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Abstract

We find conditions on the complex-valued functions A,B, C, D

and E in the unit disc U such that the differential inequality

Re [A(z)z2p′′(z) + B(z)zp′(z) + C(z)p2(z) + D(z)p(z) + E(z)] > 0

implies Re p(z) > 0, where p(z) = 1 + pnzn + pn+1z
n+1 + . . . is

analytic in U .
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1 Introduction and preliminaries

In [1] chapter IV the authors have analyzed a second-order linear dif-

ferential subordination

A(z)z2p′′(z) + B(z)zp′(z) + C(z)p(z) + D(z) ≺ h(z),(1)

where A,B, C,D and h are complex-valued functions. A more general ver-

sion of (1) is given by:

A(z)z2p′′(z) + B(z)zp′(z) + C(z)p(z) + D(z) ∈ Ω,(2)
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where Ω ⊆ C.

In this paper we shall extend this problem by considering a second-order

nonlinear differential subordination given by

A(z)z2p′′(z) + B(z)zp′(z) + C(z)p2(z) + D(z)p(z) + E(z) ≺ h(z).(3)

A more general version of (3) is given by:

A(z)z2p′′(z) + B(z)zp′(z) + C(z)p2(z) + D(z)p(z) + E(z) ∈ Ω,(4)

where Ω ⊆ C.

Conditions on the complex-valued functions A,B, C, D, E and h will be

determined so that the differential subordinations given by (3) and (4) will

have dominants and even best dominants.

We let H[U ] denote the class of holomorphic functions in the unit disc

U = {z ∈ C : |z| < 1}.

For a ∈ C and n ∈ N∗ we let

H[a, n] = {f ∈ H[U ], f(z) = a + anzn + an+1z
n+1 + . . . , z ∈ U}

and

An = {f ∈ H[U ], f(z) = z + an+1z
n+1 + an+2z

n+2 + . . . , z ∈ U}

with A1 = A.

We let Q denote the class of functions q that are holomorphic and in-

jective in U \ E(q), where

E(q) =

{
ζ ∈ ∂U : lim

z→ζ
q(z) = ∞

}

and furthermore q′(ζ) 6= 0 for ζ ∈ ∂U \E(q), where E(q) is called exception

set.

In order to prove the new results we shall use the following:
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Definition. [1, Definition 2.3.a. p. 27] Let Ω be a set in C, q ∈ Q and

n be a positive integer. The class of admissible functions Ψn[Ω, q], consists

of those functions ψ : C3 × U → C that satisfy the admissibility condition:

ψ(r, s, t; z) 6∈ Ω(5)

whenever r = q(ζ), s = mζq′(ζ),

Re
t

s
+ 1 ≥ mRe

[
ζq′′(ζ)

q′(ζ)
+ 1

]
,

z ∈ U , ζ ∈ ∂U \ E(q) and m ≥ n.

We write Ψ1[Ω, q] as Ψ[Ω, q].

In the special case when Ω is a simply connected domain, Ω 6= C, and h

is conformal mapping of U onto Ω we denote this class by Ψn[h, q].

If Ω = ∆ = {w ∈ C : Re w > 0}, q(z) =
1 + z

1− z
, q ∈ Q, satisfies

q(U) = ∆, q(0) = 1, E(q) = {1}, the class of admissible functions Ψn[Ω, q]

is denoted by Ψn[Ω, 1] = Ψn{1}, the condition of admissibility (5) becomes

(A) ψ(ρi, σ, µ + νi; z) 6∈ Ω,

when ρ, σ, µ, ν ∈ R, σ ≤ −n

2
(1 + ρ2), σ + µ ≤ 0, z ∈ U , and n ≥ 1.

Lemma B. [1, Theorem 2.3.i p. 35] Let ψ ∈ Ψn{1}. If p ∈ H[1, n] and

Re [ψ(p(z), zp′(z), z2p′′(z); z)] > 0

then

Re p(z) > 0.

More general forms of this lemma can be found in [1] p. 35.

In this paper we shall analyze the case when

Ω = ∆ = {w ∈ C : Re w > 0}, and h(z) = q(z) =
1 + z

1− z
, z ∈ U .
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2 Main results

Theorem. Let n be a positive integer and A(z) ≡ A ≥ 0. Suppose that

the functions B,C,D,E : U → C satisfy

{
Re B(z) ≥ ARe [nB(z) + 2C(z)] ≥ nA

[Im D(z)]2 ≤ Re [nB(z) + 2C(z)− nA] · Re [nB(z)− 2E(z)− nA].
(6)

If p ∈ H[1, n] and if

Re [Az2p′′(z) + B(z)zp′(z) + C(z)p2(z) + D(z)p(z) + E(z)] > 0(7)

then

Re p(z) > 0, z ∈ U.

Proof. We let r = p(z), s = zp′(z), z2p′′(z) = t, z ∈ U , r, s, t ∈ C. If we

let ψ : C3 × U → C be given by

ψ(r, s, t; z) = At + B(z)s + C(z)r2 + D(z)r + E(z),(8)

then the conclusion of the theorem will follow from Lemma B.

For ρ, σ, µ, ν ∈ R, σ ≤ −n

2
(1 + ρ2), σ + µ ≤ 0 and z ∈ U , by using (6)

we obtain

Re ψ(ρi, σ, µ+νi; z) = Re [A(µ+νi)+σB(z)+(ρi)2C(z)+D(z)ρi+E(z)] =

= Aµ + σRe B(z)− ρ2Re C(z)− ρIm D(z) + Re E(z) ≤
≤ −Aσ + σRe B(z)− ρ2Re C(z)− ρIm D(z) + Re E(z) ≤

≤ −1

2
[Re (nB(z)+2C(z))−nA]ρ2−Im D(z)ρ−1

2
Re [nB(z)−nA−2E(z)] ≤ 0.

Hence, the function ψ given by (8) verifies the admissibility condition

(A). Since h(0) = ψ(1, 0, 0, 0) we have that ψ ∈ Ψn{1}. By using Lemma B

we have that Re p(z) > 0. ¤
For C(z) = 0 we obtain Theorem 4.1.a [1] p. 188.

If A(z) = A > 0, E(z) = −C(z) then we obtain the following:
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Corollary. Let n be a positive integer. Suppose that the functions

B,C,D : U → C satisfy:

{
Re B(z) ≥ A

|Im D(z)| ≤ Re [nB(z) + 2C(z)− nA]

If p ∈ H[1, n] and if

Re {Az2p′′(z) + B(z)zp′(z) + C(z)[p2(z)− 1] + D(z)p(z)| > 0

then

Re p(z) > 0, z ∈ U.

If A = 0 and C(z) ≡ 0, then Corollary reduces to a particular form of

Corollary 4.1.a.1 [1, p. 189].
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Babeş-Bolyai University

3400 Cluj-Napoca, Romania


