General Mathematics Vol. 9, No. 3-4 (2001)

A preserving property of a Bernardi type operator

Mugur Acu

Abstract

The purpose of this note is to show a preserving property of a Bernardi type operator on a subclass of normalized analytic functions in open disc U.

2000 Mathematical Subject Classification: Primary 30C45 Key words and Phrases: Integral operator of Bernardi type, Applications of the admissible functions method

1 Introduction

Let $\mathcal{H}(\mathcal{U})$ be the set of functions wich are regular in the unit disc \mathcal{U} and $A = \{f \in \mathcal{H}(\mathcal{U}) : f(0) = 0, f'(0) = 1\}.$

Let consider the integral operator $L_a: A \to A$ defined as:

(1)
$$f(z) = L_a F(z) = \frac{1+a}{Z^a} \int_0^z F(t) \cdot t^{a-1} dt, \quad a \in \mathbb{C}, \ Re \ a \ge 0.$$

In the case a = 1, 2, 3, ... this operator was introduced by S.D. Bernardi and it was studied by many authors in different general uses. In the form (1) was used first time by N.N. Pascu.

2 Preliminary results

Let consider α and β real numbers with $0 \leq \beta < 1$ and $\alpha > 1$.

Definition 2.1 Let $M(\alpha, \beta)$ be the subclass of A consisting of functions f(z) which satisfy the inequality:

(2)
$$\beta < Re\left\{\frac{zf'(z)}{f(z)}\right\}, \alpha, z \in \mathcal{U}.$$

Remark 2.1 The class $M\alpha, \beta$ is introduced in relation with the classes $M(\alpha), M_n^*(\alpha)$ introduced and investigated in [4], [5] and [6].

Remark 2.2 If we consider h convex in unit \mathcal{U} , with h(0) = 1, which maps the unit disc into the convex domain included in right half plain $\Delta_{\alpha,\beta} = \{z \in \mathbb{C} : \beta < \text{Re}z < \alpha\}, \text{ then from (2) we obtain that } f \in \mathcal{M}(\alpha,\beta)$ if and only if $f \prec h$.

The following theorem is a result of the so called "admissible functions method" introduced by P.T. Mocanu and S.S. Miller (see [1], [2], [3])

Theorem 2.1 Let h convex in \mathcal{U} and $Re[\beta h(z) + \gamma] > 0$, $z \in \mathcal{U}$. If $p \in \mathcal{H}(\mathcal{U})$ with p(0) = h(0) and p satisfied the Briot-Bouquet differential subordination $p(z) + \frac{zp'(z)}{\beta p(z) + \gamma} < h(z)$, then p(z) < h(z).

3 Main results

Theorem 3.1 if $F(z) \in \mathcal{M}(\alpha, \beta)$, with $0 \leq \beta < 1$ and $\alpha > 1$, then $f(z) = L_a F(z) \in \mathcal{M}(\alpha, \beta)$, with $0 \leq \beta < 1$ and $\alpha > 1$.

Proof. By differentiating (1) we obtain:

(3)
$$(1+a)F(z) = af(z) + zf'(z).$$

From (3) we obtain

(4)
$$(1+a)F'(z) = (a+1)f'(z) + zf''(z).$$

Thus

(5)
$$\frac{zF'(z)}{F(z)} = \frac{z(1+a)F'(z)}{(1+a)F(z)} = \frac{z[(a+1)f'(z)+zf''(z)]}{af(z)+zf'(z)} = \frac{(a+1)\frac{zf'(z)}{f(z)}+z^2\frac{f''(z)}{f(z)}}{a+z\frac{f'(z)}{f(z)}}.$$

With notation $\frac{zf'(z)}{f(z)} = p(z)$, where p(0) = 1, we have

$$\frac{z^2 f''}{f(z)} = p^2 + zp'(z) - p(z)$$

Thus from (5) we obtain:

(6)
$$\frac{zF'(z)}{F(z)} = p(z) + \frac{1}{a+p(z)} \cdot zp'(z)$$

Now. Remark 2.2from and from hypothesis we have $p(z) + \frac{1}{a+p(z)} \cdot zp'(z) < h(z)$. Also, we have from hypothesis we obtain Re[p(z) + a] > 0. IN this condition from theorem 2.1 we obtain p(z) < h(z) and thus from Remark 2.2 we have $f(z) = L_a F(z) \in \mathcal{M}(\alpha, \beta)$, with $0 \leq \beta < 1$ and $\alpha > 1$.

Remark 3.1 If we consider $\beta = 0$ and $\alpha \to \infty$ in theorem 3.1 we obtain the well now fact that the integral operator L_a , defined by (1), preserve the class of starlike functions.

References

- [1] S.S. Miller, P.T. Mocanu, Differential subordinations and univalent functions, Mich. Math., 28 (1981), 157-171.
- [2] S.S. Miller, P.T. Mocanu, Univalent solution of Briot-Bouquet differential equations, J. Differential Equations, 56 (1985), 297-308.

- [3] S.S. Miller, P.T. Mocanu, On some classes of first-order differential subordinations, Mich. Math., 32 (1985), 185-195.
- [4] S. Owa, J. Nishiwaki, Coefficient estimates for certain classes of analytic functions, Journal of Inequalities in Pure an Applied Mathematics, Vol.3, Issue 5, Article 72, 2002.
- [5] S. Owa, H.M. Srivastawa, Some generalized convolution properties associated with certain subclasses of analytic functions, Journal of Inequalities in Pure an Applied Mathematics, Vol.3, Issue 3, Article 42, 2002.
- [6] B.A. Uralegaddi, M.D. Ganini, S.M. Sarangi, Univalent functions with pozitive coefficients, Tamkang J. Math., 25 (1994), 225-230.

Department of Mathematics University "Lucian Blaga" of Sibiu, Str. Dr. I. Ratiu Nr.7 2400 Sibiu, Romania