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On the fine spectra of some averaging
operators
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Abstract

The aim of this text is the study of the fine spectra for a class

of Cesàro generalized operators, Rhaly operators, when those are

defined on the spaces lp, p > 1.
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The averaging operators A are determined by relations

inf
x∈X

f(x) ≤ A(f) ≤ sup
x∈X

f(x) ,

∀ f ∈ F = {f | f : X → R}, where ∅ 6= X ⊂ R.

A(f) is the mean of f for the operator A.

For a = (an) ∈ s, Rhaly operator Ra : s → s

(Raf)(n) = an

n∑
i=0

f(i) , n ∈ N,

for every f = (f(n))n∈N ∈ s = {g = (g(n))n∈N : g(n) ∈ C}.
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In this case, Rhaly operator Ra determines and is determined by an

infinite matrix, lower triangular, noted also with Ra:

Ra =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a0 0 0 · · ·
a1 a1 0 · · ·
a2 a2 a2 · · ·

. . .

an an an an

...
...

...
...

. . .

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

The space s may by replaced with the spaces of sequences lp(p > 1);

lp =

{
f ∈ s :

∞∑
n=0

|f(n)|p < ∞
}

.

The dual of an Rhaly operator Ra : lp → lp is the operator R∗
a : lq → lq,

where q is the conjugated index of p, to which is associated by the infinite

matrix:

R∗
a =

∣∣∣∣∣∣∣∣∣∣∣

a0 a1 a2 . . . an . . .

0 a1 a2 . . . an . . .

0 0 a2 . . . an . . .
...

...
...

. . .

∣∣∣∣∣∣∣∣∣∣∣

For a =

(
1

n + 1

)

n∈N
∈ s one obtains the discrete Cesàro operator

and for a =

(
1

(n + 1)z

)

n∈N
, with z ∈ C, one obtains the z-Cesáro operator.

If an =
pn

Pn

, with p0 > 0, pn ≥ 0 and Pn =
n∑

k=0

pk, Rhaly operator Ra is an

example of operator called weighted mean matrices.

G. Leibowitz [2] studies the algebraic - topological structure for the set of

the Rhaly operators, continuity and compactness of these operators, defined

on the spaces lp, p > 1. Also, he investigate the continuity of these operators

when they are defined an the spaces of sequence c0 and l∞.
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H. C. Rhaly [5] studies the spectrum and point spectrum for Ra : l2 → l2.

In a recent book ”Weighted mean operator”, K. G. Grosse-Erdmann

studies the spectra for weighted mean matrices (in 1998).

In this text I present some results concerning the spectra of

Ra : lp → lp (p > 1), where:

ρ(Ra, l
p) = {λ ∈ C : λI−Ra is bijective and (λI−Ra)

−1 is continuous};
σ(Ra, l

p) = C�ρ(Ra, l
p);

σp(Ra, l
p) = {λ ∈ C : λI −Ra is not injective}

σc(Ra, l
p) = {λ ∈ C : λI − Ra is injective, is not surjective and

(λI −Ra)(lp) = lp}
σr(Ra, l

p) = {λ ∈ C : λI −Ra is injective, and (λI −Ra)(lp) 6= lp}.
A Rhaly operator Ra : lp → lp (p > 1) is correctly defined if the sequence

((n + 1)an) is bounded and Ra is continuous.

Let S = {an : n ∈ N}.
Theorem 1.

a) If ((n + 1)an) is bounded, then Ra ∈ B(lp)for any p > 1 and

‖Ra‖ ≤ p

p− 1
sup |(n + 1)an|.

b) If lim
n→∞

(n + 1)an = 0, then Ra is compact in lp for any p > 1.

c) If lim
n→∞

|(n + 1)an| = ∞, then Ra isn’t continuous, ∀ p > 1.

Proof. In the article [4].

Lemma 1. Let Ra be a Rhaly matrix (a ∈ s), C = λI − Ra, such that
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cjj 6= 0 ∀ j ∈ N. Then C−1 has the entries:

cjj =
1

λ− aj

∀ j ∈ N

cij = 0 ∀ i, j ∈ N , i < j

cij = cj+r,j = λr−1aj+r

[
j+r∏

k=j

(λ− ak)

]−1

∀ r ∈ N∗ ; i, j ∈ N , i = j + r.

(1)

Proof. The method of the mathematical induction is used.

To calculate the entries cjj are used determinants of some matrices lower

triangular with entries of diagonal λ− ak, k 6= j.

Obviously c00 has form
1

λ− a0

.

Supposing that for j ∈ N∗, ci0, ci1, ..., ci,i−1 have the specified form, can

be prove that entries ci+1,0, ci+1,1, ..., ci+1,i are gived by the specified rela-

tions, too.

The condition ci+1,i(λ− ai) + ci+1,i+1(−ai+1) = 0 implies

ci+1,i =
ai+1

(λ− ai)(λ− ai+1)
.

The condition

ci+1,i−1(λ− ai−1) + ci+1,i(−ai) + ci+1,i+1(−ai+1) = 0 ⇐⇒

⇐⇒ ci+1,i−1 =
ai

λ− ai−1

· ai+1

i+1∏

k=i

(λ− ak)

+
ai+1

λ− ai−1

· 1

λ− ai+1

implies

ci+1,i−1 =
λai+1

(λ− ai−1)(λ− ai)(λ− ai+1)
.

From the equality

ci+1,i−2(λ− ai−2) + ci+1,i−1(−ai−1) + ci+1,i(−ai) + ci+1,i+1(−ai+1) = 0
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result that

ci+1,i−2 =
λai−1ai+1

(λ− ai−2)(λ− ai−1)(λ− ai)(λ− ai+1)
+

+
aiai+1(λ− ai−1)

(λ− ai−2)(λ− ai−1)(λ− ai)(λ− ai+1)
+

+
ai+1(λ− ai−1)(λ− ai)

(λ− ai−2)(λ− ai−1)(λ− ai)(λ− ai+1)
=

=
λ2ai+1

(λ− ai−2)(λ− ai−1)(λ− ai)(λ− ai+1)
, too.

In the same way are found the expressions for ci+1,i−3, ci+1,i−4, ..., ci+1,1,

ci+1,0.

Theorem 2. Consider Ra as an operator on lp, p > 1, such that

((n + 1)an) is bounded. Then,

σ(Ra, l
p) ⊆

{
λ : max

k∈N

∣∣∣∣
λ

λ− ak

∣∣∣∣ ≥ 1

}
.

Proof. From the hypothesis the sequence (|an|) is bounded. So, ∃m1,

m2 ∈ R, such that: m1 ≤ |an| ≤ m2 ∀n ∈ N.

Let λ ∈ C∗ with max
k∈N

∣∣∣∣
λ

λ− ak

∣∣∣∣ < 1. m2 is choose such that |λ| 6= |m2|.
For i = 0,

∞∑

j=0

|cij | = 1
|λ− ai| + |λ|

i−1|ai|
[

i∏

k=0

|λ− ak|
]−1

+ |λ|i−2|ai|
[

i∏

k=1

|λ− ak|
]−1

+ ...+

+|λ|0|ai|
[

i∏

k=i−1

|λ− ak|
]−1

≤
∣∣∣∣

1
λ| − |m2|

∣∣∣∣+
|m2|
|λ|2

∣∣∣∣∣∣∣∣∣∣∣

|λ|i+1

i∏

k=0

|λ− ak|
+

|λ|i
i∏

k=1

|λ− ak|
+ ...+

+
|λ|2

i∏

k=i−1

|λ− ak|

∣∣∣∣∣∣∣∣∣∣∣

≤
∣∣∣∣

1
|λ| − |m2

∣∣∣∣ +
|m2|
|λ|2 ·

|λ|2
|λ− ai−1||λ− ai| ·

1

1−max
k∈N

∣∣∣∣
λ

λ− ak

∣∣∣∣
.
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So C ∈ B(lp), ∀p > 1. Result that for λ with the property that∣∣∣∣
λ

λ− ak

∣∣∣∣ < 1, λ ∈ ρ(Ra, l
p).

Theorem 3. Let Ra be a Rhaly matrix with a = (an) a sequence of real

numbers such that ((n + 1)an) is bounded. Then, for any p > 1:

σ(Ra, l
p) ⊇

{
λ ∈ C :

∣∣∣λ− q

2
sup(n + 1)|an|

∣∣∣ ≤ q

2
sup(n + 1)|an|

}
∪ S.

Proof. The sequence (|an|) being a real sequence can be defined lim sup |an|
and lim inf |an|. Is noted with δ = lim sup |an| and δ = lim inf |an|. Then,

obviously that |λ− δ| ≤ |λ|.

|cij| = |λ|r−1|aj+r| 1
j+r∏

k=j

|λ− ak|
=
|aj+r|
|λ|2 · 1

j+r∏

k=j

∣∣∣∣1−
ak

j

∣∣∣∣
; r ∈ N∗ , i = j + r.

∣∣∣1− ak

λ

∣∣∣ ≤ 1 ⇔ |1 + ak(α + iβ)| ≤ 1 ⇔ (1 + akα)2 + a2
kβ

2 ≤ 1, where

−1

λ
= α + iβ.

But, ∣∣∣∣1−
δ

λ

∣∣∣∣ ≤ 1 ⇔ (1 + δα)2 + δ2β2 ≤ 1 ⇒

⇒ ∃N ∈ N , ∀n ≥ N :

(
1 + α sup

i≥n
ai

)2

+ β2

(
sup
i≥n

ai

)2

≤ 1.

Results that (1+αak)
2+β2a2

k ≤ 1 ∀k ∈ N. It is obtained that for i > N ,

i∑
j=N

|cij| ≥
r∑

k=0

|aj+k|
|λ| ≥ |m1||λ|−2(r + 1),

where |m1| is a non - null lower limit of sequence (|an|). So C 6∈ B(lp),

∀p > 1.

If, λ = an, n ∈ N, det (λI − Ra) = 0. Results that in this cases λ is

from σ(Ra, l
p).
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Theorem 4. For any Rhaly matrix with a ∈ s, an 6= 0 ∀n ∈ N and

((n + 1)|an|) is bounded, 0 ∈ fr σ(Ra, l
p), p > 1.

Proof. From the theorem of the consistence of the spectre,

σ(Ra, l
p) 6= ∅. Supposing that 0 6∈ fr (Ra, l

p), results that 0 ∈ int σ(Ra, l
p)

and σ(Ra, l
p) ∈ V(0).

⇒ ∃ε > 0, [−ε, ε] ⊆ σ(Ra, l
p) ⇒ ε ∈ σ(Ra, l

p), ε > 0.

Considering the operator C = εI −Ra, C−1 has the entries:

cjj =
1

ε− aj

∀j ∈ N cij = 0 ∀i, j ∈ N , i < j

cij = ci+r,j = λr−1aj+r

[
j+r∏

k=r

(ε− ak)

]−1

∀r ∈ N∗ ; i, j ∈ N , i = j + r.

It can be choose ε1 ≤ ε such that max
h∈N

∣∣∣∣
ε1

ε1 − ak

∣∣∣∣ < 1. Then ε ∈ ρ(Ra, l
p)

(from theorem 2) and for ε → 0 it is obtained that 0 ≥ 1, what is false.

⇒ 0 ∈ fr σ(Ra, l
p).

Theorem 5. Let Ra be a Rhaly operator such that the sequence

((n + 1)an) is bounded, with positive numbers. If λ ∈ σ(Ra, l
p) and λ 6∈ S,

then λ ∈ σc(Ra, l
p).

Proof. We must proof that:

a) λI −Ra is injective

b) (λI −Ra)(lp) = lp (⇔ λI −R∗
a is injective)

c) (λI −Ra)
−1 isn’t continuous (⇔ λI −R∗

a isn’t surjective)

a) λ 6∈ S implies that λI −Ra is injective operator

b) It is proved that the equation (λI − R∗
a)f = 0 hasn’t solution f ∈ lq,

f non-null
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From (λ− an)f(n)−
∞∑

k=n+1

akf(k) = 0 ∀n ∈ N it is obtained the recur-

rent relation:

f(n + 1) =
λ

λ− an

f(n).(2)

Results the equalities

f(n + 1) =
λn+1

(λ− an)(λ− an−1)...(λ− a0)
f(0) , n ≥ 1.

Supposing that f(0) 6= 0 (f(0) = 0 ⇒ f = 0), it can be written

∣∣∣∣
f(n + 1)

f(n)

∣∣∣∣
q

=
|λ|q

|λ− an|q ≥ 1.

So
∑

|f(n)|q is divergente, that mean that equation (λI − R∗
a)f = 0

hasn’t solution f ∈ lq, f 6= 0

c) It will be proof that the operator λI −R∗
a isn’t surjective, that mean

the equation (λI −R∗
a)f = g hasn’t solution f ∈ lq for any g.

Let f ∈ lq. We consider the equation (λI − R∗
a)f = g, f ∈ s. It can be

choose f(0) = f(1) = 0 (this option is good for calculation). We obtained:

λf(n) = g(n)− g(0)−
n∑

k=1

akf(k) ⇒

f(n) = λ−1

(
g(n)− g(0)−

n−1∑

k=1

akf(k)

)
∀n ≥ 2.(3)

The equation 3 can be written as a system with the form f = Bg, where
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B has the entries:

b20 = −λ−1 b21 = 0 b22 = λ−1

bn,n−1 = −an−1λ
−2 n ≥ 3

bn,n−k = −λ−1an−1

[
1 +

k−1∑
r=1

(−1)r

( ∑

n−k<i1<...<ir<n

ai1ai2...air

)
λ−(r+1)

]
,

n ≥ k + 2 bn,p = −λ−1

[
1 +

n−1∑
r=1

(−1)r

( ∑
2≤i1<...<ir≤n−1

ai1ai2...air

)
λ−r

]
,

n ≥ 2.

(4)

It remains to proove that sup
n

∞∑
n=m

|bnm|q isn’t finite.

For m = 0,

∞∑
n=2

|bnm|q =
∞∑

n=2

|λq|
∣∣∣∣∣1 +

n−2∑
r=1

(−1)r

( ∑
2≤i1<...<ir≤n−1

ai1ai2...air

)
λ−r

∣∣∣∣∣

q

.

For m = 1,
∞∑

n=2

|bn1|q = 0.

For m = 2,

∞∑
n=m+2

|bnm|q+|bmm|q+|bm+1,m|q = |λ−1|q+|am|q|λ−2|q+
∞∑

n=m+2

|λ−1|q|am|q
∣∣∣∣∣ 1+

+
n−m−1∑

r=1

(−1)r

( ∑
m<i1<...<in<n

ai1ai2...air

)
λ−(r+1)

∣∣∣∣∣

q

|λ−1|q|m1|q ≥ |λ−1|q+|m1|q|λ−2|q+

+|λ−1|q| m1|q +
∞∑

n=m+2

∣∣∣∣∣ 1+
n−m−1∑

r=1

(−1)r

( ∑
m<i1<...<ir<n

|m1|r
)

λ−(r+1)

∣∣∣∣∣

q

≥ |λ−1|2+

+|m1|q|λ−2|q + |λ−1|q|m1|q
∞∑

n=m+2

∣∣∣∣∣

(
n−m−1∑

r=1

(n−m− 1)|m1|r
)

λ−(r+1) − 1

∣∣∣∣∣

q

,

where 0 < |m1| ≤ |an|, for all n.
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From criterion of the ratio,

∞∑
n=m+2

∣∣∣∣∣

(
n−m−1∑

r=1

(n−m− 1)|m1|r
)

λ−(r+1) − 1

∣∣∣∣∣

q

is divergente, so sup
n

∞∑
n=m

|bnm|q isn’t finite. λI − R∗
a isn’t surjective implies

λ ∈ σc(Ra, l
p).

Theorem 6. Let Ra be a Rhaly operator with ai 6= aj for i 6= j and the

sequence ((n + 1)an) is bounded. If λ = an, n ∈ N∗ then λ ∈ σr(Ra, l
p), and

λ = a0 ∈ σp(Ra, l
p).

Proof. We must proof that:

a) λI −Ra is injective

b) (λI −Ra)(lp) 6= lp.

Let j ≥ 1 arbitrary fixed.

a) It is prove that (λI −Ra)f = 0, f ∈ lp ⇒ f = 0

(λI −Ra) = o ⇒
n−1∑

k=0

anf(k) = (λ− an)f(k) , n ≥ j.

If λ = aj we obtain:

aj − an = an

n−1∑

k=0

f(k) , n ≥ j.

So,
∞∑

n=0

|f(n)|p < ∞⇔ |aj|p
∞∑

n=j

∣∣∣∣
1

an+1

− 1

an

∣∣∣∣
p

< ∞.

Let m < −1 be a lower limit for the sequence (an). Then

|aj|p
∞∑

n=j

∣∣∣∣
1

an+1

− 1

an

∣∣∣∣
p

≤ 2|aj|p
∞∑

n=j

∣∣∣∣
1

an

∣∣∣∣
p

< 2|aj|p
∞∑

n=j

∣∣∣∣
1

m

∣∣∣∣
p

< ∞.
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If ∃an = 0, n ≥ j, aj − an = an

n−1∑

k=0

f(k) ⇒ aj = 0 ⇒ λ = 0, but from

theorem 4, 0 ∈ σp(Ra, l
p), p > 1. So we can calculate in hypothesis that

an 6= 0, ∀n ≥ j. ⇒ the operator λI −Ra isn’t injective.

b) Obviously ajI−R∗
a isn’t injective, so (λI −Ra)(lp) = (ajI −Ra)(lp) 6=

lp, ∀j ∈ N, what remains for prooving because λ ∈ σr(Ra, l
p).

Supposing that λ = a0, the operator (λI−Ra)(e0) = 0, e0 = (1, 0, 0, ...),

is this situation the operator λI −Ra isn’t injective, too ⇒ λ ∈ σp(Ra, l
p).

Theorem 7. Let Ra be a Rhaly operator with the property that the se-

quence of its main diagonal elements doesn’t have distinct elements, doesn’t

have an infinity of equal terms, and the sequence ((n + 1)an) is bounded. If

λ = an, n ∈ N, then λ ∈ σr(Ral
p).

Proof. The restriction for λ implies the fact that aren’t put in discution

the entries null of diagonal.

Let aj 6= 0 a element that apeares more then two times on diagonal of Ra

and k, r ∈ N the biggest, and the smallest integer for which aj = ak = ar.

Then, the equation (λI − Ra)f = 0 has a solution f ∈ s, f 6= 0. Remains

to study if the property is true in lp.

Let I = {n ≥ r|an+1 = 0}. card {n ≥ r|an+1} is finite, because in

the principal diagonal of matrix Ra isn’t an infinite number of entries equal

between them.

Then,
∞∑

n=0

|f(n)|p =
∑

n≥j,n6∈I

|f(n)|p +
∑

n≥j,n∈I

|f(n)|p,

and

lim
n→∞

∣∣∣∣
aj

an+1

− 1

∣∣∣∣
p

6= 0,

such that f 6∈ lp.

So, the operator λI −Ra is injective.
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b) Obviously λI −R∗
a isn’t injective.

c) The operator ajI −R∗
a isn’t surjective. For n ≥ j, f = Bg, where B

are the entries

bnk = 0 k > n n ≥ j + 1

bnn =
1

aj

n ≥ j + 1

bn,n−1 = −an−1λ
−2 n ≥ j + 2

bn,n−k = −a−1
j an−k

[
1 +

k−1∑
r=1

(−1)r

( ∑

n−k<i1<...<ir<n

ai1ai2...air

)
λ−(r+1)

]
, n ≥ j + 3

bn,0 = −a−1
j

[
1 +

n−2∑
r=1

(−1)r

( ∑
2≤i1<...<ir≤n−1

ai1ai2...air

)
a−r

j

]
, n ≥ j + 1.

(5)

If j = 0 and |m1| ≤ |a2| ≤ |m2| ∀n ∈ N,

∞∑
n=j+1

|bnj
| ≥

∞∑
n=j+1

∣∣∣∣
1

aj

∣∣∣∣

∣∣∣∣∣∣∣
1 +

n−2∑
r=1

r impar

(−1)r

( ∑
2≤i1<...<ir≤n−1

ai1ai2...air

)
a−r

j

∣∣∣∣∣∣∣
≥

≥
∞∑

n=j+1

1

|m2|

∣∣∣∣∣∣∣
1 +

n−2∑
r=1

r impar

(−1)r
∑

2≤i1<...<ir≤n−1

|m1|r
|m2|r

∣∣∣∣∣∣∣
≥

≥ 1

|m2|

∣∣∣∣∣∣∣
1 +

j−1∑
r=1

r impar

(−1)r |m1|r
|m2|r (j − 1)

∣∣∣∣∣∣∣
→∞(j →∞). So, the operator ajI −R∗

a isn’t surjective.
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