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ON THE INITIAL VALUE PROBLEM FOR FUNCTIONAL
DIFFERENTIAL SYSTEMS

V. ŠEDA AND J. ELIAŠ

Abstract. For a system of functional differential equations of an
arbitrary order the conditions are established for the initial value
problem to be solvable on an infinite interval, and the structure of
the set of solutions to this problem is studied.

Introduction

For the p-th order functional differential system

x(p)(t) = f(t, xt, . . . , x
(p−1)
t ), b ≤ t < +∞, (1)

we consider the initial value problem

x(k)
b = ψ(k) (k = 0, . . . , p− 1). (2)

The invesigation is based on Kubáček’s theorem [2] asserting that under
certain conditions the set of all fixed points of the compact map in the
Fréchet space is a compact Rδ-set. It is shown that some restrictions on
the growth of the right-hand side of the functional differential system imply
that the set of all solutions of the initial value problem for that system is a
compact Rδ-set in the Fréchet space of Cp−1-functions. The result extends
a similar theorem for first-order functional differential systems proved in
[2] and the theorem for second-order functional differential systems proved
in [3].

In the sequel we shall use the following notations and assumptions:
Let h > 0, b ∈ R, d ∈ N , and let | · | be a norm in Rd. Further, let

Hl = Cl([−h, 0], Rd) be provided with the norm

‖x‖l = max
{

l
∑

k=0

|x(k)(s)| : −h ≤ s ≤ 0
}
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for each x ∈ Hl and l = 0, . . . , p − 1. For brevity ‖ · ‖p−1 will be denoted
by ‖ · ‖.

Let X = Cp−1([b,∞), Rd) be equipped with a topology of locally uniform
convergence of the functions and of their p− 1 derivatives on [b,∞). In the
Fréchet space X the topology is given by the metric

d(x, y) =
∞
∑

m=1

1
2m

pm(x− y)
1 + pm(x− y)

,

where

pm(x) = sup
{

p−1
∑

k=0

|x(k)(t)| : b ≤ t ≤ b + m
}

, x, y ∈ X, m ≥ 1.

Let X∗ = Cp−1([b − h,∞), Rd) be a Fréchet space whose topology is
determined by seminorms

p∗m(x) = sup
{

p−1
∑

k=0

|x(k)(t)| : b− h ≤ t ≤ b + m
}

, x ∈ X∗, m ≥ 1.

For x ∈ C([b − h,∞), Rd) we shall denote by xt ∈ H0 the function
xt(s) = x(t + s), s ∈ [−h, 0], t ≥ b. Clearly (xt)(k)(s) = (x(k))t(s), s ∈
[−h, 0], k = 0, . . . , p− 1, and x ∈ X∗, t ≥ b.

It is assumed throughout the paper that f ∈ X([b,∞) × Hp−1 × · · · ×
H0, Rd), ψ ∈ Hp−1.

A solution x of (1), (2) is a function x ∈ X∗ such that x
∣

∣

[b,∞) ∈
Cp([b,∞), Rd) abd x satisfies (2) and the functional differential system (1)
at each point t ≥ b.

§ 1. Auxiliary Propositions

Now Kubáček’s theorem in [2] will be stated as Lemma 1. In that lemma
the compact Rδ-set in the metric space (E, ρ) means a nonempty subset F
of E which is homeomorphic to the intersection of a decreasing sequence
of compact absolute retracts. By [1], p. 92, a metric space G is called an
absolute retract when each continuous map f : K → G has a continuous
extension g : H → G for each metric space H and each closed K ⊂ H.
For example, a nonempty convex subset of the Fréchet space is an absolute
retract.

Lemma 1. Let M be a nonempty closed set in the Fréchet space (E, ρ),
T : M → E a compact map (i.e., T is continuous and T (M) is a relatively
compac set). Denote by S the map I − T where I is the identity map on
E. Let there exist a sequence {Un} of closed convex sets in E fulfilling the
conditions
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(i) 0 ∈ Un for each n ∈ N ;
(ii) lim

n→∞
diam Un = 0,

and a sequence {Tn} of maps Tn : M → E fulfilling the conditions
(iii) T (x)− Tn(x) ∈ Un for each x ∈ M and each n ∈ N ;
(iv) the map Sn = I − Tn is a homeomorphism of the set S−1

n (Un) onto
Un.

Then the set F of all fixed points of the map T is a compact Rδ-set.

In the special case E = X, ρ = d Lemma 1 implies

Lemma 2. Let (X, d) be the Fréchet space given above; let ϕ,ϕn ∈
C([b,∞), [0,∞)), and let the following conditions be fulfilled:

(v) For each t ∈ [b,∞) the sequence {ϕn(t)} is nonincreasing and
lim

n→∞
ϕn(t) = 0. Let rk ∈ Rd, k = 0, . . . , p− 1 and let

M =
{

x∈X :
p−1
∑

k=0

|x(k)(t)−rk|≤ϕ(t), t≥b, x(k)(b)=rk, k=0, ..., p−1
}

.

It is assumed that T : M → X is a compact map with the property
(T (x))(k)(b) = rk, k = 0, . . . , p − 1 for each x ∈ M and there exists a
sequence {Tn} of compact maps Tn : M → X such that (Tn(x)(k)(b) = rk,
k = 0, . . . , p− 1 for each x ∈ M and

(vi)
p−1
∑

k=0

∣

∣

(

Tn(x)
)(k)

(t)−
(

T (x)
)(k)

(t)
∣

∣ ≤ ϕn(t), x ∈ M, t ≥ b;

(vii) for each n ∈ N there exists a function ϕ∗n ∈ C([b,∞), [0,∞)) such
that ϕ∗n + ϕn ≤ ϕ on [b,∞) and

p−1
∑

k=0

∣

∣

(

Tn(x)
)(k)

(t)− rk
∣

∣ ≤ ϕ∗n(t), x ∈ M, t ≥ b;

(viii) the map Sn = I − Tn is injective on M , where I is the identity
on X.

Then the set F of all fixed points of the map T is a compact Rδ.

Proof. The set

Un =
{

x ∈ X :
p−1
∑

k=0

|x(k)(t)|≤ϕn(t), t ≥ b, x(k)(b) = 0, k = 0, . . . , p− 1
}

is convex and closed on X for each n ∈ N . We shall show that the sequence
{Un} satisfies all conditions of Kubáček’s theorem when E = X, ρ = d and
thus Lemma 2 will follow from Lemma 1.

Clearly, (i) is fulfilled. As to the condition (ii), we choose an arbitrary
ε > 0. Then there is an m0 ∈ N such that

∑∞
m=m[+1(1/2m) < ε/2. The
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condition (v) and the Dini theorem imply that the sequence {ϕn} converges
on [b,∞) locally uniformly to 0. Therefore for ε > 0 and m0 ∈ N there is
an n0 ∈ N such that gm(ϕn) = sup{|ϕn(t)| : b ≤ t ≤ b + m} ≤ ε/4 m0 for
n ≥ n0 and m = 1, 2, . . . ,m0. Hence for n ≥ n0 and x, y ∈ Un we have

d(x, y) =
∞
∑

m=1

1
2m

pm(x− y)
1 + pm(x− y)

≤
m0
∑

m=1

pm(x− y) +
∞
∑

m=m0+1

1
2m ≤

≤
m0
∑

m=1

2gm(ϕn) +
∞
∑

m=m0+1

1
2m ≤ 2m0

ε
4m0

+
ε
2

= ε.

This implies that (ii) is satisfied. The assumption (iii) follows from (vi)
and from the definition of T, Tn, n ∈ N .

Now we show the inclusion Un ⊂ Sn(M). The condition (viii) then
implies that Sn is the bijection of S−1

n (Un) onto Un and is fulfilled, since
the continuity of S−1

n

∣

∣

Un
is the consequence of the compactness of Tn.

Thus we have to prove that for each y ∈ Un there is an xy ∈ M such that
xy − Tn(xy) = y. This means that the map Pn(x) = y + Tn(x) has a fixed
point for each y ∈ Un. The condition (vii) implies

p−1
∑

k=0

∣

∣y(k)(t) +
(

Tn(x)
)(k)

(t)− rk
∣

∣ ≤
p−1
∑

k=0

|y(k)(t)|+

+
p−1
∑

k=0

∣

∣

(

Tn(x)
)(k)

(t)− rk
∣

∣ ≤ ϕn(t) + ϕ∗n(t) ≤ ϕ(t), t ≥ b,

and (Pn(t))(k)(b) = rk, k = 0, . . . , p−1, for each x ∈ M . Therefore Pn(M) ⊂
M . As M is a closed convex bounded set and Pn(M) ⊂ M is a compact
map, by Tikhonov’s fixed point theorem, Pn has a fixed point.

Now the function ϕ in Lemma 2 will be given as a solution of an integral
equation. The existence and some properties of the solution to that equation
will be discussed in the following two lemmas.

Lemma 3. Let ψ∈Hp−1, ω∈C([b,∞),[0,∞)), g∈C([0,∞),[0,∞)) be a
nondecreasing function. Further, let

σ(t) ≡ 0, b ≤ t < ∞, if p = 1, and

σ(t) =
p−2
∑

l=0

(
p−1
∑

k=l+1

|ψ(k)(0)|
(k − l)!

(t− b)k−l, b ≤ t < ∞, if p ≥ 2,
(3)

K(t, s) =
p−1
∑

l=0

(t− s)p−1−l

(p− 1− l)!
, b ≤ s ≤ t. (4)

Then the following statements hold:
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1. A solution ϕ ∈ C([b,∞), [0,∞)) of the integral equation

ϕ(t) = σ(t) +

t
∫

b

K(t, s)ω(s)g(‖ψ‖+ ϕ(s)) ds, b ≤ t < ∞, (5)

exists and satisfies

0 ≤ ϕ(t) ≤ λ(t), b ≤ t < ∞, (6)

if and only if there exists a function λ ∈ C([b,∞), [0,∞)) such that

λ(t) ≥ σ(t) +

t
∫

b

K(t, s)ω(s)g(‖ψ‖+ λ(s)) ds, b ≤ t < ∞, (7)

i.e., if and only if there exists an upper solution λ of (5).
2. A solution ϕ of (5) (whenever it exists) is a nondecreasing function in

[b,∞).
3. If (5) has a solution ϕ and ω1 ∈ C([b,∞), (0,∞)) satisfies 0 ≤ ω1(t) ≤

ω(t) for b ≤ t < ∞, then the equation

ϕ(t) = σ(t) +

t
∫

b

K(t, s)ω1(s)g(‖ψ‖+ ϕ(s)) ds (8)

has a solution ϕ1 such that 0 ≤ ϕ1(t) ≤ ϕ(t), b ≤ t < ∞.

Proof. 1. The necessity is clear. To prove the sufficiency we shall proceed
by the method of steps. Hence we prove by mathematical induction that
for each m = 1, 2, . . . :

(a) There exists a solution ym ∈ C([b, b + m], [0,∞)) of (5) satisfying the
inequalities 0 ≤ ym(t) ≤ λ(t), b ≤ t ≤ b + m, and

(b) ym+1(t) = ym(t), b ≤ t ≤ b + m.
Consider the partially ordered Banach space X1 = C([b, b+1], R) with the

sup-norm where z1 ≤ z2 if and only if z1(t) ≤ z2(t) for each t ∈ [b, b+1] and
each pair z1, z2 from that space. Then, by definition, the interval 〈z1, z2〉 =
{y ∈ X1 : z1(t) ≤ y(t) ≤ z2(t), b ≤ t ≤ b + 1}. The operator U1 : X1 → X1

defined by

U1(t) = σ(t) +

t
∫

b

K(t, s)ω(s)g(‖ψ‖+ y(s)) ds, b ≤ t ≤ b + 1,

is completely continuous, nondecreasing, and, in view of (7), maps the in-
terval 〈0, λ

∣

∣

[b,b+1]〉 into itself. Hence by Schauder’s fixed point theorem U1

has a fixed point Y1 satisfying (6) on [b, b + 1].



424 V. ŠEDA AND J. ELIAŠ

Suppose now that there exists a solution ym of (5) on [b, b+m]. Consider
the space Xm+1 = C([b, b + m + 1], R) with the sup-norm and with the
natural ordering. Let Um+1 be the operator given by the right-hand side
of (5) on [b, b + m + 1]. Um+1 is completely continuous, nondecreasing, and
maps the interval 〈0, λ

∣

∣

[b,b+m+1]〉 = {y ∈ Xm+1 : 0 ≤ y(t) ≤ λ(t), b ≤
t ≤ b + m + 1} into itself. Similarly, Um+1 maps the closed and convex
set Ym+1 = {x ∈ Xm+1 : x(t) = ym(t), b ≤ t ≤ b + m} into itself. Hence
Um+1

(

〈0, λ
∣

∣

[b,b+m+1]〉 ∩ Ym+1
)

⊂ 〈 0, λ
∣

∣

[b,b+m+1]〉 ∩ Ym+1 and there exists a

fixed point ym+1 of Um+1 in 〈0, λ
∣

∣

[b,b+m+1]〉 ∩ Ym+1. This is the sought-for
function ym+1 with the properties (a) and (b). Then the function ϕ(t) =
ym(t) for b ≤ t ≤ b + m, m = 1, 2, . . . , is a solution of (5) in [b,∞),
satisfying (6).

2. The statement follows from (3), (4) and (5).
3. Since each solution ϕ of (5) is an upper solution of (8), Statement 1

implies Statement 3.

The existence of an upper solution λ of (5) is provided by

Lemma 4. Let ψ, σ, and K have the same meaning as in Lemma 3
and let g ∈ C([0,∞), (0,∞)) be a nondecreasing function. Then
λ ∈ C([b,∞, [0,∞)) is an upper solution of (5) if there is a function
ρ ∈ C([b,∞), [0,∞)) such that

λ(t) = σ(t) +

t
∫

b

K(t, s)ρ(s) ds, b ≤ t < ∞, (9)

and

0 ≤ ω(t) ≤ ρ(t)
g(‖ψ‖+ λ(t))

, b ≤ t < ∞. (10)

Proof. By combining (9), (10) we get that λ determined by (9) is an upper
solution of (5) in [b,∞).

Remark 1. Similarly, the necessary and sufficient condition for λ ∈
C([b,∞, [0,∞)) to be a solution of (5) is that there exists a function ρ ∈
C([b,∞, [0,∞)) such that (9) is fulfilled and

ω(t) =
ρ(t)

g(‖ψ‖+ λ(t))
, b ≤ t < ∞.
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§ 2. The Main Theorem

The main theorem reads as follows.

Theorem 1. Let ψ ∈ Hp−1, f ∈ C([b,∞) ×Hp−1 × · · · × h0, Rd). Let,
further, ω ∈ C([b,∞), [0, ,∞)), g ∈ C([0,∞), [0,∞)) be a nondecreasing
function, and let

(ix) |f(t, χt, . . . , χ
(p−1)
t | ≤ ω(t)g(‖χt‖)

for each (t, χ) ∈ [b,∞)×M∗, where

M∗ =
{

x ∈ X∗ :
p−1
∑

k=0

∣

∣x(k)(t)− ψ(k)(0)
∣

∣ ≤ ϕ(t) for t ≥ b and

x(k)
b = ψ(k), k = 0, . . . , p− 1

}

,

and ϕ is a solution of equation (5) where the functions σ and K are deter-
mined by (3) and (4), respectively.

Then the problem (1), (2) has a solution x lying on M∗ and the set F ∗

is a compact Rδ-set in the space X∗.

Proof. Consider the set

M =
{

x ∈ X :
p−1
∑

k=0

∣

∣x(k)(t)− ψ(k)(0)
∣

∣ ≤ ϕ(t) for t ≥ b and

x(k)(b) = ψ(k)(0), k = 0, . . . , p− 1
}

.

Clearly, the restriction P : X∗ → X determined by P (x) = x
∣

∣

[b,∞) is a
homeomorphism of M∗ onto M . Let the map T : m → X be determined
by

T (x)(t) =
p−1
∑

k=0

ψ(k)(0)
k!

(t− b)k +

+

t
∫

b

(t− s)p−1

(p− 1)!
f [s, (P−1x)s, ..., (P−1x)(p−1)

s ] ds, x∈M, t≥b, (11)

where P−1 is the inverse of P
∣

∣

M∗ . Then F ∗ = P−1(F ), where F is the
set of all fixed points of the map T . Since the homeomorphic image of the
compact Rδ-set is again a compact Rδ-set, it is sufficient to prove that F is a
compact Rδ-set in the space X. This will be done by using Lemma 2 where
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we put rk = ψ(k)(0), k = 0, . . . , p − 1. Due to (ix) the maps Tn : M → X
determined by

Tn(x)(t) =























∑p−1
k=0

ψ(k)(0)
k! (t− b)k for b ≤ t ≤ b + 1

n ,
∑p−1

k=0
ψ(k)(0)

k! (t− b)k +
∫ t− 1

n
b

(t− 1
n−s)p−1

(p−1)! ×
×f [s, (P−1x)s, . . . , (P−1x)(p−1)

s ] ds
for b + 1

n ≤ t < ∞ and x ∈ M

(12)

are, together with T , compact and, again by (ix),

p−1
∑

l=0

∣

∣

(

Tn(x)
)(l)

(t)−
(

T (x)
)(l)

(t)
∣

∣ ≤

≤



















∑p−1
l=0

∫ t
b

(t−s)p−1−l

(p−1−l)! ω(s)g(‖(p−1x)s‖)ds, b ≤ t ≤ b + 1
n ,

∑p−1
l=0

{

∫ t− 1
n

b
(t−s)p−1−l−(t− 1

n−s)p−1−l

(p−1−l)! ω(s)g(‖(p−1x)s‖)ds+

+
∫ t

t− 1
n

(t−s)p−1−l

(p−1−l)! ω(s)g(‖(p−1x)s‖)
}

ds, b + 1
n ≤ t < ∞.

By Lemma 3 ϕ is nondecreasing in [b,∞) and therefore ‖(P−1x)s‖ ≤
ψ + ϕ(s) for each b ≤ s < ∞, x ∈ M . Hence, using also (4), we get

p−1
∑

l=0

∣

∣

(

Tn(x)
)(l)

(t)−
(

T (x)
)(l)

(t)
∣

∣ ≤ ϕn(t), t ≥ b, x ∈ M,

where

ϕn(t) =











∫ t
b K(t, s)ω(s)g(‖ψ‖+ ϕ(s))ds, b ≤ t ≤ b + 1

n ,
∫ t

b K(t, s)ω(s)g(‖ψ‖+ ϕ(s))ds−
∫ t− 1

n
b K(t− 1

n , s)ω(s)×
×(‖ψ‖+ ϕ(s))ds, b + 1

n ≤ t < ∞, n ∈ N.

Clearly, ϕn ∈ C([b,∞), [0,∞)) and the relations ϕn+1(t) ≤ ϕn(t), lim
n→∞

ϕn(t)
= 0 can be proved for each t ≥ b. Therefore these functions satisfy the
assumptipons (v), (vi) of Lemma 2.

Further,

p−1
∑

l=0

∣

∣

(

Tn(x)
)(l)

(t)− ϕ(l)(0)
∣

∣ ≤ ϕ∗n(t), t ≥ b, x ∈ M,

where

ϕ∗n =











σ(t), b ≤ t ≤ b + 1
n ,

σ(t) +
∫ t− 1

n
b K(t− 1

n , s)ω(s)g(‖ψ‖+ ϕ(s))ds,
b + 1

n ≤ t < ∞,
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n ∈ N , σ and K are the functions introduced by (3) and (4). The functions
ϕ∗n are nonnegative continuous functions on [b,∞) and, by virtue of (5)
we obtain ϕn(t) + ϕ∗n(t) = ϕ(t), t ≥ b, n ∈ N . Hence the assumption
(vii) of Lemma 2 is satisfied, too. Thus it remains for us to show that
the assumption (viii) holds, and then Lemma 2 will imply the statement of
Theorem 1.

Let n ∈ N be arbitrary but fixed. If x, y ∈ M , x 6= y, then there exists
a t0 ∈ [b,∞) such that x(t0) 6= y(t0). If b ≤ t0 ≤ b + 1

n , then, taking into
account (12), we obtain x(t0)− Tn(x)(t0) 6= y(t0)− Tn(y)(t0). In the other
case there is a t1 ≥ b + 1

n such that t1 = sup{τ > b : x(t) = y(t) for b ≤ t <
τ}. Then there exists t0 ∈ (t1, t1 + 1

n ) such that x(t0) 6= y(t0). By (12) we
now have

Tn(x)(t0) =
p=1
∑

k=0

ψ(k)(0)
k!

(t0 − b)k +

t0− 1
n

∫

b

(t0 − 1
n − s)p−1

(p− 1)!
×

×f [s, (P−1x)s, . . . , (P−1x)(p−1)
s ]ds =

p−1
∑

k=0

ψ(k)(0)
k!

(t0 − b)k +

+

t0− 1
n

∫

b

(t0 − 1
n − s)p−1

(p− 1)!
f [s, (P−1y)s, . . . , (P−1y)(p−1)

s ]ds = Tn(y)(t0)

and thus x(t0)−Tn(x)(t0) 6= y(t0)−Tn(y)(t0), which we were to prove.
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