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TWO-WEIGHTED Lp-INEQUALITIES FOR SINGULAR
INTEGRAL OPERATORS ON HEISENBERG GROUPS

V. S. GULIEV

Abstract. Some sufficient conditions are found for a pair of weight
functions, providing the validity of two-weighted inequalities for sin-
gular integrals defined on Heisenberg groups.

Estimates for singular integrals of the Calderon–Zygmund type in var-
ious spaces (including weighted spaces and the anisotropic case) have at-
tracted a great deal of attention on the part of researchers. In this paper
we will deal with singular integral operators T on the Heisenberg group Hn

which have an essentially different character as compared with operators
of the Calderon–Zygmund type. We have obtained the two-weighted Lp-
inequality with monotone weights for singular integral operators T on Hn.
Applications are given.

Let Hn be the Heisenberg group (see [1], [2]) realized as a set of points
x = (x0, x1, . . . , x2n) = (x0, x′) ∈ R2n+1 with the multiplication

xy =
(

x0 + y0 +
1
2

n
∑

i=1

(xiyn+i − xn+iyi), x′ + y′
)

.

The corresponding Lie algebra is generated by the left-invariant vector
fields

X0 =
∂

∂x0
, Xi =

∂
∂xi

+
1
2
xn+i

∂
∂x0

,

Xn+i =
∂

∂xn+i
− 1

2
xi

∂
∂x0

, i = 1, . . . , n,

which satisfy the commutation relation

[Xi, Xn+i] =
1
4
X0,

[X0, Xi] = [X0, Xn+i] = [Xi, Xj ] = [Xn+i, Xn+j ] = [Xi, Xn+j ] = 0,
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i, j = 1, . . . , n i 6= j.

The dilation δt : δtx = (t2x0, tx′), t > 0, is defined on Hn. The Haar mea-
sure on this group coincides with the Lebesgue measure dx = dx0dx1 · · · dx2n.
The identity element in Hn is e = 0 ∈ R2n+1, while the element x−1 inverse
to x is (−x).

The function f defined in Hn is said to be H-homogeneous of degree m,
on Hn, if f(δtx) = tmf(x), t > 0. We also define the norm on Hn

|x|H =
[

x2
0 +

(

2n
∑

i=1

x2
i

)2]1/4

which is H-homogeneous of degree one. This also yields the distance func-
tion, namely, the distance

d(x, y) = d(y−1x, e) = |y−1x|H ,

|y−1x|H =
[(

x0 − y0 −
1
2

n
∑

i=1

(xiyn+i − xn+iyi)
)2

+

+
(

2n
∑

i=1

(xi − yi)2
)2]1/4

.

d is left-invariant in the sense that d(x, y) remains unchanged when x and y
are both left-translated by some fixed vector in Hn. Furthermore, d satisfies
the triangle inequality d(x, z) ≤ d(x, y) + d(y, z), x, y, z ∈ Hn. For r > 0
and x ∈ Hn let

B(x, r)={y∈Hn; |y−1x|H <r} (S(x, r)={y∈Hn; |y−1x|H =r})

be the H-ball (H-sphere) with center x and radius r.
The number Q = 2n + 2 is called the homogeneous dimension of Hn.

Clearly, d(δtx) = tQdx.
Given functions f(x) and g(x) defined in Hn, the Heisenberg convolution

(H-convolution) is obtained by

(f ∗ g)(x) =
∫

Hn

f(y)g(y−1x)dy =
∫

Hn

f(xy−1)g(y)dy,

where dy is the Haar measure on Hn.
The kernel K(x) admitting the estimate |K(x)| ≤ C|x|α−Q

H is summable
in the neighborhood of e for α > 0 and in that case K ∗ g is defined for
the function g with bounded support. If however the kernel K(x) has a
singularity of order Q at zero, i.e., |K(x)| ∼ |x|−Q

H near e, then there arises
a singular integral on Hn.
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Let ω(x) be a positive measurable function on Hn. Denote by Lp(Hn, ω)
a set of measurable functions f(x), x ∈ Hn, with the finite norm

‖f‖LP (Hn,ω) =
(

∫

Hn

|f(x)|pω(x)dx
)1/p

, 1 ≤ p < ∞.

We say that a locally integrable function ω : Hn → (0,∞) satisfies
Muckenhoupt’s condition Ap = Ap(Hn) (briefly, ω ∈ Ap), 1 < p < ∞, if
there is a constant C = C(ω, p) such that for any H-ball B ⊂ Hn

(

|B|−1
∫

B
ω(x)dx

)(

|B|−1
∫

B
ω1−p′(x)dx

)

≤ C,
1
p

+
1
p′

= 1,

where the second factor on the left is replaced by ess sup{ω−1(x) : x ∈ B}
if p = 1.

Let K(x) be a singular kernel defined on Hn\{e} and satisfying the con-
ditions: K(x) is an H-homogeneous function of degree −Q, i.e., K(δtx) =
t−QK(x) for any t > 0 and

∫

SH
K(x)dσ(x) = 0, where dσ(x) is a measure

element on SH = S(e, 1).
Denote by ωK(δ) the modulus of continuity of the kernel on SH :

ωK(δ) = sup{|K(x)−K(y)| : x, y ∈ SH , |y−1x|H ≤ δ}.

It is assumed that
∫ 1

0
ωK(t)

dt
t

< ∞.

We consider the singular integral operator T :

Tf(x) =
∫

Hn

K(xy−1)f(y)dy =: lim
ε→0+

∫

|xy−1|H>ε

K(xy−1)f(y)dy.

As is known, T acts boundedly in Lp(Hn), 1 < p < ∞ (see [3], [4]).
For singular integrals with Cauchy–Szegö kernels the weighted estimates
were established in the norms of Lp(Hn, ω) with weights ω satisfying the
condition Ap [5]. These results extend to the more general kernels considered
above [4].

Theorem 1 [4]. Let 1 < p < ∞ and ω ∈ Ap; then T is bounded in
Lp(Hn, ω).

In the sequel we will use

Theorem 2. Let 1 ≤ p ≤ q < ∞ and U(t), V (t) be positive functions
on (0,∞).
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1) The inequality

(

∫ ∞

0
U(t)

∣

∣

∣

∫ t

0
ϕ(τ)dτ

∣

∣

∣

q
dt

)1/q
≤ K1

(

∫ ∞

0
|ϕ(t)|pv(t)dt

)1/p

with the constant K1 not depending on ϕ holds iff the condition

sup
t>0

(
∫ ∞

t
U(τ)dτ

)p/q(
∫ t

0
V (τ)1−p′dτ

)p−1
< ∞

is fulfilled;
2) The inequality

(

∫ ∞

0
U(t)|

∫ ∞

t
ϕ(τ)dτ |qdt

)1/q
≤ K2

(

∫ ∞

0
|ϕ(t)|pV (t)dt

)1/p

with the constant K2 not depending on ϕ holds iff the condition

sup
t>0

(

∫ t

0
U(τ)dτ

)p/q(
∫ ∞

t
V (τ)1−p′dτ

)p−1
< ∞

is fulfilled.

Note that Theorem 2 was proved by G.Talenti, G.Tomaselli, B.Mucken-
houpt [7] for 1 ≤ p = q < ∞, and by J.S.Bradley [8], V.M.Kokilashvili [9],
V.G.Maz’ya [10] for p < q.

We say that the weight pair (ω, ω1) belongs to the class ˜Apq(γ), γ > 0, if
either of the following conditions is fulfilled: a) ω(t) and ω1(t) are increasing
functions on (0,∞) and

sup
t>0

(

∫ ∞

t
ω(τ)τ−1−γq/p′dτ

)p/q(
∫ t/2

0
ω(τ)1−p′τγ−1dτ

)p−1
< ∞;

b) ω(t) and ω1(t) are decreasing functions on (0,∞) and

sup
t>0

(

∫ t/2

0
ω1(τ)τγ−1dτ

)p/q(
∫ ∞

t
ω(τ)1−p′τ−1−γp′/qdτ

)p−1
< ∞.

Theorem 3. Let 1 < p < ∞ and the weight pair (ω, ω1) ∈ ˜Ap(Q) ≡
˜App(Q). Then for f ∈ Lp(Hn, ω(|x|H)) there exists Tf(x) for almost all
x ∈ Hn and

∫

Hn

|Tf(x)|pω1(|x|H)dx ≤ C
∫

Hn
|f(x)|pω(|x|)H)dx, (1)

where the constant C does not depend on f .
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Corollary. If ω(t), t > 0 is increasing (decreasing) and the function
ω(t)t−β is decreasing (increasing) for some β ∈ (0, Q(p−1)) (β ∈ (−Q, 0)),
then T is bounded on Lp(Hn, ω(|x|H)).

Proof of Theorem 3. Let f ∈ Lp(Hn, ω(|x|H)) and ω, ω1 be positive in-
creasing functions on (0,∞). We will prove that Tf(x) exists for almost all
x ∈ Hn. We take any fixed τ > 0 and represent the function f in the norm
of the sum f1 + f2, where

f1(x) =

{

f(x), if |x|H > τ/2
0, if |x|H ≤ τ/2

, f2(x) = f(x)− f1(x).

Let ω(t) be a positive increasing function on (0,∞) and f ∈ Lp(Hn, ω(|x|H)).
Then f1 ∈ Lp(Hn) and therefore Tf1(x) exists for almost all x ∈ Hn. Now
we will show that Tf2 converges absolutely for all x : |x|H ≥ τ . Note that
C(K) = supx∈SH

|K(x)| < ∞. Hence

|Tf2(x)| ≤ C(K)
∫

|y|H≤τ/2

|f(y)|
|xy−1|QH

dy ≤

≤
(2
τ

)
Q
p

∫

|y|H≤τ/2

|f(y)|ω(|y|H)
1
p

ω(|y|H)
1
p

dy,

(2)

since |xy−1|H ≥ |x|H − |y|H ≥ τ/2. Thus, by the Hölder inequality we can
estimate (2) as

|Tf2(x)| ≤ Cτ−Q/p‖f‖Lp(Hn,ω(|x|H))

(

∫ τ/2

0
ω(t)1−p′tQ−1dt

)1/p′

.

Therefore Tf2(x) converges absolutely for all x : |x|H ≥ τ and thus Tf(x)
exists for almost all x ∈ Hn. Assume ω̄1(t) to be an arbitrary continuous
increasing function on (0,∞) such that ω̄1(t) ≤ ω1(t), ω̄1(0) = ω1(0+) and
ω̄1(t) =

∫ t
0 ϕ(τ)dτ + ω̄1(0), t ∈ (0,∞) (it is obvious that such ω̄1(t) exists;

for example, ω̄1(t) =
∫ t
0 ω′1(τ)dτ + ω1(t)).

We observe that the condition a) implies

∃C1 > 0, ∀t > 0, ω1(t) ≤ C1ω(t/2). (3)

Indeed, from

∃C2 > 0, ∀t > 0,
(

∫ ∞

t
ϕ(τ)τ−Q(p−1)dτ

)(

∫ t/2

0
ω(τ)1−p′τQ−1dτ

)p−1
≤C2

(4)
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we obtain (3), since
∫ ∞

t
ω1(τ)τ−1−Q(p−1)dτ ≥ Cω1(t)t−Q(p−1),

(

∫ t/2

0
ω(τ)1−p′τQ−1dτ

)p−1
≤ Cω(t/2)−1tQ(p−1)

and, besides,

1
Q(p− 1)

∫ ∞

t
ϕ(τ)τ−Q(p−1)dτ =

∫ ∞

t
ϕ(τ)dτ

∫ ∞

τ
λ−1−Q(p−1)dλ =

=
∫ ∞

t
λ−1−Q(p−1)dλ

∫ λ

t
ϕ(τ)dτ ≤

∫ ∞

t
ω1(τ)τ−1−Q(p−1)dτ.

We have

‖Tf‖Lp,ω̄1(Hn) ≤
(

∫

Hn

|Tf(x)|pdx
∫ |x|H

0
ϕ(t)dt

)1/p
+

+
(

ω̄1(0)
∫

Hn

|Tf(x)|pdx
)1/p

= A1 + A2.

If ω(0+) > 0, then Lp(Hn, ω(|x|H)) ⊂ Lp(Hn), and if ω(0+) = 0, then
ω̄(t) ≤ ω1(t) ≤ Cω(t/2) implies ω̄1(0) = 0. Therefore in the case ω(0+) = 0
we have A2 = 0.

If ω(0) > 0, then f ∈Lp(Rn) and we have

A2 ≤ C
(

ω̄1(0)
∫

Hn

|f(x)|pdx
)1/p

≤ C
(

∫

Hn

|f(x)|pω1(|x|H)dx
)1/p

≤

≤ C‖f‖Lp(Hn,ω(|x|H)).

Now we can write

A1 ≤
(

∫ ∞

0
ϕ(t)dt

∫

|x|H>t

|Tf(x)pdx
)1/p

≤ A11 + A12.

where

Ap
11 =

∫ ∞

0
ϕ(t)dt

∫

|x|H>t

∣

∣

∣

∫

|y|H>t/2

K(x, y−1)f(y)dy
∣

∣

∣

p
dx,

Ap
12 =

∫ ∞

0
ϕ(t)dt

∫

|x|H>t

∣

∣

∣

∫

|y|H<t/2

K(x, y−1)f(y)dy
∣

∣

∣

p
dx.
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The relation
∫

|y|H>t/2

|f(y)|pdy ≤ 1
ω(t/2)

∫

|y|H>t/2

|f(y)|pω(|y|H)dy

implies f ∈ Lp({y ∈ Hn : |y|H > t}) for any t > 0.
Hence, on account of (3), we have

A11 ≤ C
(

∫ ∞

0
ϕ(t)dt

∫

|x|H>t/2

|f(x)|pdx
)1/p

=

= C
(

∫

Hn

|f(x)|pdx
∫ 2|x|H

0
ϕ(t)dt

)1/p
≤

≤ C
(

∫

Hn

|f(x)|pω1(2|x|H)dx
)1/p

≤ C‖f‖Lp,ω(|x|H )(H
n).

Obviously, if |x|H > t, |y|H < t/2, then 1
2 |x|H ≤ |y−1x|H ≤ 3

2 |x|H .
Therefore

∫

|x|H>t

∣

∣

∣

∫

|y|H<t/2

K(xy−1)f(y)dy
∣

∣

∣

p
dx ≤

≤ C(K)
∫

|x|H>t

(

∫

|y|H<t/2

|xy−1|−Q
H |f(y)|dy

)p
dx ≤

≤ 2QpC(K)
∫

|x|H>t

|x|−Qp
H dx

(

∫

|y|H<t/2

|f(y)|dy
)p

.

Taking the H-polar coordinates x = δ%x̄, % = |x|H , x̄ ∈ SH we can write
∫

|x|H>t

|x|−Qp
H dx =

∫

SH

dσ(x̄)
∫ ∞

0
%Q−1−Qpd% = CtQ−Qp.

For α > Q(1 + 1
p′ ), by virtue of the Hölder inequality, we have

∫

|y|H<t/2

|f(y)|dy = α
∫

SH

dσ(ȳ)
∫ t/2

0
%Q−α−1|f(δ%ȳ)|d%

∫ %

0
sα−1ds =

= α
∫ t/2

0
sα−1ds

∫

s<|y|H<t/2

|f(y)| |y|−α
H dy ≤
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≤
∫ t/2

0
sα−1ds

(

∫

s<|y|H<t/2

|f(y)|p|y|−Qp
H dy

)1/p
×

×
(

∫

s<|y|H<t/2

|y|(Q−α)p′

H dy
)1/p′

≤

≤ C
∫ t/2

0
sQ+ Q

p′
(

∫

s<|y|H<t/2

|f(y)|p|y|−Qp
H dy

)1/p
ds.

Consequently

A12 ≤ C
{

∫ ∞

0
ϕ(2t)t−Q(p−1) ×

×
[

∫ t

0
sQ(1+ 1

p′ )
(

∫

|y|H≥s

|f(y)|p|y|−Qp
H dy

)1/p
ds

]p
dt

}1/p
.

By (4) and Theorem 2

A12 ≤ C
[

∫ ∞

0
sQp(1+ 1

p′ )
(

∫

|y|H>s

|f(y)|p ×

×|y|−Qpdy
)

ω(s)s−(Q−1)(p−1)ds
]1/p

=

= C
(

∫ ∞

0
s−1+Qpω(s)ds

∫

|y|H>s

|f(y)|p|y|−Qp
H dy

)1/p
=

= C
(

∫

Hn

|f(y)|p|y|−Qp
H

∫ |y|H

0
ω(s)s−1+Qpds

)1/p
≤

≤ C
(

∫

Hn

|f(y)|pω(|y|H)dy
)1/p

.

Hence we obtain (1) for ω1(t) = ω̄1(t). Now, by the Fatou theorem, the
inequality (1) is fulfilled.

Theorem 3 was earlier announced in [11].
A similar reasoning can be used to prove the analogue of Theorem 3 for

the operator Tα : f → Tαf where

Tαf(x) =
∫

Hn

|xy−1|α−Q
H f(y)dy, 0 < α < Q.

Namely, we have
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Theorem 4. Let 0 < α < Q, 1 < p < Q
α , 1

p −
1
q = α

Q and the weights
(ω, ω1) be monotone positive functions on (0,∞). Then the inequality

(

∫

Hn

|Tαf(x)|qω1(|x|H)dx
)1/q

≤ C
(

∫

Hn

|f(x)|pω(|x|H)dx
)1/p

holds if and only if (ω, ω1) ∈ ˜Ap,q(Q).

Remark. In the case of a homogeneous group the analogue of Theorem
4 is also valid (see [12]).

For monotone weights one can find the weighted Lp-estimates for a
Calderon–Zygmund operator in [13] and [14], and for the anisotropic case
in [15].

As known [16], if f ∈ C∞0 (Hn), then the function

g(x) = Cn

∫

Hn

|xy1 |−2n
H f(y)dy

is a solution of the equation L0g = f , where L0 = −
∑2n

i=1 X2
j . In particular,

our results lead to

Theorem 5. Let 1 < p < ∞, (ω, ω1) ∈ ˜A(Q), f ∈ Lp(Hn, ω(|x|H)), and
L0(g) = f . Then

‖X0g‖Lp(Hn,ω1(|x|H)) ≤ c‖f‖Lp(Hn,ω(|x|H)),

‖XiXjg‖Lp(Hn,ω1(|x|)H)) ≤ C‖f‖Lp(Hn,ω(|x|H)),

i, j = 1, 2, . . . , 2n.

Theorem 6. Let 1 < p < q < ∞, 1
p −

1
q = 1

Q , (ω, ω1) ∈ ˜Apq(Q),
f ∈ Lp(Hn, ω(|x|H)), and L0g = f . Then

‖Xig‖Lq(Hn,ω1(|x|H)) ≤ C‖f‖Lp(Hn,ω(|x|H)), i = 1, 2, . . . , 2n.
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