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ON COHOMOTOPY-TYPE FUNCTORS

S. KHAZHOMIA

ABSTRACT. This article deals with Chogoshvili cohomotopy functors
which are defined by extending a cohomology functor given on some
special auxiliary subcategories of the category of topological spaces.
The question of choosing these subcategories is discussed. In partic-
ular, it is shown that in the singular case to define absolute groups it
is sufficient that auxiliary subcategories should have as objects only
spheres S™, Moore spaces P™(t) = S?~1 U; e”, and one-point unions
of these spaces.

In [2, 3] for any cohomology theory H = {H™} given on some category
K of pairs of topological spaces the sequence II = {II"}, n=20,1,2,...,
of contravariant functors II" is constructed from K into the category of
abelian groups with the coboundary operator 6# which commutes with the
induced homomorphisms ¢#, ¢ € K. Functors II" possess the properties
of semi-exactness and homotopy and are connected with H by the natural
transformations d : H™ — II"™ which are the natural equivalences on a cer-
tain subcategory K, of K. Constructing such functors is reduced to the
problem of extending the functor given on an auxiliary subcategory K, to
the whole category K. The problem is solved by means of the theory of in-
verse systems of groups with sets of homomorphisms of Hurewiz, Dugundji,
and Dowker [4].

Functors II" are dual to the homotopy functors associated in the sense
of Bauer [1] with a given homological structure. It should be noted that
functors II"™ have some of the basic properties of the Borsuk cohomotopy,
but they differ from the latter.

In [5-7] functors II" were investigated under the assumption that K is
the category of pairs of topological spaces with a base point and base point
preserving maps, and H is the singular integral theory of cohomology. We
will adhere to the same assumption throughout this paper (base points are
not indicated here). To define functors II"™ we need auxiliary subcategories
K,,. We consider the problem of choosing these subcategories.
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For convenience we recall the definition of a limit of the inverse system of
groups with sets of homomorphisms (see [4]). Let w be a partially ordered
set, and {G,} a system of abelian groups indexed by the elements of w.
Furthermore, let, for each pair p < o, sets H,, C Hom (G4, G,) be given
such that if p < 0 < 7 and ¢ € H,p, 2 € H;o, then the composition
w192 € Hyp. Then, by definition, liin G, is a subgroup of the group I1G,

and its elements are elements g = {g, } € IIG,, such that for each pair p < o
and ¢ € H,, we have ¢(g,) = g,.

It should be noted that this theory of [4] is essentialy Kan’s extension
theory in its early stage, but quite sufficient for our purpose.

The results of this paper were announced earlier in [6,7].

1. PRELIMINARIES

In this section we will give the definitions of subcategories K, and func-
tors IT™ and discuss some of their properties.

Let e™ be the unit m-cell of the m-dimensional euclidean space R™.
By €” we denote some fixed point (base point). Let K be the small full
subcategory of K whose objects are all finite C'W-complexes X for which
X% = ¢% and X* is the adjunction space obtained by adjoining a finite
number of ¥ to X*~1 k > 0. We denote by K the small full subcategory
of K whose objects are all CW-pairs (X, X’) for which X and X’ are the
objects of K.

Now we shall define auxiliary subcategories K, n > 3, by the following
two conditions (cf. [2, 5]):

1) K, is an arbitrary small full subcategory of K;each object of K, is a
pair (X, X’) of linearly and simply connected spaces satisfing the conditions
that mo(X, X’) = 1, the homology modules H,(X) and H,(X’) are of finite
type, H/(X,X') =0, i <n, and H(X)= H/(X') =0, 0<i<n-—1;

2) K, contains all possible objects of K.

We denote by F; an auxiliary subcategory of objects only of K.

If n = 3, we assume that K3 is an arbitrary (containing all possible
objects of K ) small full subcategory of K whose all objects are linearly, and
simply connected spaces X for which H,(X) is a module of finite type and
H%(X) =0.

Let (R, R') be an object of K. Consider a set of indices w(R, R';n) of all
pairs o = (X, X’; f), where (X, X') is an object of K,, and f : (X, X') —
(R, R') is a continuous map of K. Let w(R, R’;n) be ordered as follows:
a < f3, where § = (Y,Y”;g) if there is a map ¢ : (X, X') — (Y,Y’) of K,
such that

gp=f. (1)
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Assume that to every a € w(R, R';n) there corresponds the n-dimensio-
nal cohomology group H, = H™(X,X’) and to every ordered pair a < 3
there corresponds the set of homomorphisms {¢*}, where o* : H*"(Y,Y') —
H"(X,X') are the induced homomorphisms in the H theory.

We have obtained the inverse system of the group H, with sets of ho-
momorphisms. Cohomotopic groups of Chogoshvili are determined by the
formula II"(R, R'; K,,) = lim. H,,.

We denote by 11" (R; K,,) the absolute group II" (R, x; K,,), where * is a
base point, and by p, the a-coordinate of an element p € II"(R, R'; K,,).
Note that for n = 3 we have determined the absolute groups only.

Let

a=(X,X"51), b=(X,X"9),
o, few(R,R;n), pell™(R,R;K,)

and let the maps f and g be homotopic, i.e., f ~ g. Let I be the unit
segment.

Lemma 1.1. If the subcategory K,, contains, alongside with (X, X'), the
pair (X x I, X' x I), then po = pg.

Proof. See [5], p. 83. O
Let

a=(X,X"f), 8=,Y"9),
o, f€w(R,R;n), pel™(R,R;K,).

Moreover, let us have a map ¢ : (X, X’) — (Y,Y”) from K,, such that the
maps gy and f are homotopic, i.e.,

gp ~ f. (2)

Lemma 1.2. If the subcategory K,, contains, alongside with (X, X'), the
pair (X x I, X' x I), then ¢*(pg) = pa-

Proof. Consider the index (X, X’;gp) = ay < @ and apply Lemma 1.1 to
o and . [0

Let a=(X, X’; f), where f is null-homotopic, and peI"(R, R'; K,,).

Corollary 1.3. If the subcategory K,, contains, alongside with (X,X'),
the pair (X x I, X' x I), then p, = 0.
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Proof. Apply Lemma 1.2 to the homotopy commutative diagram
(R, R')

PR

(X, X") = (X, X'),

where o denotes the constant map. [

2. MAIN RESULTS

Let K] be a subcategory of K|/, where K/ and K, are two auxiliary
subcategories, and let (R, R') € K, p € I"(R,R;K])), o € 'w(R,R';n) C
"w(R, R';n). Then, as one can easily verify, the formula [A(p)]o = p, defines
the restriction homomorphism A : II"(R, R'; K)/) — II"(R, R’; K},).

In Section 3 we will prove

Theorem 2.1. The homomorphism A defines the natural equivalence of
the functors II"(—,—; K!') and II"(—, —; K), n > 3. In particular, all
functors II"(—, —; K,,) are naturally equivalent to the functor 11" (—, —; F7).

Remark 2.2. Theorem 2.1 shows that in choosing a subcategory K, we
can restrict ourselves only to the finite CW-pairs. On the other hand, from
Theorem 2.1 it follows that for the convenience of construction and proof
we can regard an arbitrary admissible pair as an object of K.

Remark 2.3. One can easily show that Theorem 2.1 holds for the absolute
groups when n > 2. Moreover, in defining the absolute groups, to choose
the subcategory K, we can restrict ourselves to the absolute pairs (X, x),
i.e., X’ = x (see the definition of K, and [5]).

In the remainder of this section we will consider the absolute groups
only. Therefore to define the functors II", n > 2, we can use auxiliary
subcategories F)% consisting of finite C'W-complexes. More exactly, F) is a
full subcategory K whose objects are all spaces X for which 7, (X) = 1 and
H?*(X)=---=H"1(X)=0.

We intend here to study the problem dealing with the possibility of fur-
ther reducing subcategories K, provided that groups II"(R; K,,) and the
results from [5-7] remain unchanged. To this effect, relying on Lemma 1.2,
in the definition of II"(R; K,,) we replace condition (1) by condition (2) (see
Section 1). We will stick to this definition in the sequel.

Let S™ denote the n-dimensional unit sphere of the euclidean space R
and e” the unit disk. Denote by P™(t), t > 1, n > 2, the Moore space
Sn=1; e™. Also assume that P(1) = S™.

Consider now the full subcategory F° of F¢ whose objects are all fi-
nite one-point unions of spaces P"(t), t > 1. The subcategory F° will be
regarded as an auxiliary subcategory.
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The following theorem will be proved in Section 4.

Theorem 2.4. The restriction homomorphism defines the natural equiv-
alence of the functors II"(—; F2) and 11" (—; F?), n > 2.

We introduce the following notations:

1) Pj(t) = P"(t), where j is a positive integer, n > 2, t > 1;

2) X7 = Vi, (Vi PP(D):

3) Q" =lim X (by inclusion maps X' — X}! ;).

Let @,, be the full subcategory of K consisting of one object Q™, n > 2.
The subcategory will also be regarded as an auxiliary subcategory. Note
that the module H,(Q™) is not obviously of the finite type. Therefore none
of the above-defined auxiliary subcategories contains Q™.

The following theorem will be proved in Section 5.

Theorem 2.5. The functors 11"(—; F%) and 11"(—;Q,) are naturally
equivalent, n > 2.

3. PROOF OF THEOREM 2.1

Let us prove that A is natural. Assume f : (S,5") — (R, R’) to be an
arbitrary map of K. Consider the diagram

(R, R')

(M, M) ~ (N,N)

Let
a=(X,X";59) €'w(S,5 n)C"w(S,Sn),
B=fla)=(X,X"; fg) € 'w(R,R'sn) C "w(R, R;n)
and let p € II"(R, R'; K/). We have

M), = [ ()], = s,
[F#(A@))], = [M@)] 5 = s,

which proves that A is natural.

Let (X, X’) be an arbitrary object of some auxiliary subcategory K.
Using the standard technique of the homotopy theory, we can construct a
CW-pair (A, B) from the subcategory K,, and a map ¢ : (4, B) — (X, X’)
such that homomorphisms ¢* induced by ¢ in the H theory will be isomor-
phisms up to any pregiven dimension. Let now p € II"(R, R'; K,,) and « =
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(X, X’; f) € w(R, R';n). Consider the index 8 = (A, B; fy) € w(R, R';n).
Then B < a and therefore pg = ¢*(p,). Hence p, = ¢*(pg). From
the above reasoning and the definition of auxiliary subcategories it now fol-
lows that if p € II"(R, R’; K]/) and A(p) = 0, then p = 0. Thus X is a
monomorphism.

Let L,, n > 3, be a full subcategory of the category K whose objects
are all pairs (X, X’) for which X and X' are linearly and simply connected
spaces, ma(X, X') = 1, the homology modules H,(X) and H,(X') are of the
finite type, HY(X,X') = 0,43 <n, and H/(X) = H(X')=0,0<i<n—1.

Consider some full subcategories of L,,:

1) lel) are C'W-pairs;

2) L' are CW-pairs with a finite number of cells in all demensions;

3) L) are finite CW -pairs;

4 LY =KnL® = Fr.

Wewillgradually extend the thread definingelement p e II" (R, R'; F}) from
the category Lg;l) onto LS’), then onto Lg), LS) and, finally, onto L,,. Such
an extension already implies that A is epimorphic.

Let (M, M') be an arbitrary object of LY alsolet f : (M,M') — (R,R)
be an arbitrary map. Consider the diagram

(R, R'; K/})———II"(R, R'; K
r* r*

(s, §'; K7) A

(S, S"; K1)

where (N, N') € LYY and ¢ is a homeomorphism. Let a = (M, M’; f) and
B = (N,N'; fo~b). Tt is assumed that p, = ©*(pg). We will show that
Ppo does not depend on the choice of the homeomorphism ¢. Consider the
diagram

(R, R')

f‘pl_l (M7T]J\;/> f‘p2_1

SN

(N,N") ~ (N,N")

where @7 and @y are two different homeomorphisms and g = @230;1. The
indices #; and [ will be defined similarly to 5. We have (fgo;l)g =
fostpapr! = fer!. Therefore 51 < Bo. Then 5(pg,) = (9¢1)" (ps,) =
¢1(9"(p)) = @1 (P, )
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Consider the commutative diagram

(R, R)
L
(M, M) 7 - (Mo, M)
i@ i@o
!/ gO /
(N’N) > (N07NO)
where ¢ and ¢q are homeomorphisms, gy = @ogp!.
Let
O[:(M,M,;f), aOZ(MOaMé;fO)a
B=(N,Nfe™"),  Bo=(No,Ng; fowo !).
We have

(fors )90 = fowy "poge ™ = fogp™' = fo .

Therefore 5 < By. Then

9" (Pay) = 97 (95 (Ps,)) = (09)" (P5y) = (909)" (Do) =
= ©"(90(pso)) = ¢ (Pp) = Pa-

We have thus extended the thread of the element p onto the category L%g).

Let, now, (M,M') € L'? and f : (M,M') — (R, R’) be an arbitrary
map. By i : X — X we denote here the standard embedding, where Xj
is the k-skeleton of the CW-complex X. Let Ny > N > n+ 1 be arbitrary

integers.
Consider the commutative diagram
(R, R
Iy f
I

(MN7 lev) T’(MNl,MJ/\/l)—’ (Ma M/)

11
where fn, = fi1 and fy = fn,¢. Also consider the indices
Oé:(MNaM]/V,fN)a BZ(MNlaMI/\/'lale)v VZ(MvM/af)
Assume p, =i} '(pg). We have

(ili)*_l(pa) = i*ltil(i*_l(pa)) = Z'T_l(pg),

where the last equality evidently follows from the fact that o < 3. Therefore
p~ does not depend on the choice of the number N;.
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Now consider the diagram

(R, R')
AT
(M7 M/) {ﬁ - (T7T )
(My, My) Z e (T, T%)

where ¢ : (M, M’') — (T,T') is a map such that fip = f, ¢ is a cellu-
lar approximation of ¢ and @1 = @|(Mn,Mp). We have f ~ fi¢ and
(fii1)er = (f1@)i ~ fi. Also consider the indices o = (My, Mpy; fi), 8 =
(T, Ty fri1). Applying Lemma 1.2, we have o* (i}~ (pg)) = (#*i}*)(pp)
=i* @1 (pp)) = (pa)-

(2\)Ne have thus extended the thread of the element p onto the category
Ly~ .

Let now (M, M') be an arbitrary object of LY and let g:(M,M) —
(R, R’) be an arbitrary map. Using the standard technique of the homotopy
theory, we can, under our assumptions, construct a map ¢ : (M, M') —
(M, M') such that (M,M’) € L and ¢ is a homotopy equivalence. Let
g = gy. Assume po = ¢~ !(pg), where o = (M, M";9), B = (M, M'"; g).
We will show that p, does not depend on the choice of ¢. Consider the
diagram

where (]\7, M’) e LY,  and ¢ are homotopy equivalences, and ¢ ~ py1.
Let 8 = (M, M’;gp). Then

g=gp~goe1 = (99)¢1-
Applying Lemma 1.2, we have

~*—1(

7 T

pz) =& Hei ) = ¢ ().

Consider now an arbitrary map

%o : (M7Ml) - (T7Tl)
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from the category LSP and the diagram

(R, R)

(N, 31) - (7, T)
i@ N <P1T l{ﬁl

(M, M) t - (T, T)

where § = 19, ¢ and ¢ are homotopy equivalences, @7 is the homo-
topy inverse of @1, Yo = pipep and (M, M"),(T,T") € LP. We have
(1e1)P0 = Gip1p1poe ~ Gipop = Ge. Also, consider the indices § =
(M, M'";50), 01 = (T,T';g1¢1). Then, applying Lemma 1.2, we have
P01 (081)) = (051 wa) = ("0 ) (ps,) = ™ (ps)-

Let, finally, (X, X’) be an arbitrary object of L, and let

wx : (S(X), (X)) — (X, X')

be the natural projection of the singular complex S(X) onto X. Let f :
(X,X’) — (R,R') be an arbitrary map. Also, consider the indices a =
(X, X'5 f), B=(S(X),S(X"); fwx). Assume p, = wy '(pg) and consider
the commutative diagram

(R, R)
S T
(X, X) ‘ - (V,Y)
b e
(S(X), S(X") . (S(Y),S(Y"))

where gp = f and ¢ is the cellular map induced by ¢. We have (gwy)p =
gowx = fwx. Also, consider the indices Sx = (S(X), S(X'); fwx), By
(S(Y),S(Y’"); gwy). Then

50* (wgt/il(pﬁy)) = w;(il (Q*(pﬁy)) = w;{l(pﬁx)'

This completes the proof of Theorem 2.1. W

4. PROOF OF THEOREM 2.4
Consider some full subcategories of F% (see Section 2):
0 KO = F

1) Kr(bl)—objects are C'W-complexes with one vertex and without cells of
dimensions 1,2,...,n — 2;
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2) K,(f)—objects are CW-complexes with one vertex and cells of dimen-
sions n — 1, n and n + 1 only;

3) K,(f)—objects are C'W-complexes with one vertex and cells of dimen-
sions n — 1 and n only;

4) KW = b,

Let R = (R, *) be an arbitrary space from K. All subcategories K9,
0 <1 <4, will be regarded as auxiliary ones.

Let

Ai TR, KW) — I(R; KUY, 0<i <3,

be the natural restriction homomorphisms.

Let L! and L! be two small full subcategories of the category K con-
sisting of the spaces (X, ), and L], C L!'. It is assumed that the following
condition is satisfied: for each X € L! there is Y € L] such that Y has the
same homotopy type as X. Consider L/ and L!/ as auxiliary subcategories.
Let A : II"(R; L) — TI"(R; L) be the natural restriction homomorphism.

Lemma 4.1. ) is a natural isomorphism.

Proof. We prove first that the homomorphism X is a monomorphism. Let
p € I"(R; L), AM(p) = 0 and o = (X; f) € "w(R;n) be an arbitrary index.
Let Y € L], and the map ¢ : Y — X be a homotopy equivalence. Consider
the index 8 = (V3 fp) € ‘w(R;n) C "w(R;n). We have § < a. Then
©*(pa) = ps = [M(p)]s = 0. Therefore p, =0 and p = 0.

Let us now prove that the homomorphism X is an epimorphism. Let
g € I"(R; L)) and o = (X;f) € "w(R;n) be an arbitrary index. Let
Y € L/, and the map ¢ : Y — X be a homotopy equivalence. Consider the
index 3 = (Y; fo) € 'w(R;n) and assume p, = ¢*~!(gz). We will show
that p, does not depend on the choice of ¢. Consider the diagram

R
y — 2 x — 'y
$1
id id
. Frp -

where Y,Y; € L/, ¢ and ¢; are homotopy equivalences, and @; is the
homotopy inverse of ;. Consider the index v = (Y1; fp1) € ‘w(R;n).
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Then (f¢1)(@1¢) ~ f and therefore § < . In this case

P1(0" (ap)) = 1 (" ((Br9) " (ay))) =
= (¢1e" 1" B (ay) = (#181)(ar) = ¢»-
Hence ¢*~(qg) = 7 (qy).
We will show that the set {p, } defines an element of the group II"(R; L)
Consider the diagram

R
Xo 4 X1
SDOW 9011 l@l
Yy L1990 Y

where f1o = fo, po and 1 are homotopy equivalences, ; is the homotopy
inverse of ¢1, X0, X1 € L and Yy, Y; € L!,. Then

(fre1)(Pr90) ~ fropo = fopo.
Also, consider the indices
a:(XO;f0)7 ﬁ:(thl)) aaﬁeﬂw(R;n)a
a1 = (Yo; fowo), 51 = (Y15 figr), a1, 01 € 'w(R;n) C "w(R;n).
Then a < 3, a; < 1 and we have
0" (ps) = ¢* (91 (g)) = 5 ((Prewo)*(48,)) = €5 (dar) = Pa-
Finally, let us prove that A(p) = ¢. Assume that X € L/ C L” and
a=(X;f)€'w(R;n) C"w(R;n).
Define p, by taking ¢ =id : X — X. Then
[S\(p)}a = Pa = id*il(qoz) = {qa-
This completes the proof of Lemma 4.1. [
As a consequence of the foregoing lemma we have

Proposition 4.2. \q is a natural isomorphism.

Proof. Every CW-complex from KT(LO) is homotopically equivalent to some
CW-complex from Kfll). O

Proposition 4.3. \| is a natural isomorphism.
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Proof. We will prove in the first place that A; is a monomorphism. Let
pell™(R; K,(LD) and \;(p) = 0. Consider the index o = (X; f) € Mw(R;n),

X e Kr(ll), and the diagram
R
fis 7N
' (3)

Xn+1 X X

where X" *! is the (n + 1)-skeleton of X and ix is the standard embedding.
Let

B= (X" fix) € Pw(Rin) € Dw(R;n).

Then § < a, and we have % (po) = pg = [M1(p)]s = 0. Therefore p = 0.
Assume now that p € II"(R; KT(L2)) and a = (X; f) € Ww(R;n).
Consider the diagram (3), the index , and assume that ¢, = i;{l(pg).

We will show that the set {g,} defines an element of II"(R; K,(f)). Con-
sider the diagram

/ x
» N
X Y
P
Xn+1 o1 ,Yn+1

where g ~ f, ¢ is a cellular approximation of ¢ and ¢; = $|X"*!. Then
(giyv)p1 = gpix ~ fix. Also, consider the indices

ar = (Y;9) € Ww(R;n),
B = (Y™ giy) € Pw(R;n).

We have § < (3, and
0" (qay) = 7" (gor) = &7 (15 M(gs,)) =% ' (i (g5,)) = i% "(28) = qa-

Finally, let us prove that A;(q) = p.
Consider the index a = (X; f) € Pw(R;n), where X = X! ¢ K ¢
Kfll), and the diagram



ON COHOMOTOPY-TYPE FUNCTORS 163

LN

Xn+l—> X

where ix = id. Then [A\1(q)]la = i% '(Pa) = Pa-
This completes the proof of Proposition 4.3. O

Proposition 4.4. A9 is a natural isomorphism.

Proof. Let q € H”(R;Kr(?)) and M2(q) = 0. Consider the index a =

(Poy1; f) € Pw(R;n), where P,y € KP . Let PT(LZ)l be the n-skeleton

of P41 and 7 : P,(Li)l — P,4+1 be the standard embedding. We have the

commutative diagram
R
27 N
: (4)

P, Tgi)l ¢ P n+1

Also consider the index
8= (P"; fi) € Pw(R;n) ¢ Dw(R;n).
We have g < . Let

= H(Pusr, P2Y) = HY (Paga) = H(P) —

be a part of the cohomological exact sequence for the pair (P41, Péi)l).

Since H"(P7l+1,P,§Z_)1) = 0, ¢* is a monomorphism. Then i*(q,) = ¢z =
[A2(¢g)]p = 0. Therefore g, = 0 and ¢ = 0. Hence Ay is a monomorphism.
Let now g € II"(R; Kr(?)). Consider again the commutative diagram (4)
and the corresponding indices o and 3. We will prove below that gg € Imi*.
Therefore p, = i*7!(gg) is the correct definition. Let us show that the set

{pa} defines an element p € II"(R; Kff)). Consider the diagram

R
/ VK
SD >
Pn—i—l _ ;Pn+l
14
7 11
(n) . p(n)
Pn+1 ®1 Pn+l

where fip ~ f, ¢ is a cellular approximation of ¢ and ¢ = <ﬁ|p5:21 Con-
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sider the indices
a1 = (P13 f1) € Pw(Rin), B = (175321; fri1) € Pw(R;n).

Since (f1i1)p1 = f19i ~ fi, we obtain 8 < (; and therefore ¢i(gs,) = ¢g.
We have i*~(¢1(qs,)) = #*(i7 " (¢p,)) and

ok [ ox—1

" (Pay) = @ (Pay) = &7 (17 ' (a5,)) = 1" (91 (4s,)) = 7" (45) = Pa-
Finally, we will prove that \2(p) = ¢. Let
a=(Poy1; f) € Pw(Rin) € Pw(R;n)

be an arbitrary index, P,4+; € K,(f’). Thus P(i)l = P,4+1. Then the map

n

i: P,(LZ_)I — P,41 is the identity map: i = id. Therefore for 3 = (Pr(ﬁ-)ﬁ 17)

we have 0 = «. In this case
M2 (D)]la = pa =i (gs) = id" " (¢a) = qa-

It remains to prove that gg € Im:*. Consider the characteristic map of
the CW-complex P, 1

o (C(VS™),VS™) = (Pui1, ),

n

where C'(V.S™) denotes the cone over VS™ and V denotes the finite one-point
union of spaces. Let ¢ = ®|(VS™). Consider the commutative diagram

R
VS b ‘P'r(LT-:-)l g >n+1

Since ip ~ 0, we obtain fip ~ 0. Let v = (VS™; fip) € Glw(R;n). We
have v < 8 and ¢, = 0 (see the proof of Corollary 1.3). In this case
©*(4p) = ¢y = 0.

Now consider the commutative diagram

0 —H"(Pyy1) Lo (P S 1 (P, 1, PUY))
0 ——H (VS )—Oufm+1(C(VS™), VS™) —0

where ®* is an isomorphism. Then, since ¢*(g3) = 0, we have §(gg) = 0.
Therefore gz € I'mi*. This completes the proof of Proposition 4.4. O
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Lemma 4.5. For each CW -complex P from the category KY(LS) there is a

CW -complex P from the category K7(,,4) such that P has the homotopy type
of P.

Proof. By the condition H;(P) = 0,4 # 0,n—1,n; H,_1(P) = 7,_1(P) are
finite abelian groups and H,,(P) is a finitely generated free abelian group.
Thus the group m,—_1(P) can be represented in the form

Tpn-1(P) = Zpy @ Zpy ® - O Zy,,

where Z,,, i = 1,2,... ,t, are cyclic groups of order r;. Consider the cor-
responding system & : S"! — P, 1 < i < t, of generators in the group
mn—1(P) and define, by means of &;, the map f : Vi_; P"(r;) — P. Then
f induces isomorphisms in homotopy and homology in dimensions < n — 1.
Now consider a system hy,hs,...,hs of generators in the group H,(P).
The Hurewicz homomorphism 7, (P) — H,(P) for the space P is an epi-
morphism. In this case we can consider maps ¢y : S™ — P, k=1,2,... s,
such that g, (1) = hy, where 1 € H,(S™). Assume

P=(Vvi_, P*(ry) \/ (Vi PI(1)),

where P'(1) = P"(1) = S", and define by means of the maps f and
¢r the map ¢ = fV (Vgr) : P — P. Then ¢ induces isomorphisms of
all homology groups. Therefore, under our assumptions, the map ¢ is a
homotopy equivalence. This proves Lemma 4.5. [

Lemmas 4.1 and 4.5 imply
Proposition 4.6. A3 is a natural isomorphism.
Propositions 4.2 - 4.4 and 4.6 imply Theorem 2.4.

5. PROOF OF THEOREM 2.5

Let h € H*(Q™) and i : P"(t) — Q™ be standard embeddings. Assume

e(h) = {i5,(h)} € HH" (Pr(1)).

Obviously, we have

Lemma 5.1. The correspondence
e HMQ") — [[H" (P )
gt

is an isomorphism.
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In the sequel, for convenience, the subcategories F? and Q,, will be de-
noted by KT(L4) and Kff). Let R = (R, *) be an arbitrary space from K. Let
g€ M(R; KYY) and

a=(Q"f) € Puw(R;n)
be an arbitrary index. Assume f;; = fi;; and consider the indices
ajr = (P"(t); fir) € Yw(R;n).
Let
po = Pa(@)a = e ({ga,. })-

We will show that the set {p, } defines an element of the group II"(R; K’ ,(f))
and the natural isomorphism

A TR KW) — TTY(R; KP)).

By V we will denote the symbol of finite one-point union of spaces. Con-
sider the commutative diagram

R
fra 7 f

i Vi
Pr(t)—L oy PRt —2L s

QTL
where Zk,z and Vi;; are standard embeddings, and the indices

a=(Q"f) € Pw(R;n),
8= (Vi PME): f) € Dw(Rin),
ot = (P™(t); fra) € Pw(R;n).

We have (\/ijyt)zk’l = iy,. Therefore oy ; < 5. Then
2271((\/21,75)*(17&)) = iZJ(pQ) = qak,z'
Since this is true for arbitrary k& and [, we have

(Vi)™ (Pa) = gg- ()

Now consider the diagram
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R
f
e S

- Q"
1 Tt
Ve PR ()

where fo ~ g, F = f(Vij,), and (Vi;)o1 = ¢ (since P"(t) is a compact
space and ¢ is a continuous map, it follows that there exists a map ¢1).
Then

For=f(Vjtije)er=feo~g.
Consider the indices
B=(P"(t),9) € Dw(R;n),
Br= (Vs P(t); F) € @w(R;n).
Then 8 < 1, and by (5) we have
©*(Pa) = €1 ((V4)*(Pa)) = #1(4s,) = a5
Thus

©"(Pa) = qp- (6)

Finally, consider the diagram

2R

Pn (t) . Qn SD . Qn

where fip ~ f and fi;; = ¢1. Consider the indices

a1 = (Q"; f1) € Pw(R;n),
aje = (P"(t);01) € Dw(R;n).

Thus o < ay. Therefore by (6) we have

*

5(¢" (Par)) = (#14,6)" (Par) = day -
Since this equality is true for arbitrary j and ¢, we obtain ¢*(pa,) = Pa-
Therefore the set {p,} defines an element p € I1"(R; KT(LS)). The map A\, is

now defined by setting Ay(¢q) = p, where ¢ € II"(R; K,(f)).
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Let q1,q2 € II"(R; K,(;l)). Then we have
ik (Mg + @)la) = (@1 + @)ay, = (@1) oy, + (@2) o, = 550 ([Malq1)]a)
+i5 1 (M(g2)]a) =75 (Malg)]a + Ma(@2)]a) = 54 ([Ma(q1) + Aalg2)]a)-
Since this equality holds for arbitrary j and ¢, we have
Aa(@r +q2) = Aalqr) + Aalq2)-

Let now ¢ : S — R be an arbitrary map. Consider the diagram

A
" (R; K\Y)——————11"(R; k)

o* o*
(1) M (5)
m (s, Ky’ )——H"(S; K,”)
the element ¢ € II"(R; K,(L4)), indices a, o ¢, and
B =pla) = (Q"9) € Pw(R;n),
Bje = (P"(1);950) € Dw(Rin),
where g = ¢f, g;+ = gij+. Then 3;, = ¢(a;,), and we have
[ (Ma(@)], = Pa(@)]ls = ({ap,..})-
On the other hand, we have

P @)], = (e @las. }) =7 ({ap0}) =7 ({09, 3)-

Thus A4 is a natural homomorphism.
We will prove that A4 is a monomorphism. Let ¢ € TI"(R; K7(14)) and
A4(q) = 0. Consider an arbitrary index

B= (Ve P(t);9) € Dw(R;n)
and define the map f: @™ — R by taking
F((Vig)(x) = g(z), =€V P}),
FIQ™ = (Vij) (Viu P} (1)) = .
Consider the index
a=(Q" f) € Pw(Rin)

and the commutative diagram
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R
27N
\/ijﬂg Qn

\/j’tP]TL (t)

then by (5) we have

g5 = (Virize) (Ma(@)a) = (Ve ize) (0) = 0.
Therefore ¢ = 0 and A4 is a monomorphism.
Further, we will prove that A4 is an epimorphism. Let p € II"(R; Kff))
and

a=(X;f) € Wuw(R;n)
be an arbitrary index, X € K7(L4). Therefore the space X can be represented
in the form X = V;;P]'(t), where j is an index indicating a certain arrange-
ment of the identical subspaces of X. Then we have the natural embedding
1: X — Q". Define the map [ : Q" — X by taking
(i(z)) =z, zelX;
Q" —i(X)) = =
Let g = fl. We have gi = f. Let
F=(Q"9) € Vw(Rin).

Assume that
Go = 1" (pp)- (7)

Consider a_different arrangement of subspaces of X. Let the map i and
the index 8 = (Q™;g) be defined in the same way as i and (3, respectively.
Consider the commutative diagram

R ~
T

where the map k can be defined by a certain permutation of subspaces of
Q". Then § < 3 and we have

*(pz) = " (k" (p3)) = i (ps)-

Thus definition (7) is correct.
Consider the diagram
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Ay
1l

VQn
where XluXQ € K’r(l4)a fQSD ~ f17 QB = i290117 fl = glila f2 = 92i2~ Then
iy = igplyi; = iz,
929 = falaiapli = fali ~ fili = g1.

Consider the indices

Then a; < as, 1 < B2 and we have
¢"(4az) = 9" (13(ps,)) = i1 (2" (1)) = 11(Pp1) = do -
Therefore the set {q,} defines an element ¢ € II"(R; KT(L4)).
Finally, let us prove that A4(¢) = p. Consider an arbitrary index
a=(Q"f) € Pw(Rin)
and the index
ajr = (P™(t); fiji) € Yw(R;n).
Then i;+ = ¢ and we have

i;t([/\‘l(q”a) = daj = i;,t(pa)'

Since this equality is true for arbitrary j and ¢, we have [A\i(¢)]a = Pa-
Therefore A\y(q) = p. This completes the proof of Theorem 2.5. N
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