ON SOME PROPERTIES OF SOLUTIONS OF SECOND ORDER LINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS

I. KIGURADZE

ABSTRACT. The properties of solutions of the equation $u''(t) = p_1(t)u(\tau_1(t)) + p_2(t)u'(\tau_2(t))$ are investigated where $p_i: [a, +\infty[\to R \ (i=1,2)$ are locally summable functions, $\tau_1: [a, +\infty[\to R \ is$ a measurable function and $\tau_2: [a, +\infty[\to R \ is$ a nondecreasing locally absolutely continuous one. Moreover, $\tau_i(t) \geq t \ (i=1,2), \ p_1(t) \geq 0, \ p_2^2(t) \leq (4-\varepsilon)\tau_2'(t)p_1(t), \ \varepsilon = const > 0 \ \text{and} \ \int_a^{+\infty} (\tau_1(t)-t)p_1(t)dt < +\infty.$ In particular, it is proved that solutions whose derivatives are square integrable on $[a, +\infty[$ form a one-dimensional linear space and for any such solution to vanish at infinity it is necessary and sufficient that $\int_a^{+\infty} tp_1(t)dt = +\infty.$

Consider the differential equation

$$u''(t) = p_1(t)u(\tau_1(t)) + p_2(t)u'(\tau_2(t)), \tag{1}$$

where $p_i:[a,+\infty[\to R\ (i=1,2)$ are locally summable functions, $\tau_i:[a,+\infty[\to R\ (i=1,2)$ are measurable functions and

$$\tau_i(t) \ge t \quad \text{for} \quad t \ge a \quad (i = 1, 2).$$

We say that a solution u of the equation (1) is a Kneser-type solution if it satisfies the inequality $u'(t)u(t) \leq 0$ for $t \geq a_0$ for some $a_0 \in [a, +\infty[$. A set of such solutions is denoted by K. By W we denote a space of solutions of (1) that satisfy $\int_a^{+\infty} {u'}^2(t)dt < +\infty$. The results of [1, 2] imply that if $p_1(t) \geq 0$ for $t \geq a$ and the condition

(i)
$$\tau_i(t) \equiv t$$
, $(i = 1, 2)$, $\int_a^{+\infty} |p_2(t)| dt < +\infty$,

1991 Mathematics Subject Classification. 34K15.

or

(ii)
$$p_2(t) \le 0$$
, for $t \ge 0$, $\int_{a}^{+\infty} sp_1(s)ds < +\infty$, $\int_{a}^{+\infty} \frac{s}{\tau_2(s)} |p_2(s)| ds < +\infty$,

holds, then $W \supset K$ and K is a one-dimensional linear space. The case when the conditions (i) and (ii) are violated, the matter of dimension of K and W and their interconnection has actually remained unstudied. An attempt is made in this note to fill up this gap to a certain extent.

Theorem 1. Let $\tau_i(t) \ge t$ $(i = 1, 2), p_1(t) \ge 0$ for $t \ge a$,

$$\int_{-\infty}^{+\infty} \left[\tau_1(t) - t \right] p_1(t) dt < +\infty, \tag{3}$$

and let τ_2 be a nondecreasing locally absolutely continuous function satisfying

$$p_2^2(t) \le (4 - \varepsilon)\tau_2'(t)p_1(t) \quad \text{for} \quad t \ge a \;, \tag{4}$$

where $\varepsilon = const > 0$. Then

$$W \subset K, \quad \dim W = 1.$$
 (5)

Before proceeding to the proof of the theorem we shall give two auxiliary statements.

Lemma 1. Let the conditions of Theorem 1 be fulfilled and let $a_0 \in [a, +\infty[$ be large enough for the equality

$$\int_{a_0}^{+\infty} \left[\tau_1(s) - s \right] p_1(s) ds \le 4\delta^2, \tag{6}$$

where $\delta = \frac{1}{4}[2 - (4 - \varepsilon)^{1/2}]$, to hold. Then any solution u of the equation (1) satisfies

$$\delta \int_{t}^{x} \left[u'^{2}(s) + p_{1}(s)u^{2}(s) \right] ds \leq u'(x)u(x) - u'(t)u(t) +$$

$$+ (1 - \delta) \int_{x}^{\tau(x)} u'^{2}(s) ds \quad for \quad a_{0} \leq t \leq x < +\infty ,$$
(7)

where $\tau(x) = \operatorname{ess\ sup}_{a_0 \le t \le x} [\max_{1 \le i \le 2} \tau_i(x)]$. Moreover, if $u \in W$, then

$$u'(t)u(t) \le -\delta \int_{t}^{+\infty} \left[u'^{2}(s) + p_{1}(s)u^{2}(s) \right] ds \quad for \quad t \ge a_{0}$$
 (8)

and

$$2\delta \int_{t}^{+\infty} (s-t) \left[u'^{2}(s) + p_{1}(s)u^{2}(s) \right] ds \le u^{2}(t) \quad for \quad t \ge a_{0}.$$
 (9)

Proof. Let u be any solution of the equation (1). Then

$$-u''(t)u(t) + p_1(t)u^2(t) = p_1(t)u(t) \int_{\tau_1(t)}^t u'(s)ds - p_2(t)u'(\tau_2(t))u(t).$$

Integrating this equality from t to x, we obtain

$$u'(t)u(t) - u'(x)u(x) + \int_{t}^{x} \left[u'^{2}(s) + p_{1}(s)u^{2}(s)\right]ds =$$

$$= \int_{t}^{x} \left[p_{1}(s)u(s) \int_{\tau_{1}(s)}^{s} u'(y)dy\right]ds - \int_{t}^{x} p_{2}(s)u'(\tau_{2}(s))u(s)ds.$$

However, in view of (4) and (6).

$$\int_{t}^{x} \left[p_{1}(s)u(s) \int_{\tau_{1}(s)}^{s} u'(y)dy \right] ds \leq \delta \int_{t}^{x} p_{1}(s)u^{2}(s)ds +$$

$$+ \frac{1}{4\delta} \left[\int_{t}^{x} \left[\tau_{1}(s) - s \right] p_{1}(s)ds \right] \left[\int_{t}^{\tau(x)} u'^{2}(s)ds \right] \leq$$

$$\leq \delta \int_{t}^{x} p_{1}(s)u^{2}(s)ds + \delta \int_{t}^{\tau(x)} u'^{2}(s)ds \quad \text{for} \quad a_{0} \leq t \leq x < +\infty$$

and

$$-\int\limits_{s}^{x}p_{2}(s)u'(\tau_{2}(s))u(s)ds\leq$$

$$\leq 2(1-2\delta) \int_{t}^{x} \left[p_{1}(s)u^{2}(s) \right]^{1/2} \left[\tau_{2}'(s)u'^{2}(\tau_{2}(s)) \right]^{1/2} ds \leq$$

$$\leq (1-2\delta) \int_{t}^{x} p_{1}(s)u^{2}(s)ds + (1-2\delta) \int_{t}^{x} \tau_{2}'(s)u'^{2}(\tau_{2}(s))ds \leq$$

$$\leq (1-2\delta) \int_{t}^{x} p_{1}(s)u^{2}(s)ds + (1-2\delta) \int_{t}^{\tau(x)} u'^{2}(s)ds$$
for $a_{0} \leq t \leq x < +\infty$.

Therefore

$$u'(t)u(t) - u'(x)u(x) + \int_{t}^{x} \left[u'^{2}(s) + p_{1}(s)u^{2}(s)\right]ds \le$$

$$\le (1 - \delta) \int_{t}^{x} \left[u'^{2}(s) + p_{1}(s)u^{2}(s)\right]ds + (1 - \delta) \int_{x}^{\tau(x)} u'^{2}(s)ds$$
for $a_{0} \le t \le x < +\infty$

and thus the inequality (7) holds.

Suppose now that $u \in W$. Then, as one can easily verify,

$$\liminf_{x \to +\infty} |u'(x)u(x)| = 0.$$

So (7) immediately implies (8). Integrating both sides of (8) from t to $+\infty$, we obtain the estimate (9). \square

Lemma 2. Let the conditions of Lemma 1 be fulfilled and there exist $b \in]a_0, +\infty[$ such that

$$p_i(t) = 0 \quad \text{for} \quad t > b \quad (i = 1, 2).$$
 (10)

Then for any $c \in R$ there exists a unique solution of the equation (1) satisfying

$$u(a_0) = c, \quad u'(t) = 0 \quad \text{for} \quad t \ge b.$$
 (11)

Proof. In view of (2) and (10), for any $\alpha \in R$ the equation (1) has a unique solution $v(\cdot;\alpha)$ satisfying $v(t;\alpha) = \alpha$ for $b \leq t < +\infty$. Moreover, $v(t;\alpha) = \alpha v(t;1)$. On the other hand, by Lemma 1 the function $v(\cdot;1) : [a_0, +\infty[\to R \text{ is non increasing and } v(a_0;1) \geq 1$. Therefore the function $u(\cdot) = \frac{c}{v(a_0;1)}v(a_0;\cdot)$ is a unique solution of (1), (11). \square

Proof of Theorem 1. First of all we shall prove that for any $c \in R$ the equation (1) has at least one solution satisfying

$$u(a_0) = c, \int_{a_0}^{+\infty} u'^2(s)ds < +\infty.$$
 (12)

For any natural k put

$$p_{ik}(t) = \begin{cases} p_i(t) & \text{for} \quad a_0 \le t \le a_0 + k \\ 0 & \text{for} \quad t > a_0 + k \end{cases} \quad (i = 1, 2). \tag{13}$$

According to Lemma 2, for any k the equation $u''(t) = p_{1k}(t)u(\tau_1(t)) + p_{2k}(t)u'(\tau_2(t))$ has a unique solution u_k satisfying

$$u_k(a_0) = c, \quad u'_k(t) = 0 \text{ for } t \ge a + k.$$
 (14)

On the other hand, by Lemma 1

$$|u_k(t)| \le |c| \text{ for } t \ge a_0, \quad 2\delta \int_{a_0}^{+\infty} (s - a_0) u_k'^2(s) ds \le c^2.$$
 (15)

Taking (2) and (13)–(15) into account, it is easy to show that the sequences $(u_k)_{k=1}^{+\infty}$ and $(u_k')_{k=1}^{+\infty}$ are uniformly bounded and equicontinuous on each closed subinterval of $[a_0, +\infty[$. Therefore, by the Arzela-Ascoli lemma, we can choose a subsequence $(u_{k_m})_{m=1}^{+\infty}$ out of $(u_k)_{k=1}^{+\infty}$, which is uniformly convergent alongside with $(u_{k_m}')_{m=1}^{+\infty}$ on each closed subinterval of $[a, +\infty[$. By (13)–(15) the function $u(t) = \lim_{m \to +\infty} u_{k_m}(t)$ for $t \geq a$ is a solution of the problem (1), (12).

We have thus proved that $\dim W \geq 1$. On the other hand, by Lemma 1 any solution $u \in W$ satisfies (8) and is therefore a Kneser-type solution. To complete the proof it remains only to show that $\dim W \leq 1$, i.e., that the problem (1), (12) has at most one solution for any $c \in R$. Let u_1 and u_2 be two artbitrary solutions of this problem and $u_0(t) = u_2(t) - u_1(t)$. Since $u_0 \in W$ and $u_0(a_0) = 0$, by Lemma 1

$$2\int_{a_0}^{+\infty} (s-a_0)u'_0^2(s)ds = 0 \text{ and } u_0(t) = 0 \text{ for } t \ge a_0,$$

i.e., $u_1(t) \equiv u_2(t)$.

Remark 1. The condition (4) of Theorem 1 cannot be replaced by the condition

$$p_2^2(t) \le (4+\varepsilon)\tau_2'(t)p_1(t) \quad \text{for} \quad t \ge a. \tag{16}$$

Indeed, consider the equation

$$u''(t) = \frac{1}{(4+\varepsilon)t^2}u(t) - \frac{1}{t}u'(t),\tag{17}$$

satisfying all conditions of Theorem 1 except (4), instead of which the condition (16) is fulfilled. On the other hand, the equation (17) has the solutions $u_i(t) = t^{\lambda_i}$ (i = 1, 2), where $\lambda_i = (-1)^i (4 + \varepsilon)^{-\frac{1}{2}}$ (i = 1, 2). Clearly, $u_i \in W$ (i = 1, 2). Therefore in our case instead of (5) we have $K \subset W$, dim W = 2.

Corollary 1. Let the conditions of Theorem 1 be fulfilled. Let, moreover,

$$p_2(t) \le 0 \quad for \quad t \ge a. \tag{18}$$

Then

$$K = W, \quad \dim K = 1. \tag{19}$$

Proof. Let $u \in K$. Then by virtue of (18) and the non-negativity of p_1 there exists $t_0 \in [a, +\infty[$ such that $u(t)u'(t) \leq 0$, $u''(t)u(t) \geq 0$ for $t \geq t_0$. Hence

$$\int_{t_0}^{+\infty} u'^2(s)ds \le |u(t_0)u'(t_0)|.$$

Therefore $u \in W$. Thus we have proved that $W \supset K$. This fact, together with (5), implies (19). \square

A solution u of the equation (1) will be called vanishing at infinity if

$$\lim_{t \to +\infty} u(t) = 0. \tag{20}$$

Theorem 2. Let the conditions of Theorem 1 be fulfilled. Then for any solution $u \in W$ to vanish at infinity it is necessary and sufficient that

$$\int_{a}^{+\infty} sp_1(s)ds = +\infty. \tag{21}$$

Proof. Let $u \in W$. Then by Lemma 1 $u^2(t) \ge \eta$ for $t \ge a_0$, where $\eta = \lim_{t \to +\infty} u^2(t)$, and $\int_{a_0}^{+\infty} (s - a_0) p_1(s) u^2(s) ds \le u^2(a_0)/2\delta$. Hence it follows that (21) implies $\eta = 0$, i.e., u is a vanishing solution at infinity.

To complete the proof it is enough to establish that if

$$\int_{a}^{+\infty} s p_1(s) ds < +\infty, \tag{22}$$

then any nontrivial solution $u \in W$ tends to a nonzero limit as $t \to +\infty$. Let us assume the contrary: the equation (1) has a nontrivial solution $u \in W$ vanishing at infinity. Then by Lemma 1

$$u(t)u'(t) \le 0, \quad \rho(t) \le \eta^2 u^2(t) \quad \text{for} \quad t \ge a_0,$$
 (23)

where

$$\rho(t) = \int_{t}^{+\infty} (s-t) \left[u'^{2}(s) + p_{1}(s)u^{2}(s) \right] ds, \quad \eta = (2\delta)^{-\frac{1}{2}}.$$

On the other hand, by (4), (20) and (22) we have

$$|u(t)| = \left| \int_{t}^{+\infty} (s-t) \left[p_{1}(s) u(\tau_{1}(s)) + p_{2}(s) u'(\tau_{2}(s)) \right] ds \right| \leq$$

$$\leq \left[\int_{t}^{+\infty} (s-t) p_{1}(s) ds \right]^{1/2} \left[\int_{t}^{+\infty} (s-t) p_{1}(s) u^{2}(\tau_{1}(s)) ds \right]^{1/2} +$$

$$+2 \int_{t}^{+\infty} (s-t) \left[p_{1}(s) \right]^{1/2} \left[\tau'_{2}(s) \right]^{1/2} |u'(\tau_{2}(s)) ds \leq$$

$$\leq \left[\int_{t}^{+\infty} (s-t) p_{1}(s) \right]^{1/2} \left[\int_{t}^{+\infty} (s-t) p_{1}(s) u^{2}(\tau_{1}(s)) ds \right]^{1/2} +$$

$$+2 \left[\int_{t}^{+\infty} (s-t) p_{1}(s) ds \right]^{1/2} \left[\int_{t}^{+\infty} (s-t) \tau'_{2}(s) u'^{2}(\tau_{2}(s)) ds \right]^{1/2}$$
for $t \geq a_{0}$.

Hence by (2) and (23) we find

$$|u(t)| \le \left[\int_{t}^{+\infty} (s-t)p_{1}(s)ds \right]^{1/2} \left[\int_{t}^{+\infty} (s-t)p_{1}(s)u^{2}(s)ds \right]^{1/2} +$$

$$+2 \left[\int_{t}^{+\infty} (s-t)p_{1}(s)ds \right]^{1/2} \left[\int_{t}^{+\infty} (s-t)u'^{2}(s)ds \right]^{1/2} \le$$

$$\le 3\eta \left[\int_{t}^{+\infty} (s-t)p_{1}(s)ds \right]^{1/2} |u(t)| \text{ for } t \ge a_{0}$$

and therefore u(t) = 0 for $t \ge a_1$, where a_1 is a sufficiently large number. By virtue of (2) the last equality implies u(t) = 0 for $t \ge a$. But this is impossible, since by our assumption u is a nontrivial solution. The obtained contradiction proves the theorem. \square

References

- 1. I.T. Kiguradze, On the non-negative nonincreasing solutions of nonlinear second order differential equations. *Ann. mat. pura ed appl.* **81**(1969), 169-192.
- 2. I.T. Kiguradze and D.I. Chichua, Kneser's problem for functional differential equations. (Russian) *Diffferentsial'nye Uravneniya* **27**(1992), No. 11, 1879-1892.

(Received 03.08.1993)

Author's address: A. Razmadze Mathematical Institute Georgian Academy of Sciences 1, Z. Rukhadze St., Tbilisi 380093 Republic of Georgia