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BOUNDARY VALUE PROBLEMS OF
ELECTROELASTICITY WITH CONCENTRATED

SINGULARITIES

T. BUCHUKURI AND D. YANAKIDI

Abstract. We investigate the solutions of boundary value problems
of linear electroelasticity, having growth as a power function in the
neighbourhood of infinity or in the neighbourhood of an isolated sin-
gular point. The number of linearly independent solutions of this type
is established for homogeneous boundary value problems.

The basic equations of the static state of an electroelastic medium are
written in terms of displacement and electric potential components as fol-
lows [1, 2]:

cijkl
∂2uk

∂xj∂xl
+ ekij

∂2ϕ
∂xj∂xk

+ Fi = 0, (1)

−eikl
∂2uk

∂xi∂xl
+ Eik

∂2ϕ
∂xi∂xk

= 0, i = 1, 2, 3, (2)

where u = (u1, u2, u3) is a displacement vector, ϕ is an electric field po-
tential, cijkl, ekij , Eik, are constants, F = (F1, F2, F3) is mass force. It is
assumed that the constants cijkl, ekij , Eik satisfy the conditions

cijkl = cjikl = cklij , ekij = ekji, Eij = Eji, i, j, k, l = 1, 2, 3. (3)

System (1), (2) can be written in the matrix form. We introduce the
operator

A(∂x) = ‖Aij(∂x)‖4×4, Aik(∂x) = cijkl
∂2

∂xj∂xl
, i, k = 1, 2, 3,

Ai4(∂x) = ekij
∂2

∂xk∂xj
, i = 1, 2, 3, (4)
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A4k(∂x) = −eikl
∂2

∂xi∂xl
, k = 1, 2, 3, A44(∂x) = Eik

∂2

∂xi∂xk
.

Introducing the four-component vectors U = (U1, U2, U3, U4) =
(u1, u2, u3, ϕ) and χ = (F1, F2, F3, 0), system (1), (2) is rewritten as

A(∂x)U + χ = 0. (5)

It is easy to show that the operator A(∂x) is a second order homogeneous
operator of the elliptic type.

Assume that an electroelastic medium occupies a bounded domain Ω+

of the three-dimensional space R3. Let Ω− = R3\Ω̄+, S = ∂Ω+ = ∂Ω−.
Assume that the surface S is partitioned into four parts: S11, S12, S13,

S14, where S1i ∩ S1j = ∅, i 6= j and ∪4
i=1S1i = S. Also assume that we

have another partitioning of S into two parts: S21 and S22; S21 ∩ S22 = ∅,
S21 ∪ S22 = S.

We shall consider a boundary value problem for system (5) when the
following conditions are given: displacements on the part S11 of the bound-
ary S, boundary mechanical stresses on the part S12, normal components of
the displacement vector and tangential components of the mechanical stress
vector on the part S13, and normal components of the boundary stress vec-
tor and tangential components of the displacement vector on the part S14.
These conditions can be written in the form

ui
∣

∣

S11
(y) = fi(y), i = 1, 2, 3; (6)

τjinj
∣

∣

S12
(y) = gi(y), i = 1, 2, 3; (7)

uini
∣

∣

S13
(y) = f (n)(y), (τjinj − nkτjknj)

∣

∣

S13
(y) = g(τ)

i (y), i = 1, 2, 3,
(8)

niτjinj
∣

∣

S14
(y) = g(n)(y), (ui − nkukni)

∣

∣

S14
(y) = f (τ)

i (y), i = 1, 2, 3.
(9)

Here fi, gi, f (n), g(n), f (τ)
i , g(τ)

i are the known functions.
In additition to the above ”mechanical” boundary conditions we should

also be given ”electric” conditions

ϕ
∣

∣

S21
(y) = ψ(y), (10)

Dini
∣

∣

S22
(y) = h(y). (11)

In the above formulas τji denotes the mechanical stress tensor, Di the elec-
tric induction vector. These values are related with the unknown displace-
ment vector U and the electric potential ϕ by the relations

τij =
1
2
cijkl

(∂uk

∂xl
+

∂ul

∂xk

)

+ ekij
∂ϕ
∂xk

, (12)
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Di =
1
2
eikl

(∂uk

∂xl
+

∂ul

∂xk

)

− Eik
∂ϕ
∂xk

. (13)

We shall apply the term ”the basic internal regular boundary value prob-
lem of electrostatics” to the following problem:

Find in the domain Ω+ the four-component vector U = (u, ϕ) of the class
C2(Ω+) ∩C1(Ω̄+) which is a solution of system (5) and satisfies conditions
(6)-(11). Denote this problem by (E)+.

The external boundary value problem (E)− is formulated absolutely in
the same manner. In that case the vector U is sought for in the domain Ω−.

From the basic problem (E)± one can obtain, as the particular case,
various problems. Denote by (p, q)± the problem (E)± when S1p = S (S1i =
∅, if i 6= p) and S2q = S (S2i = ∅, if i 6= q).

Denote by (E)±0 the problem (E)± with the homogeneous boundary con-
ditions fi = 0, gi = 0, f (τ)

i = 0, g(τ)
i = 0, f (n) = 0, g(n) = 0, ψ = 0, h = 0,

when χ = 0. The notation (p, q)±0 has the same meaning as above.
The following uniqueness theorem is valid:

Theorem 1. If U = (u, ϕ) is a solution of the problem (E)±0 , then it has
the form

Ui(x) = εijkaixk + bi, ϕ = ϕ0, i = 1, 2, 3,

where ϕ0, ai, bi are arbitrary constants and εijk is the Levy-Civita symbol.
In that case if S11 6= ∅ and is not a subset of some plane, then ai = 0,
bi = 0, (i = 1, 2, 3); if S21 6= ∅, then ϕ0 = 0.

The proof is based on the Green formula

4
∑

i,k=1

∫

Ω+

Ui(x)Aik(∂x)Vk(x) dx =
4

∑

i,k=1

∫

S

Ui(y)Tik(∂y, n)Vk(y) dyS −

−
∫

Ω+

E(U, V )(x) dx, (14)

where Tik(∂y, n) are the components of the boundary stress operator

Tik(∂y, n) = cijklnj(y)
∂

∂yl
, i, k = 1, 2, 3,

Ti4(∂y, n) = ekijnj(y)
∂

∂yk
, i = 1, 2, 3, (15)

T4k(∂y, n) = −eiklni(y)
∂

∂yl
, k = 1, 2, 3, T44(∂y, n) = Eikni(y)

∂
∂yk

;

E(U, V )=cijkl
∂ui

∂xj

∂vk

∂xk
+ ekij

∂ui

∂xj

∂ψ
∂xk

− eikl
∂ϕ
∂xi

∂vk

∂xl
+ Eik

∂ϕ
∂xi

∂ψ
∂xk

,

U = (u, ϕ), V = (v, ϕ). (16)
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If U = (u, ϕ) is a solution of the problem (E)+0 , then

∀y ∈ S :
4

∑

i,k=1

Ui(y)Tik(∂y, n)Uk(y) = 0. (17)

Applying (17), from the formula (14) we conclude that

∀x ∈ Ω+ : E(U,U) = 0, (18)

where U is a solution of the problem (E)+0 . From (18) we obtain

∀x ∈ Ω+ :
∂ui(x)
∂xj

+
∂uj(x)

∂xi
= 0,

∂ϕ(x)
∂xi

= 0, i, j = 1, 2, 3. (19)

This formula immediately implies that all the statements of Theorem 1
are valid.

Theorem 2. If U is a solution of the problem (E)−0 and satisfies the
conditions

Ui(x)=O(|x|−1), i = 1, 2, 3, 4,
∂Ui(x)

∂xj
=o(|x|−1), j = 1, 2, 3, (20)

in the neighbourhood of a point at infinity, then ∀x ∈ Ω− : U(x) = 0.

The theorem is proved by the reasoning used in proving Theorem 1 for
the domain Ωr ≡ Ω−\B(0, r) where B(0, r) is the ball with centre at the
point 0 and radius r and with passage to the limit as r →∞.

We can formulate Theorem 2 more precisely, since it turns out that con-
ditions (20) can be considerably weakened.

The results of [3] imply, as the particular case,

Lemma 1. Let U be a solution of the system

A(∂x)U = 0 (50)

of the class C2(Ω−) in the domain Ω− and one of the conditions below

lim
r→∞

r−(p+4)
∫

B(0,r)\B(0,r/2)

|U(y)| dy = 0, (21)

U(y) = o(|y|p+1), |y| → ∞, (22)
∫

Ω−

|U(y)|
1 + |y|p+4 dy < +∞ (23)
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be fulfilled for some nonnegative integer number p. Then for any nonnegative
integer q we have the representation

∀x ∈ Ω− : Uj(x) =
∑

|α|≤p

c(α)
j xα +

∑

|β|≤q

d(β)
k ∂βΦjk(x) + ψj(x),

j = 1, 2, 3, 4,
(24)

c(α)
j =const, d(β)

k =const, ψj ∈C2(Ω−), and in the neighbourhood of infinity

∂γψj(x) = O(|x|−2−|γ|−q). (25)

Here Φ = ‖Φjk‖4×4 is the matrix of fundamental solutions of equations (50).

Theorems 2 and 3 imply directly the following uniqueness theorem:

Theorem 3. Let U be a solution of the problem (E)−0 and satisfy at
infinity the condition

U(x) = o(1). (26)

Then ∀x ∈ Ω− : U(x) = 0.

Consider now the boundary value problem: Find in the domain Ω− the
solution U of the Problem (E)−, satisfying at infinity the condition

U(x) = o(|x|p+1). (27)

This problem will be denoted by (Ep)− and the corresponding homoge-
neous problem by (Ep)−0 .

Let K(p) be the number of linearly independent polynomial solutions of
system (50) with a degree not higher that p. Repeating the reasoning given
in [4] for an equation of classical elasticity we can readily prove that

K(p) = 4
[(

p + 2
2

)

+
(

p + 1
2

)]

= 4(p + 1)2. (28)

Now it is easy to prove the following

Lemma 2. Let the homogeneous problem (E)−0 has a solution satisfying
condition (26) (it will be trivial by virtue of Theorem 3). Then the homo-
geneous problem (Ep)−0 has at most K(p) = 4(p + 1)2 linearly independent
solutions.
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Proof. Let U (1), . . . , U (r) (r > 4(p + 1)2) be solutions of the homogeneous
problem (Ep)−0 . By virtue of Lemma 1 U (i) = P (i) + V (i) where P (i) is
a polynomial solution of system (50) of a degree not higher than p and
V (i) is a solution of system (50) satisfying condition (26). Then by the
condition of the lemma there exist numbers ci not all equal to zero such
that

∑r
i=1 ciP (i) = 0. Consider the vector W ≡

∑

ciU (i) =
∑

ciV (i). W is
a linear combination of U (i) and hence will be a solution of the homogeneous
problem (Ep)−0 , but at the same time W is a linear combination of solutions
V (i), therefore satisfying condition (26), and hence, on account of Theorem
3, W = 0. Thus solutions U (i) are linearly dependent. �

Lemma 2 immediately yields

Corollary 1. If the nonhomogeneous problem (E)− has the unique so-
lution for any fi, gi, f (n), g(n), f (τ)

i , g(τ)
i , ψ, and h belonging to the class

C∞, then the homogeneous problem (Ep)−0 has exactly K(p) = 4(p+1)2 lin-
early independent solutions, while the nonhomogeneous problem (Ep)− has
the solution U for arbitrary boundary data and this solution is represented
as U = U0 + U (p), where U0 is the solution of the problem (E)− satisfying
condition (26) and U (p) is an arbitrary solution of the problem (Ep)−0 .

The problem (E)+ is treated with sufficient completeness in [5]. This
paper also contains the proof of the existence of a generalized solution in
Sobolev spaces. Using the well-known regularization theorems [6], from
these results we easily obtain the existence of classical solutions for suffi-
ciently smooth S and boundary data. In particular, we have

Lemma 3. Let the boundary S of the domain Ω+ and the boundary data
belong to the class C∞(Ω̄+). Then:

problems (1.1)+ and (4.1)+ have the unique solution of the class C∞(Ω̄+);
the problem (3.1)+ has the unique solution of the class C∞(Ω̄+) if S is

not the rotation surface;
the problem (2.1)+ has a solution of the class C∞(Ω̄+) if and only if the

conditions
∫

S

gi(y) dyS = 0, i = 1, 2, 3, (29)

∫

S

εijkyjgk(y) dyS = 0, i = 1, 2, 3, (30)

are fulfilled to within a term of the form U = (u(0)
1 , u(0)

2 , u(0)
3 , 0) where

U (0)
i (x) = εijkxjak + bi, (31)

ai and bi are arbitrary constants (i = 1, 2, 3);
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problems (1.2)+ and (4.2)+, and also problem (3.2)+ if S is not the ro-
tation surface, have a solution if and only if

∫

S

h(y) dyS = 0; (32)

the solution is defined to within a term of the form U = (0, 0, 0, ϕ0) where
ϕ0 is an arbitrary number;

problem (2.2)+ has a solution if and only if conditions (29), (30), (32)
are fulfilled; the solution is defined to within a term of the form U = (u, ϕ0)
where u is written as (31) and ϕ0 is an arbitrary number.

We are interested in investigating not smooth solutions of the problems
(E)+, but such solutions that at some given points have singularities not
higher than given power orders.

Let x(1), . . . , x(r) be points lying in the domain Ω+, Mr ≡ {x(1), . . . , x(r)}.
Consider the problem with concentrated singularities: Find the solution

U of equation (5) which belongs to the class C2(Ω+\Mr) ∩ C1(Ω̄+\Mr),
satisfies the boundary conditions (6)-(11) and, in the neighbourhood of the
point x(i), the condition |U(x)| ≤ c

|x−x(i)|pi
, i = 1, . . . , r, where pi are given

nonnegative numbers. Denote this problem by (E)p
cs.

The investigation of this problem is largely based on one proposition
following from the theorem proved in a more general situation in [3].

Lemma 4. Let Ω ⊂ R3, y ∈ Ω, U be a solution of (50) of the class
C2(Ω\{y}) in the domain Ω\{y} and, for some c > 0 and p ≥ 0, |U(x)| ≤

c
|x−y|p . Then

Uj(x) = U (0)
j (x) +

4
∑

k=1

∑

|α|≤[p]−1

a(α)
k ∂αΦjk(x− y), j = 1, . . . , 4,

where U (0) is the solution of system (50) of the class C2(Ω), α = (α1, α2, α3)
is the multiindex, [p] is the integer part of the number p, a(α)

k = const,
Φ = ‖Φjk‖4×4 is the matrix of fundamental solutions of equation (5).

Using this lemma, by a reasoning analogous to that from [4], we prove

Lemma 5. Let Fp be a finite-dimensional space stretched onto the sys-
tem of vectors {∂αΦ(k)(· − x(i)); k = 1, 2, 3, 4; |α| ≤ [pi]− 1}, where Φ(k) =
(Φ1k, Φ2k, Φ3k, Φ4k). Then dimFp = 4

∑r
i=1[pi]2.

Proof. We assume V = (v, ϕ) and introduce the notation

ε(V )
ij =

1
2

( ∂vi

∂xj
+

∂vj

∂xi

)

, E(V ) = − ∂ϕ
∂xk

,
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τ (V )
ij = cijklε

(V )
kl − ekijE

(V )
k , D(V )

i = eiklε
(V )
kl + EikE(V )

k .

Let {ω(k); k = 1, . . . , dimFp} be base spaces F . Denote by U (k) a solution
of system (50) satisfying the boundary conditions (6)-(11) for

fi = ω(k)
i , gi = τ (ω(k))

ji nj , f (n) = ω(k)
i ni,

g(τ)
i = τ (ω(k))

ji nj − nlτ
(ω(k))
jl njni, g(n) = niτ

(ω(k))
ji nj ,

f (τ)
i = τ (ω(k))

ji nj − nlτ
(ω(k))
jl njni, ψ = ω(k)

4 , h = D(ω(k))
i ni.

Consider the vectors V (k) = U (k) − ω(k). Obviously, the vector V (k)

is a solution of the homogeneous problem (Ep)+0 . We shall prove that the
system of vectors {V (k), ψ(i); k = 1, . . . , dimFp; i = 1, . . . , q}, where {ψ(i)} a
linearly independent system of solutions of the homogeneous problem (E)+0 ,
is linearly independent. Indeed, if

dimFp
∑

k=1

ckV (k) +
q

∑

i=1

diψ(i) = 0,

then
dimFp
∑

k=1

ckω(k) =
dimFp
∑

k=1

ckU (k) +
q

∑

i=1

diψ(i).

By virtue of (28)
∑

ckω(k) = 0 and therefore ck = 0 and udi = 0. Now
from Lemma 2 we obtain the proof of Theorem 4. �

Theorem 4. If the problem (E)+ has a solution for any boundary data of
class C∞, then the homogeneous problem (E0)p

cs has exactly 4
∑r

i=1[pi]2 + q
linearly independent solutions, where q is the number of linearly independent
solutions of the problem (E0)+ and [pi] is the integer part of the number pi.

This theorem readily implies

Corollary 2. The homogeneous problems (1.1)p
cs and (4.1)p

cs have ex-
actly 4

∑r
i=1[pi]2 linearly independent solutions and if the boundary S is

not the surface of rotation, then Problem (3.1)p
cs, too, has the same number

of linearly independent solutions.

Similar theorems hold for the other problems as well.
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