation
of the Riesz–Fischer–Kupradze method is given and approximate solutions
are considered.
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Let us consider a three-dimensional homogeneous isotropic elastic medi-
um in which a thermodiffusion process takes place. The deformed state is
described by the displacement vector v(x, t) = (v1, v2, v3) = ‖vk‖3×1 (one-
column matrix), the temperature change v4(x, t) and the ”chemical poten-
tial” of the medium v5(x, t); C(x, t) = γ2 div v(x, t)+a12v4(x, t)+a2v5(x, t),
where C(x, t) is the diffusing substance concentration; x = (x1, x2, x3) is a
point in the Euclidean space R3, t ≥ 0 is the time and X = (X1, X2, X3),
X4, X5 are the given functions. We consider a system of partial differen-
tial equations of the generalized elastothermodiffusion theory written in the
form

A
( ∂
∂x

)

v −
2

∑

k=1

γk grad v3+k + X = ρ
∂2v
∂t2

+

+τ1
2

∑

k=1

γk
∂
∂t

grad v3+k,

δ1∆v4 + X4 = a1
(

1 + τ0 ∂
∂t

)∂v4

∂t
+ γ1

∂
∂t

div v +

+a12
(

1 + τ0 ∂
∂t

)∂v5

∂t
,

δ2∆v5 + X5 = a2
(

1 + τ0 ∂
∂t

)∂v5

∂t
+ γ2

∂
∂t

div v +

+a12
(

1 + τ0 ∂
∂t

)∂v4

∂t
,

(1)

where A( ∂
∂x ) ≡ ‖µδjk∆ + (λ + µ) ∂2

∂xj∂xk
‖3×3 is the statical operator of

Lamé [8], δjk being the Kroneker symbol. The elastic, thermal, diffusion
and relaxation constants satisfy the natural restrictions

µ > 0, 3λ + 2µ > 0, ρ > 0, ak > 0, δk > 0, γk > 0, k = 1, 2, (2)

a1a2 − a2
12 > 0, τ1 ≥ τ0 > 0.

In particular, for relaxation constants τ1 = τ0 = 0 we have the classical
case.

Let D1 ⊂ R3 be a finite domain bounded by the closed Liapunov surface
S and D2 = R3\D̄1 be an infinite domain, n = (n1, n2, n3) is the unit
normal on S. Elastothermodiffusion constants of the domain Dj will be
denoted by the left-hand subscripts jλ, jµ, jρ, jτ0, jτ1, . . . , j = 1, 2.

Problem At. Define in the infinite cylinder Z∞ = {(x, t) : x ∈ D1 ∪
D2, t ∈]0,∞[} the regular vetor V = (v, v4, v5) ∈ C1(Z̄∞) ∩ C2(Z∞) from
the conditions

∀(x, t) ∈ Z∞ : jµ∆v(x, t) + (jλ + jµ) grad div v −
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−
2

∑

k=1

jγk grad v3+k + jXj = ρ
∂2v
∂t2

+ jτ1
2

∑

k=1

jγk
∂
∂t

grad v3+k,

jδ1∆v4(x, t) + jX4 = ja1
(

1 + jτ0 ∂
∂t

)∂v4

∂t
+

+ jγ1
∂
∂t

div v + ja12
(

1 + jτ0 ∂
∂t

)∂v5

∂t
,

jδ2∆v5(x, t) + jX5 = ja2
(

1 + jτ0 ∂
∂t

)∂v5

∂t
+

+ jγ2
∂
∂t

div v + ja12
(

1 + jτ0 ∂
∂t

)∂v4

∂t
,

x ∈ Dj , j = 1, 2, (3)

∀x ∈ Dj : lim
t→+0

V (x, t) = jϕ(0)(x), j = 1, 2,

lim
t→+0

∂V (x, t)
∂t

= jϕ(1)(x), j = 1, 2,

∀(y, t) ∈ S∞ ≡ {(y, t) : y ∈ S, t ∈ [0,∞[} :

[V ]±S ≡ V +(y, t)− V −(y, t) = f(y, t),

[RV ]±S ≡ [1R(
∂
∂y

, n)V (y, t)]+ −

− [2R(
∂
∂y

, n)V (y, t)]− = F (y, t),

for large values of t and x ∈ D2:

|Dα
x,tV (x, t)| ≤ const

1 + |x|1+|α|
eσ0t, |α| = 0, 2, σ0 ≥ 0,

Dα
x,t ≡

∂|α|

∂xα1
1 ∂xα2

2 ∂xα3
3 ∂tα4

, |α| =
4

∑

k=1

αk,

where α = (α1, α2, α3, α4) is a multi-index;

jϕ(0)(x) = (jϕ
(0)
1 , jϕ

(0)
2 , jϕ

(0)
3 , jϕ

(0)
4 , jϕ

(0)
5 ),

jϕ(1)(x) = (jϕ
(1)
1 , jϕ

(1)
2 , jϕ

(1)
3 , jϕ

(1)
4 , jϕ

(1)
5 ),

f(y, t) = (f1, f2, f3, f4, f5),

F (y, t) = (F1, F2, F3, F4, F5), t ≥ 0, y ∈ S,

are the given real functions; jR( ∂
∂x , n) is a stress operator in the thermod-

iffusion theory for the medium Dj (5× 5 matrix):

jR
( ∂
∂x

, n
)

= ‖jRkl‖k,l=1,5,
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where

jRkl = jµδlk
∂

∂n(x)
+ jλnl(x)

∂
∂xk

+ jµnk(x)
∂

∂xl
, k, l = 1, 3,

jRkl = −jγl−3nk(1 + jτ l−3 ∂
∂t

), k = 1, 3, l = 4, 5,

jRkl = jδk−3δkl
∂

∂n(x)
, k = 4, 5, l = 1, 5,

here n(x) is C∞-extention of n onto R3;

V +(y, t) = lim
D13x→y∈S

V (x, t), V −(y, t) = lim
D23x→y∈S

V (y, t),

[

1R
( ∂
∂y

, n(y)
)

V (y, t)
]+

= lim
D13x→y∈S

1R
( ∂
∂x

, n(y)
)

V (x, t),

[

2R
( ∂
∂y

, n(y)
)

V (y, t)
]−

= lim
D23x→y∈S

2R
( ∂
∂x

, n(y)
)

V (x, t).

It is easy to verify that

R
( ∂
∂x

, n
)

V =
(

Tv − γ1
(

1 + τ1 ∂
∂t

)

nv4 −

γ2
(

1 + τ1 ∂
∂t

)

nv5, δ1
∂v4

∂n
, δ2

∂v5

∂n

)

,

where T is the ”classical” stress operator.
For a classical (regular) solution to exist, it is necessary that the condi-

tions of ”natural compatibility” of initial data be fulfilled. These conditions
have the form

∀y ∈ S : 1ϕ(0)(y)− 2ϕ(0)(y) = f(y, 0),

1ϕ(1)(y)− 2ϕ(1)(y) = lim
t→+0

∂f(y, t)
∂t

,

1R(
∂
∂y

, n)1ϕ(0)(y)− 2R(
∂
∂y

, n)2ϕ(1)(y) = F (y, 0),

1R(
∂
∂y

, n)1ϕ(1)(y)− 2R(
∂
∂y

, n)2ϕ(1)(y) = lim
t→+0

∂F (y, t)
∂t

.

The dynamic Problem At is investigated by the Laplace transform me-
thod. However, the ”natural compatibility” conditions of this method are
not sufficient for our purpose and should therefore be complemented with
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”higher order compatibility” conditions. The latter have the form

∂mf(y, t)
∂tm

∣

∣

∣

t=0
= 1ϕ(m)(y)− 2ϕ(m)(y),

∂mF (y, t)
∂tm

∣

∣

∣

t=0
= 1R1ϕ(m)(y)− 2R2ϕ(m)(y),

m = 2, 7,

where

jϕ(m)(x) ≡ (jϕ
(m)
1 (x), jϕ

(m)
2 (x), jϕ

(m)
3 (x)) =

= jρ−1
[

jµ∆(jϕ
(m−2)
1 , jϕ

(m−2)
2 , jϕ

(m−2)
3 ) +

+(jλ + jµ) grad div(jϕ
(m−2)
1 , jϕ

(m−2)
2 , jϕ

(m−2)
3 )−

−jγ1 grad jϕ
(m−2)
4 − jγ1jτ1 grad jϕ

(m−1)
4 −

−jγ2 grad jϕ
(m−2)
5 − jγ2jτ1 grad jϕ

(m−1)
5 +

∂m−2
jX

∂tm−2

∣

∣

∣

t=0

]

,

ja1jτ0
jϕ

(m)
4 (x) + ja12jτ0

jϕ
(m)
5 (x) = jδ1∆jϕ

(m−2)
4 − ja1jϕ

(m−1)
4 −

−ja12jϕ
(m−1)
5 − jγ1 div(jϕ

(m−1)
1 , jϕ

(m−1)
2 , jϕ

(m−1)
3 ) +

∂m−2
jX4

∂tm−2

∣

∣

∣

t=0
,

ja12jτ0
jϕ

(m)
4 (x) + ja2jτ0

jϕ
(m)
5 (x) = jδ2∆jϕ

(m−2)
5 − ja2jϕ

(m−1)
5 −

−ja12jϕ
(m−1)
4 − jγ2 div(jϕ

(m−1)
1 , jϕ

(m−1)
2 , jϕ

(m−1)
3 ) +

∂m−2
jX5

∂tm−2

∣

∣

∣

t=0
.

These conditions of ”quantitative nature” are sufficient for the existence
of the classical solution. We will not dwell on this here but proceed to
the construction of approximate solutions by the Riesz–Fischer–Kupradze
method.

Theorem. If the initial data of Problem At satisfy the above-given
”higher order compatibility” conditions, then Problem At has the unique
classical solution which is represented by the Laplace–Mellin integral

V (x, t) =
1

2πi

σ+i∞
∫

σ−i∞

eζt
̂V (x, ζ)dζ,

where ̂V (x, ζ) is the solution of the corresponding problem for elliptic system
represented in the form

̂V (x, ζ) =
∞
∑

k=0

ak(ζ)
k
Ω (x, ζ) + Ω(x, ζ).
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The series converges uniformly; ak(ζ),
k
Ω (x, ζ), Ω(x, ζ) are the given vector-

functions (constructed explicitly) and ζ = σ + iq, where σ ≥ σ∗0 > σ0; σ∗0 is
the defined constant.

Consider the Laplace transform

̂V (x, ζ) =

∞
∫

0

e−ζtV (x, t)dt, (4)

where ζ = σ + iq is a complex parameter.
Using formally transform (4), the dynamic problem At is reduced to the

corresponding problem with the complex parameter ζ (spectral problem)
for ̂V (x, ζ).

Problem A(ζ). Define for each ζ ∈ Πσ∗0 ≡ {ζ : Re ζ > σ∗0 > σ0} in
D = D1 ∪D2 the regular vector ̂V = (v̂, v̂4, ̂V5)

)

= ̂V (·, ζ) ∈ C1(D1 ∪D2)∩
C2(D1 ∪D2) from the conditions

∀x ∈ Dj , j = 1, 2 :

jµ∆v̂ + (jλ + jµ) grad div v −

−
2

∑

k=1

jγk(1 + jτ1ζ) grad v̂3+k − jρζ2v̂ = j ˜X,

jδ1∆v̂4 − ja1(1 + jτ0ζ)v̂4 − ja12ζ(1 + jτ0ζ)v̂5 −

− jγ1ζ div v̂ = j ˜X4,

jδ2∆v̂5 − ja2(1 + jτ0ζ)v̂5 − ja12ζ(1 + jτ0ζ)v̂4 −

− jγ2ζ div v̂ = j ˜X5,

|Dβ
x

̂V (x, ζ)| ≤ const
1 + |x|1+|β|

, |β| = 0, 2,

(5)

where β = (β1, β2β3) is a multi-index,

j ˜X = −j ̂X − jρ(jϕ
(1)
1 , jϕ

(1)
2 , jϕ

(1)
3 )−

− jρζ(jϕ
(0)
1 , jϕ

(0)
2 , jϕ

(0)
3 )−

2
∑

k=1

jγkj grad jϕ
(0)
3+k,

j ˜X4 = −j ̂X4 − ja1jϕ
(0)
4 − ja1jτ0(jϕ

(1)
4 + ζjϕ

(0)
4 )−

− ja12jϕ
(0)
5 − ja12jτ0(jϕ

(1)
5 + ζjϕ

(0)
5 )−

− γ1 div(jϕ
(0)
1 , jϕ

(0)
2 , jϕ

(0)
3 ),

j ˜X5 = −j ̂X5 − ja2jϕ
(0)
5 − ja2jτ0(jϕ

(1)
5 + ζjϕ

(0)
5 )−
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− ja12jϕ
(0)
4 − ja12jτ0(jϕ

(1)
4 + ζjϕ

(0)
4 )−

− jγ2 div(jϕ
(0)
1 , jϕ

(0)
2 , jϕ

(0)
3 );

∀y ∈ S : ̂V +(y, ζ)− ̂V −(y, ζ) = ̂f(y, ζ),
[

1R
( ∂
∂y

, n
)

̂V (y, ζ)
]+ −

[

2R
( ∂
∂y

, n
)

̂V (y, ζ)
]−

= ˜F (y, ζ),

˜F (y, ζ) = ̂F (y, ζ)− 1γ1 1τ1n(y)1ϕ
(0)
4 + 2γ1 2τ1n(y)2ϕ

(0)
4 −

− 1γ2 1τ1n(y)1ϕ
(0)
5 + 2γ2 2τ1n(y)2ϕ

(0)
5 ,

j ̂R
( ∂
∂y

, n
)

̂V =
(

T v̂ − n(y)
2

∑

k=1

jγk(1 + jτ1ζ)v̂3+k, jδ1
∂v̂4

∂n
, jδ2

∂v̂5

∂n

)

.

Let L( ∂
∂x , ζ) be a matrix differential operator of Problem A(ζ) and Φ(x, ζ)

= ‖Φjk(x, ζ)‖5×5 = ‖
1
Φ,

2
Φ, . . . ,

5
Φ ‖5×5 be a matrix of fundamental solutions

of this operator L( ∂
∂x , ζ),

k
Φ (x, ζ)=(Φ1k,Φ2k,. . ., Φ5k), k = 1, 5, be column

vectors. The matrix Φ(x, ζ) is constructed explicitly in terms of elementary
functions [8]. Namely:

Φ(x, ζ) ≡ ̂L
( ∂
∂x

, ζ
)

ϕ(x, ζ) ≡

≡ ̂L0
( ∂
∂x

, ζ
)(

∆ + λ2
4

)

ϕ(x, ζ) ≡ ̂L0
( ∂
∂x

, ζ
)

ϕ̂(x, ζ),

ϕ̂(x, ζ) =
4

∑

k=1

ck
exp(iλk|x|)

|x|
,

where λk, ck, k = 1, 4 are constants, ̂L( ∂
∂x , ζ) is a matrix connected with

L( ∂
∂x , ζ) : ̂LL ≡ L̂L ≡ I · det L, I is the unit 5× 5 matrix.
In the above assumptions the sense of the notations jL( ∂

∂x , ζ) and jΦ(x, ζ)
becomes quite clear.

Thus we have to construct the solution of

Problem A(ζ).

̂V = (v̂, v̂4, v̂5) ∈ C1(D̄) ∩ C2(D),

∀x ∈ Dj : jL
( ∂
∂x

, ζ)̂V (x, ζ) = jχ(x), j = 1, 2, (6)

∀y ∈ S : [̂V ]±S ≡ ̂V +(y, ζ)− ̂V −(y, ζ) = ̂f(y, ζ),

[ ̂R̂V ]±S ≡
[

1R
( ∂
∂y

, n
)

̂V (y, ζ)
]+ −

[

2 ̂R
( ∂
∂y

, n
)

̂V (y, ζ)
]−

= ˜F (y, ζ),
(7)
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|Dβ
x

̂V (x, ζ)| ≤ const
1 + |x|1+|β|

, |β| = 0, 2, (8)

where jχ(x) = (j ˜X, j ˜X4, j ˜X5) is the given vector.
Let ̂V (x, ζ) be a regular solution of Problem A(ζ). Taking into account

the contact conditions, by virtue of the formulas for general representation
of the solution [8] we have

∀x ∈ D1 : ̂V (x, ζ) =
∫

S

1Φ(x− z, ζ)(1 ̂R̂V )+dzS −

−
∫

S

(1
˜

̂R1Φ∗)∗ ̂V +dzS −
∫

D1

1Φ1χdz, (9)

∀x ∈ D2 : 0 =
∫

S

1Φ(1 ̂R̂V )+dzS −
∫

S

(1
˜

̂R1Φ∗)∗ ̂V +dzS −

−
∫

D1

1Φ1χdz, (10)

∀x ∈ D2 : ̂V (x, ζ) = −
∫

S

2Φ(2 ̂R̂V )+dS +
∫

S

(2
˜

̂R2Φ∗)∗ ̂V +dS −

−
∫

D2

2Φ2χdz +
∫

S

2Φ ˜FdS −
∫

S

(2
˜

̂R2Φ∗)∗ ̂fdS, (11)

∀x ∈ D1 : 0 = −
∫

S

2Φ(1 ̂R̂V )+dS +
∫

S

(2
˜

̂R2Φ∗)∗ ̂V +dS −

−
∫

D2

2Φ2χdz +
∫

S

2Φ ˜FdS −
∫

S

(2
˜

̂R2Φ∗)∗ ̂fdS, (12)

where the superscripts ∗ and ˜ denote transposition and Lagrange’s con-
jugation, respectively.

It is clear that by substituting ̂V + and (1 ̂R̂V )+ found from (10) and (12)
in (9) and (11) we will solve Problem A(ζ). It appears that (10) and (12)
can be used for constructing approximate values of the unknown vectors.

We introduce the following notations: z ∈ S, x ∈ R3,

1Ψ(x, z, ζ)=
∥

∥

∥

∥

(1 ˜R1Φ∗(x−z, ζ))∗
5×5

, −1Φ(x−z, ζ)
5×5

∥

∥

∥

∥

5×10
, (13)

2Ψ(x, z, ζ)=
∥

∥

∥

∥

(2 ˜R2Φ∗(x−z, ζ))∗
5×5

, −2Φ(x−z, ζ)
5×5

∥

∥

∥

∥

5×10
, (14)
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ψ(x, ζ) = ‖ψk‖10×1 = (̂V +, (1 ̂R˜V )+) is the sought for vector. Now relations
(10) and (12) can be rewritten in the form

∀x ∈ D2 :
∫

S

1Ψ(x, z, ζ)ψ(z, ζ)dzS = 1F (x), (15)

∀x ∈ D1 :
∫

S

2Ψ(x, z, ζ)ψ(z, ζ)dzS = 2F (x), (16)

where

1F (x) = −
∫

D1

1Φ1χ dz,

2F (x) =
∫

D2

2Φ2χdz −
∫

S

2Φ ˜F dS +
∫

S

(2
˜

̂R2Φ∗)∗ ̂f dS

are the given vectors.
Let us construct auxiliary domains and surfaces in the following manner:

˜D1 is a domain bounded by ˜S1 located strictly in D1, i.e, ˜D1 ⊂ D1; ˜D2 is
an infinite domain bounded by ˜S2 located strictly in D2. It is clear that
˜S1 ∩ S = ∅, ˜S2 ∩ S = ∅.

Let {jxk}∞k=1, j = 1, 2, be a countable, dense everywhere, set of points
on the auxiliary surface ˜Sj , j = 1, 2. From (15) and (16) we have

∫

S

1Ψ(2xk, z, ζ)ψ(z, ζ)dzS = 1F (2xk), k = 1,∞, (17)

∫

S

2Ψ(1xk, z, ζ)ψ(z, ζ)dzS = 2F (1xk), k = 1,∞. (18)

We denote the rows of the matrix jΨ considered as ten-component vectors
by jΨ1, jΨ2, jΨ3, jΨ4, jΨ5 and consider the countably infinite set of vectors

{

1Ψl(2xk, z, ζ)
}∞, 5

k=1, l=1

⋃
{

2Ψl(1xk, z, ζ)
}∞, 5

k=1, l=1. (19)

It is proved that (19) is linearly independent and complete in the space
L2(S); i.e., forms the basis in this space.

Let us enumerate set (19) arbitrarily and denote the resulting countable
set by

{ψk(z)}∞k=1. (20)

We have, for example, performed enumeration like this:

ψk(z) ≡ akΨlk(bkxqk , z, ζ), k = 1,∞,
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where

ak = k − 2
[k − 1

2

]

, bk = 2
[k + 1

2

]

− k + 1,

lk =
[k + 1

2

]

− 5

[

[k+1
2 ]− 1

5

]

, qk =

[

[k+1
2 ] + 4

5

]

;

[k] is the integer part of the number k. It is clear that by virtue of (17) and
(18) the scalar product

(ψk, ψ̄) =
∫

S

ψkψ dS = (ψ, ψ̄k)

is known for any k. Using our notations, we have
∫

S

ψkψ dS = akFlk(bkxqk), k = 1,∞.

Obviously, the complex conjugate system

{ψ̄k(z)}∞k=1 (21)

is also complete.
Now we have to find coefficients αk, k = 1, N assuming that the mean-

square norm

∥

∥ψ(z)−
N

∑

k=1

αkψ̄k(z)
∥

∥

L2(S)

is minimal. As is well-known, for this it is necessary and sufficient that

(

ψ(z)−
N

∑

k=1

αkψ̄k(z), ψ̄j(z)
)

= 0, j = 1, N.

Hence we arrive at an algebraic system of equations

N
∑

k=1

αk(ψ̄k, ψ̄j) = (ψ, ψ̄j), j = 1, N,

with the known right-hand side and Gram’s determinant differing from zero,
which defines coefficients αk. Therefore, due to the property of the space
L2(S), we have

lim
N→∞

∥

∥ψ(z)−
N

∑

k=1

αkψ̄k(z)
∥

∥

L2(S) = 0. (22)
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Let us introduce the notation

N
ψ (z) =

N
∑

k=1

αkψ̄k(z),

N ̂V + = (
N
ψ1,

N
ψ2, . . . ,

N
ψ5) ≡

N
∑

k=1

αk(ψ̄k
1 , ψ̄k

2 , . . . , ψ̄k
5 ),

N (1Rτ ̂V )+ = (
N
ψ6,

N
ψ7, . . . ,

N
ψ10) ≡

N
∑

k=1

αk(ψ̄k
6 , ψ̄k

7 , . . . , ψ̄k
10).

Then we have in the sense of the metric of L2(S):

ψ(z) = lim
N→∞

N
ψ (z), ̂V + = lim

N→∞
N ̂V +, (1R̂V )+ = lim

N→∞
N (1R̂V )+.

Substituting the obtained approximate values in (9) and (11) and denot-
ing the result of the substitution by N ̂V (x, ζ), we get

∀x ∈ D1 : N ̂V (x, ζ) =
∫

S

1Φ
(

N
∑

k=1

αk(ψ̄k
6 , ψ̄k

7 , . . . , ψ̄k
10)

)

dS −

−
∫

S

(1
˜

̂R1Φ∗)∗
(

N
∑

k=1

αk(ψ̄k
1 , ψ̄k

2 , . . . , ψ̄k
5 )

)

dS −
∫

D1

1Φ1χdz,

∀x ∈ D2 : N ̂V (x, ζ) = −
∫

S

2Φ
(

N
∑

k=1

αk(ψ̄k
6 , ψ̄k

7 , . . . , ψ̄k
10)

)

dS +

+
∫

S

(2
˜

̂R2Φ∗)∗
(

N
∑

k=1

αk(ψ̄k
1 , ψ̄k

2 , . . . , ψ̄k
5 )

)

dS −

−
∫

D2

2Φ2χdz +
∫

S

2Φ ˜F dS −
∫

S

(2
˜

̂R2Φ∗)∗ ̂f dS.

Now for any ε ≥ 0 we can give a positive number N(ε) such that for
N > N(ε) we will have

∣

∣̂V (x, ζ)− N ̂V (x, ζ)
∣

∣ < ε,

x ∈ D̄′ ⊂ D; ̂V (x, ζ) is the exact solution of the problem, i.e.,

̂V (x, ζ) = lim
N→∞

N ̂V (x, ζ), x ∈ D̄′;

the convergence to the limit is uniform in D̄′.
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The method presented here can also be generalized for other more com-
plicated problems.
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