GEORGIAN MATHEMATICAL JOURNAL: Vol. 1, No. 5, 191994, 523-536

ON THE DURRMEYER-TYPE MODIFICATION OF SOME
DISCRETE APPROXIMATION OPERATORS

PAULINA PYCH-TABERSKA

ABSTRACT. In [10], for continuous functions f from the domain of
certain discrete operators L, the inequalities are proved concerning
the modulus of continuity of L, f. Here we present analogues of
the results obtained for the Durrmeyer-type modification Ly, of Ly.
Moreover, we give the estimates of the rate of convergence of L, f in
Holder-type norms

1. INTRODUCTION AND NOTATION

Let I be a finite or infinite interval. Consider a sequence (J){° of some
index sets contained in Z := {0,+£1,+2, ...}, choose real numbers & € I
and fix non-negative functions p; ; continuous on I. Write, formally,

Lif(x):= Y f(&mpjn(e) (el ke N:={1,2...}) (1)

J=Jk

for univariate (complex-valued) functions f defined on I. If for fy(x) =1 on
I the values Ly fo(z) (x € I, k € N) are finite, then Ly, f are well-defined for
every function f bounded on I. Under appropriate additional assumptions,
operators (1) are meaningful also for some locally bounded functions f on
infinite intervals I. The fundamental approximation properties of operators
(1) in the space C(I) of all continuous functions on I can be deduced, for
example, via the general Bohman-Korovkin theorems ([5], Sect. 2.2).

Recently, several authors have investigated relations between the smooth-
ness properties of the functions f and Ly f ([1], [10], [15]). For example,
taking an arbitrary function f € C(I) N Dom(L,), n € N, Kratz and
Stadtmiiller [10] obtained the following result. Let

ij’k(m)gcl forall xe€l, keN, (2)
Jj€Jk
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and let the sum of the above series be independent of x; if, moreover,

p]kEC Z|§Jk z)p ()| < ¢y for all vel, keN,
Jj€Jk

[e]
where ¢1, ¢ are positive constants and J denotes the interior of I, then the
ordinary moduli of continuity of f and L, f satisfy the inequality

W(Lnf;0) <2(c1 + )w(f;6) (6>0).

They proved an analogous inequality for the suitable weighted moduli of
continuity of f and L, f when I is an infinite interval and f has the mod-
ulus |f| of polynomial growth at infinity. In [12] their result is extended to
functions f having |f| of a stronger growth than the polynomial one. [12]
also presents some applications of the above-mentioned inequalities in prob-
lems of approximation of continuous functions f by L,, f in some Holder-type
norms.

Suppose that for every j € Ji and every k € N the mtegral fI Py (t)dt

coincides with a positive number, say, 1/g; . Denote by Lk the operators
given by

Ekf() k quk?pjk /f p], dt (.IEI k‘EN)
J€Jk (3)

for these measurable (complex-valued) functions f for which the right-hand
side of (3) is meaningful. This modification of the classical Bernstein poly-
nomials was first introduced by J.I. Durrmeyer (see [4]). The approximation
properties of these polynomials were investigated, for example, in [4], [7],
[2]. Some results on the approximation of functions by the Durrmeyer-
type modification of the Szasz—Mirakyan operators, Baskakov operators or
Meyer-Konig and Zeller operators can be found, for example, in [8], [9],
[13], [14], [16].

In this paper we derive Kratz and Stadtmiiller type inequalities involving
ordinary or weighted moduli of continuity of the functions f and L, f on I.
Using these inequalities, we obtain estimates of the degree of approximation
of f by L,f in some Holder-type norms. Theorems 1-3 show that the
smoothness properties of L, f are slightly different from those of L, f.

We adopt the following notation. Given any non-negative function w
defined on I and any z, y € I, we write w(z,y) := min{w(z), w(y)}.

For an arbitrary function f defined on I we introduce the quantities

[ fllw = sup{|f(2)|w(z): x €I},
Qu(f;0) :==sup{|f(x) — f(Yl[w(z,y): z,y €l |x—yl <5} (6>0).
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If f is continuous on I and | f|l, < oo, we say that f € C,(I). The
quantity ., (f;9) is called the weighted modulus of continuity of f on I. In
case w(x) =1 for all z € I, Q,,(f;0) becomes w(f;d) and the symbol || f||
is used instead of || f||.,. If the weight w is nondecreasing [nonincreasing] on
I, then

Qu(f;0) = sup{|f(z) — f(W)lw(z)} [Quw(f;0) = sup{|f(z) — f(y)lw(y)}],

where the supremum is taken over all z,y € I such that 0 <y — 2z < 4.

We denote by W the set of all continuous functions w on I with values
not greater than 1, which are positive in the interior of I and satisfy the
inequality w(x,y) < w(t) for any three points z, ¢,y € I such that x <t <y
(obviously, this inequality holds if, for example, w is nondecreasing, nonin-
creasing or concave on ). When I is an infinite interval, we indtroduce,
in addition, the set A of all positive functions 1 belonging to W such that
n(x) — 0 as |z| — 0.

Given two weights w,n € W | we define a more general modulus of
continuity of f on I by

Qu .y (f;0) == sup{|f(z) — f(y)|w(z,y)i(z,y) : 2,y €1, |z —y| <}

It reduces to ., (f;0) if n =1 on I, and to ,(f;d) if w =1 on I. Taking
into account that the positive function ¢ is nondecreasing on the interval
(0,1] and has values not greater that 1, we put

(¥)

£l = 1 lwn +

/(=) — f)lw(z, y)i(z,y)
o(lz —yl)

If this quantity is finite, we call it the Holder-type norm of f on I. Under

the assumption f € C, (1), ||f||f£17 < o0 if and only if there exists a positive

constant K such that Q, ,(f;0) < Ke(d) for every § € (0,1]. We write

£l for || £l if 7 =1 o0n I, and || f],” if w=1on I.

Throughout this paper the symbols ¢, (v = 1,2,...) will mean some
positive constants depending only on a given sequence (Lg){° and eventually

on the considered weights w,n, p. The integer part of the real number will
be denoted by [a].

—|—sup{ cx,yel, <|x—y|§1}.

2. SMOOTHNESS PROPERTIES
Let Zk, k € N, be the operators defined by (3) such that Ekfo(x) are
finite at every x € I. Put

re(z) ==Y pixl@)—1 (we€l, keN)
Jj€Jk
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and make the standing assumption that all functions p; x (j € Ji, k € N) are
absolutely continuous on every compact interval contained in I. Consider
measurable functions f locally bounded on I and belonging to Dom( n) for

some n € N. Write, as in Section 1, I: Int 1.
Theorem 1. Suppose that condition (2) is satisfied and

S gralp (e |/|t—w|p]k <2 (1)

J€Jk

for x 6; and all k € N, w being a function of the class W. Then
Qy(Lnf;0) < esw(f;0) + | flww(ra; 6) (5> 0), (5)

where c3 = 2(c1||w|| + c2).

Proof. Let z,y € I 0 <y —x < and let z¢ := (z + y)/2. Clearly,

an( Z qj,n pj n — Py, n(y))/(f(t)7f(x0))pj,n(t)dt+

J€Jn T
+/ (o) (rn(z) — rn(y))- (6)
Taking into account (2) and the well-known 1nequahty |f(t) = f(zo)] <
(1+ [|t — 20|61 ])w(f;8), we obtain | Ly, f(z) — L f(y)] < (2¢1 + An(z,y)) %

w(f;0) + | f(zo)|w(rn; ), where

)= 3 Ginlpsn(e) — pya()]5 ! / [t — zolpn (1)t <

JjE€In N5
z J€n I\Is

and Is ;== IN(xg— 6,20 +9). If x < s <yand |t —x9| > y— =z, then
|t — zo| < 2|t — s|. Hence, applying (4), we get

Ap(z,y):=26" /(Z%Hpgn |/|t s|pj.n(t) dt)

z JEIn

7

and inequality (5) follows.

The result of Theorem 1 is interesting if w(f;d) < oco. This holds, for
example, for functions f € C'(I) on the compact interval I. If I is an infinite
interval, the assumption w(f;d) < oo implies the restriction f(z) = O(|z|)
as |x| — oo. So, in this case, it is convenient to use the weighted modulus
of continuity Q,(f;d) with some n € A. If f € C,(I), then this modulus
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is a nondecreasing function of § on the interval [0, 00). It is easy to verify
that, for every § > 0 and for all «,y € I there holds the inequality

[f(x) = )X, y) < (L + (07 o =yl (f30). (7)

Moreover, in case p € A and p(x)/n(xz) — 0 as |z| — oo we have Q,(f;J) —
0 as 0 — 0+, whenever f € C,(I) is uniformly continuous on each finite
interval contained in I.

Note that under the assumptions € A, f € C,(I) and Li(1/n)(z) < oo
we have | Ly f(x)] < co. If, moreover, p € A and

~ /1 ca
- <2
Lk(n)(l‘)_ () forall x €l and k€ N (8)

then || Ly f||, < co.
In the next two theorems it is assumed that I is an infinite interval. W

Theorem 2. Let condition (2) be satisfied. Suppose, moreover, that
there exist functions w € W, p, n € A, p <n such that (4), (8) and

3 el | ijw)dt <
I

J€Jk
Cs °
<——— forae x€] and ke N 9
w@)pa) I ©
hold. Then
Qu (L f10) < 6 (f56) + [ fllwpw(rn; 8) (5> 0), (10)

where cg = 2((c1 + cq)||w|| + c2 + ¢5).

Proof. Consider x,y € I such that 0 < y — 2 < §. Retain the symbol xg
used in the proof of Theorem 1 and start with identity (6). In view of (7),

Lot (@) = Lnf ()] < Ba(@,y)2(f30) + | f(@)|lra(@) = rn(y)], where

Balay) = Y Gualpin(e) = pan()] [ (1 571t = ol =yt
I

jE€Tn f/(ta $0)
Observing that for every ¢t € I

px,y) p(x,y)
itwo) =T ) 1
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and applying (2), we obtain

Bn(.%',y)ﬁ(l' y) <2 + Z qj, ’ﬂ|p]’ﬂ — Py, n / ’t pjn dt+
JEIn T

45 qu/m, |ds/ (1+f’;az’ti/))|t—xo|pm(t)dt.

JjEIn ZIs

Further, the inequality [t — xo| < 2|t — 5| (t € I\I5, z < s < y) and
assumptions (4), (8), (9) lead to

Y
Bu(e, 9)p(x,y) < 2c1 + ca) + 26~ /

x

CQ+C5

w() ds.

The desired estimate is now evident.

For functions f for which |f| is of the polynomial growth at infinity our
result can be stated as follows. W

Theorem 3. Let conditions (2), (4) be satisfied and let n(x) = (1+|z|)~°
x €1 o> 0. Suppose that inequality (9) in which p =1 holds. Then

Qw,n(znfﬂs) < C7Qn(f§6> + Hf”wnw(rn;é) (6 > O)a

where ¢; = 2(¢1 + 2+ 3%¢1 + ¢ + 2¢5).

Proof. To see this it is enough to make a slight modification in the evalua-
tion of the term B, (z,y) occurring in the proof of Theorem 2. Namely, let us
divide the interval I into two sets I,, and I\ I, where I}, := IN(zo—h, zo+h),
h=y—x. Ift € I, then [0t — z0|] = 0 and

n(@y) _ 375 (z, y) (n(lx) + 77(1y)> <2.37.

This inequality, (11) and (2) imply

B, (z,y)n(x y)<2(1+2 3%)c1 +

+ Y djnlp(s)ds] / ( t;y) <1+ |tx°|)>pj7n(t)dt.

y—x
JjEIn NI
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Observing that [t — zo| < 2|t — s, |t — 29| < y — x whenever ¢t € I\I},
x < s <y, we obtain, on account of (4) and (9) (with p = n),

Bu(, 9)ii(z,9) < 20142 3%)e; +

y
2 n(x,y) |t —
g/ ds +4 /( P / dt)ds<

2
2(1+2.3”)cl+—/02+c5ds.
y—x w(s)

JEI

Thus
By (z,y)w(z, y)i(z,y) <2(14+2-37)c||w|| + 2¢2 +4c5. W
Remark 1. For many known operators the functions ri(z) =0 on I, the
quantities pio k() == > 5, (§6 — z)%p; () are finite at every x € I and

positive in ;; moreover,
P (@2 (x) = i (@) (ke — @) (12)

for every z 6} and every k € N. In view of identity (12) and the Cauchy—
Schwartz inequality the left-hand side of (4) can be estimated from above by

(Fio k() / p2 i () /2, where fig g () := deJk aj.klpj k()] [ (=) *pjk(t)dt.
Therefore, in this case, assumption (4) can be replaced by

fiz,k ()

< % for all =z E;, k e N. (13)
2,k ()

w*(2)

Analogously, the left-hand side of (9) can be estimated by

e Bt [ )

'u2k JEJI)

Hence, if

Mzk

_ )2 pik(t) 3
Zq] ki k() (&G — ) I/ 20 dt < 200 (14)

JjE€Jk

for all # €7, k € N, then (9) holds with ¢5 = c» - cs.
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Remark 2. Let w € W, n € A. Define the weighted modulus ®,,(f;J)
and @, ,(f;9) as in Section 1, replacing w(x,y) by

0 if wx)=0 or w(y)=0,

w(z,y) = <w(1x)+w(1y))_1 otherwise,

and 7(z,y) by 7(x,y), respectively. Since w(z,y) < w(x,y) for every pair
of points x,y € I, Theorem 1 remains valid for ®,,(L, f;0). Further, in
this case, inequality (7) becomes |f(z) — f(y)|m(z,y) < 2(1 + [6 Yz —

y|])@,(f;0). Consequently, under the assumptions of Theorem 2, the mod-
ulus <I>w7p(znf; 9) and ®,(f;9) satisfy inequality (10) with the constant 2cg
instead of cg.

Note that, for the weight n(z) = (1 + |2|)~7 with the parameter o > 0,
the modulus ®,(f;6) is equivalent to the one introduced in [10], p. 331 (see

also [12]).

3. APPROXIMATION PROPERTIES

Considering still the functions f as in_Section 2 we first estimate the
ordinary weighted norm of the difference L., f — f.

Theorem 4. Let condition (2) be satisfied and let

p(:c)ik(nig) (z) < % forall z€l, keN, (15)
p(@) iz k() < cron(z)df  forall x€l, k€N, (16)

where (0)5° is a sequence of positive numbers, 1 is a positive function on
I and p is a non-negative one such that p <mn. Then

IZnf = Fllo < 11 (F:00) + 1 £l llmnll, (17)
where c11 = ¢1 + (c1¢9)Y? + (coc10)Y? + c10.

Proof. Start with the obvious identity

Fuf@) — f@) = 3 gmpin(@) / (F(t) — F(@)pym (D)t + F()r(x)

J€Tn T

and take a positive number §. In view of (7) and the inequality (7(x,t))~1 <

(ﬁ@YJ+W@D”thMe@mﬂ@—f@HSVM@QAﬁ5%Hf@NW%W

(@)1= 3 qapsala) [+ 57— al) (o + o (O

= / n(t)
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Further, by (2), (15) and (16) and the Cauchy-Schwartz inequality we ob-
tain

= (1 _op() -
n(2)p(@) < €1+ Ln () @)oe) + 6720 (@) +
-1 |t — |
O 3 00 / Eo a0t <

<ea+ (clfn(;)(w))l/zp(ﬂf) + 10620, +

~ /1 1/2
—1(7 1/2 2 <
()5 () (B (15) @) <
<c + (6109)1/2 + 0106_26721 + (09010)1/25_1571-
Choosing ¢ = 6, we get (17) at once. W

Remark 3. In the case when n(z) = 1 for all x € I, the constant ¢ in
(17) is equal to ¢1 4+ ¢19. If we use the modulus @, (f;6) (defined in Remark
2) instead of Q,(f;9), the constant ¢;; should be multiplied by 2.

Passing to approximation in the Holder-type norm we note that, for an
arbitrary v, € (0,1],

~ 2 ~
I1Znf = 7125 < (1 S5 JNEnd = o +
+sup {ﬁ(gwm(znm) +Qualfi0) 0<6<w}  (18)

(see, for example, [11], [12]). This inequality, Theorem 4 and the estimates
obtained in Section 2 allow us to state a few standard results. We will for-
mulate only one of them. Namely, combining inequality (18) with Theorems
1 and 2 gives

Theorem 5. Let conditions (2), (4) be satisfied and let (5x)5° be a se-
quence of numbers from (0,1] for which (16) holds with p = w and n = 1
on I. Then

w(f;9)
©(9)

where c12 = 3¢1 + 2¢3 + 3c10 + (1 + 2¢1)||w]| and
AL = 3ra | /0(8n) +sup{w(rn; 8)/0(8)  0< 8 < b,}.

IZnf = £ < crosup { F0< <00+ LAY,

Remark 4. Clearly, if the assumptions of Theorems 1 — —5 hold for posi-
tive integers k belonging to a certain subset N1 of N, then the corresponding
assertions remain valid only if n € Nj.
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4. EXAMPLES
1) The Bernstein polynomials By f = Ly f are defined by (1) with &, =
Jlk, pjk = (f) (1 —2)k=3 I =10,1], Jr = {0,1,2,... ,k}. The corre-

sponding Bernstein-Durrmeyer polynomials Ly, f= Ly f are of the form (3)
in which ¢; = k+1forall j € Jy, k € N. Inthiscase ry(z) = Oforallz € I,
the constant ¢; in (2) equals 1, po p(z) = (1 — z)/k and equality (12) is
% (x eI, k€ N) (see [4]), we easily sta-
te that condition (13) is satisfied with ¢y = 1, w(x) = (2(1 —z))*/2. Hence,
in view of Theorem 1 (and Remark 1), for every f € C(I) and every n € N,
Qu(Bnf;6) < 3w(f;8) (6 > 0) Further, fizp(w) < 5 forallz € I, k € N
(see [4], p. 327). Therefore (16) holds with p(z) = n(z) =1 for all x € I,
x = k=2 and ¢19 = 1/2. Thus Theorem 4 gives ||B,, f— f|| < 3w(f;n~1/?)
for all n € N (cf. [4], Theorem II.2). Also, Theorem 5 applies with
w(z) = (z(1 —2))Y/?, 6, =n"2 ¢15 = 8 and AP =o0.

2) The Meier-Koénig and Zeller operators My = Ly, are defined by §; , =

3G+ 0. pste) = (P ) oot s e 1= 00, € g = M,

Ny :={0,1,...}. Their Durrmeyer modification M = L are of the form
(3) in which g; = (k+ j)(k+ j + 1)/k. Condition (2) holds with ¢; = 1.
Since

true. Since fig ;(x) =

z(1 — z)? j 2
p;’k(x)% :pj7k+1(x)(m — l’) (0 <z < 1),

the left-hand side of (4) can be estimated from above by
k — J 2
A (S () e} »

oo I 1/2
X{ ; qj,kDj k+1() O/(t - fﬂ)2pj,k(t)dt})

for all z € (0,1), k € N. If k > 3, the expression in the first curly brackets
is not greater than 2z(1 —x)?/k (see [3]); straightforward calculation shows
that the expression in the second ones does not exceed 7(1 — x)?/k. Thus,
for the functions f € C(I) N Dom(ﬂn) and M, f (n > 3), inequality (5)
applies with ¢z = 10, w(z) = 2'/? and 7, (z) = 0 for all x € I.

3) The Baskakov—Durrmeyer operators ﬁgm = L, (with a parameter
¢ € Np) are defined by (3) in which I = [0,00), Jx = Ny, pjr(z) =
(—1)]’;53'1/;](6]2(35)/]'!, Yrel@) = e " if ¢ = 0, and Ypo(z) = (1 + cx) "
ife>1, qj:k =k—cfork > c (see [9]). Now riy(z) =0forallz €I, k€ N,
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c1 =1, pox(x) =2(1 + cx)/k for all x € I, k > ¢ and condition (12) holds
with &, = j/k. Further,

2z(1 4 cx)(k +3c) + 2
(k —2¢)(k — 3¢)

fo ) = for xe€l, k> 3ec

Hence Theorem 1 (via Remarks 1, 4) applies for n > 3¢, with w(z) =
(x/(1+ )2 c5 = 2(1 4 ¢2), ca = (2(1 + 3¢)(1 + 6¢) /(1 + ¢)) /2.

4) The Szész—Mirakyan-Durrmeyer operators §k are the special case of
operators ﬁk,c defined in 3), with ¢ = 0. From 3) we know that, for these
operators, conditions (2) and (13) hold with ¢; = 1, ¢; = 2%/? and w(z) =
(z/(1+x))Y/2. Consider f € C,(I) with the weight n(z) = (14 z)~7 where
o € N. It is easy to see that, for k > 20,

y 1 kj 7 i —kt 201 /1 k’j ooza+j —kt
) dt=— [(1+t)%7¢ dt<2 (f —/t dt):
[ st forod s (G [
0 0 0
20-1 1 (20 + ) —20 20-1 1 J 20
—9 7(1 gy, )<2 7(1 (f 1) )
AT = PO

Consequently, the left-hand side of (14) is not greater than

S (4 mat (1027 (e (2 -2)")) =

j=0

e j 2042

S (1) ate) <
§=0

< ciz(142)%

2,k ()

20 420-1

=2 (1427 ) +

w2k ()

(see [10], p. 334). Applying Theorem 3 (together with Remarks 1, 4), we
get the estimate

Qo (S f30) < 14 (£36) (6 >0, n>20). (19)

Since fi2 x(z) < 2(1 + z)/k, conditions (15) and (16) are satisfied with
p(x) = (1+x)~°" and 6, = k~/2. Consequently, Theorem 4 gives

1Snf — Fll, < 15 (f;n~/2)  forall n e N.

Combining this result and (19) with the general inequality (18), we easily
verify that, for n > 20,

=~ 1
— |G -8) - -1/2
150 f f||w7pSclﬁsup{(p((s)ﬁn(f,é) L 0<s<n2)
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5) The generalized Favard operators Fj, = Ly are deefined by (1) with
&iw =3/k, Jk = Z, I =(—00,00) and

pin(@) = pin(yiz) = (V2rky) " exp ( - %7;2 (% - x)2)

v = (£)3° being a positive null sequence satisfying

—_

1
k*yE > 5777210gl<; for k>2, ~> §7r7210g2

(see [6]). Denote by Fj, their Durrmeyer modification of form (3) in which

¢je =k forall j € Z and k € N. As is known ([6], [12]), for all z € I and
ke N,

k(@) = Ire(viz) =] Y pialviz) =1 <2 or |rk(y;2)| < T

j=—o0

po k() = pok(v;z) < 5192 moreover, w(r(vy;z)| < 16m§ for every § > 0
(see [10], p. 336). It is easy to see that

fiz i (2) = fok (Vi) = pak(vi2) + 9 (1 + 72 (y; 2)) < 5dv;.
Observing that
—2(J
Pir(viz) =77 (E - x)pj,k(v; z)

and applying the Cauchy—Schwartz inequality, we estimate the left-hand
side of (4) by

o = |
kv ’ Z ‘E - x’Pj,k(V;f) / [t — z|pjk(y;t)dt <
Jj=—00 e

< 2 (v )2 (B (s 2)) V2,

ie, w(x) = 1 for all real  and ¢o = 52,5. Thus Theorem 1 yields the
estimate

w(F,f;0) < 111w(f;6) + 16ad] ]| (5 > 0)

for every n € N and every f € C(I). Clearly, this inequality is interesting
if f € C(I) is bounded on I.
Consider now f € C,(I) where n(z) = exp(—oz?) o > 0. If 077 > 3/32,

then
1 .79 2 1 5779 2
cntosyen (~ (=) oo (- (1)) =

< exp(4oa?) exp ( - %7;2(% - w)2) exp ( - %7;2(% - t)Q);
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whence B
Fr(1/n)(z) < 2(1 + ru(2v; x)) exp(dox?).
Analogously, one can show that the left-hand side of (9) is not greater than

1/2

29 2,k (73 2)) 2 (i, (27 2)) /2 exp(doa?)

provided that o2 < 3/64. Further (see [12]),
re(2y:2) < 2/15, pax(2viz) < 2347

and R ) 3

Pz (273 2) = p2,e(2752) + (27)° (1 + 7a(273.2)) < %
Thus Theorem 2 applies with w(z) = 1, p(x) = exp(—40x?), cy = 68/15,
cs = 75 (i.e. cg = 271) and n such that o2 < 3/64. In the same way
one can show that Theorem 4 is true with p(x) = p1(x) = exp(—Toz?),
Sn = Yn 07721 < 3/64 and a positive absolute constant c¢11. From these

results the estimate of ||, f — f Hgf) follows at once via inequality (18).
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