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ON SOME PROPERTIES OF SOLUTIONS OF SECOND
ORDER LINEAR FUNCTIONAL DIFFERENTIAL
EQUATIONS

I. KIGURADZE

ABSTRACT. The properties of solutions of the equation u'(t) =
p1(t)u(r1(t)) + p2(t)u’ (m2(t)) are investigated where p; : [a, +oo[— R
(¢ = 1,2) are locally summable functions, 71 : [a, +00[— R is a mea-
surable function and 72 : [a, +oo[— R is a nondecreasing locally ab-
solutely continuous one. Moreover, 7;(t) > t (i = 1,2), pi(t) > 0,
P3(t) < (4—e)rh()pa(t), & = const > 0 and [ (7 () — )pa (t)dt <
+o00. In particular, it is proved that solutions whose derivatives are
square integrable on [a, +oo[ form a one-dimensional linear space and
for any such solution to vanish at infinity it is necessary and sufficient

that fa+°° tp1 (t)dt = 4-o0.

Consider the differential equation

u”(t) = p1(t)u(ri(t)) + p2(t)u'(m2(1), (1)

where p; : [a,+oo[— R (i = 1,2) are locally summable functions, 7; :
[a,+00[— R (i = 1,2) are measurable functions and

)

nit) >t for t>a (i=1,2). (2)

We say that a solution u of the equation (1) is a Kneser-type solution if
it satisfies the inequality u/(t)u(t) < 0 for t > ag for some ag € [a, +oo[. A
set of such solutions is denoted by K. By W we denote a space of solutions
of (1) that satisfy f(j_oo w'*(t)dt < +oc0. The results of [1, 2] imply that if
p1(t) > 0 for t > a and the condition

+oo
() m)=t, (i=1,2), /|p2(t)|dt<+oo,

a
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or

—+oo

+oo
(1) pa2(t) <0, for t>0, /spl(s)ds<+oo, /TL(S)|p2(s)|ds<+oo,
2
a a

holds, then W O K and K is a one-dimensional linear space. The case when
the conditions (i) and (ii) are violated, the matter of dimension of K and
W and their interconnection has actually remained unstudied. An attempt
is made in this note to fill up this gap to a certain extent.

Theorem 1. Let 7;(t) >t (i =1,2), pi(t) > 0 fort > a,

—+oo

/ [71(t) — t]p1(t)dt < +o0, (3)

a

and let 7o be a nondecreasing locally absolutely continuous function satisfy-
mng

p3(t) < (4 —e)m(t)pr(t) for t>a, (4)
where € = const > 0. Then
WcK, dmW=1. (5)

Before proceeding to the proof of the theorem we shall give two auxiliary
statements.

Lemma 1. Let the conditions of Theorem 1 be fulfilled and let ag €
[a, +00[ be large enough for the equality

+oo

/ [71(s) — s]p1(s)ds < 462, (6)

ao

where § = 1[2 — (4 — €)'/?], to hold. Then any solution u of the equation

(1) satisfies

5/ [u’g(s) + p1(s)u?(s)]ds < o/ (v)u(x) — o' (t)u(t) +

7(z)
+(1 - 9) / W (s)ds for ag<t<z< 400, (7)

x
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where T(x) = ess SUpP,, <;<,Max1<i<2 7i(x)]. Moreover, if u € W, then

+oo

—5/ [u’2(5)+p1(s)u2(s)]ds for t>ag (8)

t

and
26 / s —t)[u'"(s) + pi(s)uP(s)lds < u?(t) for t > ao. (9)

Proof. Let u be any solution of the equation (1). Then

t

—Oult) + (000 = pr(Out) [ o (s~ pa(t)u (ma(e)ult)

T1 (t)
Integrating this equality from ¢ to x, we obtain

x

' (Hu(t) — v (z)u(z) + / [0/ () + p1 (s)u* ()l ds =

t

~ [ [ w@isds— [ pa(s(rals)uts)is.
t 1(s) t
However, in view of (4) and (6),

€T S

/ [p1(s)u(s) / o' (y)dy|ds < & / p1(s)u?(s)ds +
t 71(s) t

x T(z)

+415{/ [T1(s) —8]p1(8)d5] [ / U/2(5)d5] <

Sé/pl ds—|—6/ s)ds for ag <t<z<+o0

and
N

—/pQ(S)u’(Tg(s))u(s)ds <

t
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1/2

< 2(1 - 26) / {pl(s)uz(s)] 2 [Tg(s)uﬂ(@(s))} ds <

< (1-29) /p1 (s)u’(s)ds + (1 — 25)/72’(3)u'2(72(5))ds

t t

IN

()

p1(s)u?(s)ds + (1 — 20) / u'(s)ds

< (1-26)

“\a

for ag <t<z<+oo.

Therefore

<=0 [ WP +mu)ds+1-0) [ (s)ds

for g9 <t<z <+

and thus the inequality (7) holds.
Suppose now that u € W. Then, as one can easily verify,

limJirnf |u' (z)u(x)| = 0.
So (7) immediately implies (8). Integrating both sides of (8) from ¢ to +o0,
we obtain the estimate (9). O

Lemma 2. Let the conditions of Lemma 1 be fulfilled and there exist
b €lag, +oo| such that

pi(t) =0 for t>0 (1 =1,2). (10)
Then for any ¢ € R there exists a unique solution of the equation (1) satis-
fying

u(ag) =c¢, u'(t)=0 for t>0. (11)
Proof. In view of (2) and (10), for any @ € R the equation (1) has a
unique solution v(+;a) satisfying v(t;a) = « for b < t < 4o00. More-
over, v(t;a) = awv(t;1). On the other hand, by Lemma 1 the function

v(+;1) : [ag, +oo[— R is non increasing and v(ap;1) > 1. Therefore the
function u(-) = ;ztgyv(ao; -) is a unique solution of (1), (11). O
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Proof of Theorem 1. First of all we shall prove that for any ¢ € R the
equation (1) has at least one solution satisfying

+oo
u(ag) = c, / W (s)ds < +00. (12)

For any natural £ put

(i=1,2). (13)

pi(t) for ap<t<ap+k
pik(t) =
0 for t>ao+k

According to Lemma 2, for any k the equation u”(t) = p1p(t)u(ri(t)) +
por(t)u’(12(t)) has a unique solution uy, satisfying

ur(ag) =¢, up(t)=0 for t>a+k. (14)
On the other hand, by Lemma 1
+o00
lup(@®)| < le| for t>ag, 26 /(s — ap)u'3(s)ds < 2. (15)
ao

Taking (2) and (13)—(15) into account, it is easy to show that the se-
quences (uk);:z and (u%)::i are uniformly bounded and equicontinuous
on each closed subinterval of [ag,+o0o[. Therefore, by the Arzela-Ascoli
which is

+o0 +oo
lemma, we can choose a subsequence (ukm)m—l out of (uk)k_l,

uniformly convergent alongside with (u}cm):::l on each closed subinterval
of [a,4+o0[. By (13)—(15) the function w(t) = lim;,— 40 g, (t) for ¢ > a is
a solution of the problem (1), (12).

We have thus proved that dim W > 1. On the other hand, by Lemma 1
any solution u € W satisfies (8) and is therefore a Kneser-type solution. To
complete the proof it remains only to show that dim W < 1, i.e., that the
problem (1), (12) has at most one solution for any ¢ € R. Let uy and us
be two artbitrary solutions of this problem and wug(t) = us(t) — uq (t). Since
ug € W and ug(ag) = 0, by Lemma 1

+o0
2 /(s - ao)ulg(s)ds =0 and ug(t) =0 for t > ag,
ag
ie, ui(t) =ux(¥). O

Remark 1. The condition (4) of Theorem 1 cannot be replaced by the
condition

pa(t) < (44 &)1y (t)p1(t) for t> a. (16)
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Indeed, consider the equation

1 1
") = ————u(t) — ~u/(t 1
W) = ) - 7). (1)
satisfying all conditions of Theorem 1 except (4), instead of which the condi-
tion (16) is fulfilled. On the other hand, the equation (17) has the solutions
v 4 21
wi(t)=t" (i =1,2), where \; = (—=1){(4+¢) * (i =1,2). Clearly, u; € W
(i = 1,2). Therefore in our case instead of (5) we have K C W, dim W = 2.

Corollary 1. Let the conditions of Theorem 1 be fulfilled. Let, moreover,
pa(t) <0 for t>a. (18)
Then
K=W, dimK =1. (19)
Proof. Let u € K. Then by virtue of (18) and the non-negativity of p; there
exists tg € [a, +oo[ such that w(t)u'(¢t) <0, u”(t)u(t) > 0 for t > tg. Hence
+oo
/ W (5)ds < Julto) (to)].
to
Therefore w € W. Thus we have proved that W O K. This fact, together
with (5), implies (19). O

A solution u of the equation (1) will be called vanishing at infinity if

lim w(t) = 0. (20)

t——+oo

Theorem 2. Let the conditions of Theorem 1 be fulfilled. Then for any
solution w € W to vanish at infinity it is necessary and sufficient that

+oo

/ sp1(s)ds = +o0. (21)
a
Proof. Let uw € W. Then by Lemma 1 u?(t) > n for t > ag, where n =
limy 4 o0 u2(t), and f;goo (s —ao)p1(s)u?(s)ds < u?(ag)/20. Hence it follows
that (21) implies n = 0, i.e., u is a vanishing solution at infnity.
To complete the proof it is enough to establish that if
+oo
/ sp1(s)ds < 400, (22)

a
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then any nontrivial solution u € W tends to a nonzero limit as t — +oc0. Let
us assume the contrary: the equation (1) has a nontrivial solution v € W
vanishing at infinity. Then by Lemma 1

u(t)u'(t) <0, p(t) <n*u?(t) for t> ap, (23)

where

—+oo

plt) = / (s — D[ () + pr(s)(s)] ds, 1 = (26)

t

[N

On the other hand, by (4), (20) and (22) we have

ju(t)] = 70<s ) [ ()ulra()) + pals)al ()] ds| <
+oo t 12 oo
<| [e-omoa] | [ oneeeea?
12 70@ — Olpa ()2 )] 2 ()l <
<| 70(5 - ) - [ 70<s ~ (sl () L
. L e .
w2 [-omas| | [ - omen o))
t for zzao.

Hence by (2) and (23) we find

+o0 12 Hoe 12
ol = | [e-tm@a| | [ omeneen] -
+2] 70<s -~ Omi(s)ds| v [ 70@ - (s "

+o0 12
ssn[ / <s—t>p1<s>ds] u(®)] for ¢ > ao

t
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and therefore u(t) = 0 for ¢ > a;, where a; is a sufficiently large number.
By virtue of (2) the last equality implies u(t) = 0 for ¢ > a. But this is
impossible, since by our assumption u is a nontrivial solution. The obtained
contradiction proves the theorem. [
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