On the fine spectra of some averaging operators

Amelia Bucur

Abstract

The aim of this text is the study of the fine spectra for a class of Cesàro generalized operators, Rhaly operators, when those are defined on the spaces $l^{p}, p>1$.

2000 Mathematical Subject Classification: 65F15

The averaging operators A are determined by relations

$$
\inf _{x \in X} f(x) \leq A(f) \leq \sup _{x \in X} f(x)
$$

$\forall f \in F=\{f \mid f: X \rightarrow \mathbb{R}\}$, where $\varnothing \neq X \subset \mathbb{R}$.
$A(f)$ is the mean of f for the operator A.
For $a=\left(a_{n}\right) \in s$, Rhaly operator $R_{a}: s \rightarrow s$

$$
\left(R_{a} f\right)(n)=a_{n} \sum_{i=0}^{n} f(i), \quad n \in \mathbb{N}
$$

for every $f=(f(n))_{n \in \mathbb{N}} \in s=\left\{g=(g(n))_{n \in \mathbb{N}}: g(n) \in \mathbb{C}\right\}$.

In this case, Rhaly operator R_{a} determines and is determined by an infinite matrix, lower triangular, noted also with R_{a} :

$$
R_{a}=\left|\begin{array}{cccc}
a_{0} & 0 & 0 & \ldots \\
a_{1} & a_{1} & 0 & \ldots \\
a_{2} & a_{2} & a_{2} & \ldots \\
& & & \ddots \\
a_{n} & a_{n} & a_{n} & a_{n} \\
\vdots & \vdots & \vdots & \vdots
\end{array}\right|
$$

The space s may by replaced with the spaces of sequences $l^{p}(p>1)$;

$$
l^{p}=\left\{f \in s: \sum_{n=0}^{\infty}|f(n)|^{p}<\infty\right\} .
$$

The dual of an Rhaly operator $R_{a}: l^{p} \rightarrow l^{p}$ is the operator $R_{a}^{*}: l^{q} \rightarrow l^{q}$, where q is the conjugated index of p, to which is associated by the infinite matrix:

$$
R_{a}^{*}=\left|\begin{array}{cccccc}
\bar{a}_{0} & \bar{a}_{1} & \bar{a}_{2} & \ldots & \bar{a}_{n} & \ldots \\
0 & \bar{a}_{1} & \bar{a}_{2} & \ldots & \bar{a}_{n} & \ldots \\
0 & 0 & \bar{a}_{2} & \ldots & \bar{a}_{n} & \ldots \\
\vdots & \vdots & \vdots & \ddots & &
\end{array}\right|
$$

For $a=\left(\frac{1}{n+1}\right)_{n \in \mathbb{N}} \in s$ one obtains the discrete Cesàro operator and for $a=\left(\frac{1}{(n+1)^{z}}\right)_{n \in \mathbb{N}}$, with $z \in \mathbb{C}$, one obtains the z-Cesáro operator. If $a_{n}=\frac{p_{n}}{P_{n}}$, with $p_{0}>0, p_{n} \geq 0$ and $P_{n}=\sum_{k=0}^{n} p_{k}$, Rhaly operator R_{a} is an example of operator called weighted mean matrices.
G. Leibowitz [2] studies the algebraic - topological structure for the set of the Rhaly operators, continuity and compactness of these operators, defined on the spaces $l^{p}, p>1$. Also, he investigate the continuity of these operators when they are defined an the spaces of sequence c_{0} and l^{∞}.
H. C. Rhaly [5] studies the spectrum and point spectrum for $R_{a}: l^{2} \rightarrow l^{2}$.

In a recent book "Weighted mean operator", K. G. Grosse-Erdmann studies the spectra for weighted mean matrices (in 1998).

In this text I present some results concerning the spectra of $R_{a}: l^{p} \rightarrow l^{p}(p>1)$, where:
$\rho\left(R_{a}, l^{p}\right)=\left\{\lambda \in \mathbb{C}: \lambda I-R_{a}\right.$ is bijective and $\left(\lambda I-R_{a}\right)^{-1}$ is continuous $\} ;$
$\sigma\left(R_{a}, l^{p}\right)=\mathbb{C} \backslash \rho\left(R_{a}, l^{p}\right) ;$
$\sigma_{p}\left(R_{a}, l^{p}\right)=\left\{\lambda \in \mathbb{C}: \lambda I-R_{a}\right.$ is not injective $\}$
$\sigma_{c}\left(R_{a}, l^{p}\right)=\left\{\lambda \in \mathbb{C}: \lambda I-R_{a}\right.$ is injective, is not surjective and $\left.\overline{\left(\lambda I-R_{a}\right)\left(l^{p}\right)}=l^{p}\right\}$
$\sigma_{r}\left(R_{a}, l^{p}\right)=\left\{\lambda \in \mathbb{C}: \lambda I-R_{a}\right.$ is injective, and $\left.\overline{\left(\lambda I-R_{a}\right)\left(l^{p}\right)} \neq l^{p}\right\}$.
A Rhaly operator $R_{a}: l^{p} \rightarrow l^{p}(p>1)$ is correctly defined if the sequence $\left((n+1) a_{n}\right)$ is bounded and R_{a} is continuous.

Let $S=\overline{\left\{a_{n}: n \in \mathbb{N}\right\}}$.
Theorem 1.
a) If $\left((n+1) a_{n}\right)$ is bounded, then $R_{a} \in B\left(l^{p}\right)$ for any $p>1$ and

$$
\left\|R_{a}\right\| \leq \frac{p}{p-1} \sup \left|(n+1) a_{n}\right|
$$

b) If $\lim _{n \rightarrow \infty}(n+1) a_{n}=0$, then R_{a} is compact in l^{p} for any $p>1$.
c) If $\lim _{n \rightarrow \infty}\left|(n+1) a_{n}\right|=\infty$, then R_{a} isn't continuous, $\forall p>1$.

Proof. In the article [4].
Lemma 1. Let R_{a} be a Rhaly matrix $(a \in s), C=\lambda I-R_{a}$, such that
$c_{j j} \neq 0 \quad \forall j \in \mathbb{N}$. Then C^{-1} has the entries:

$$
\begin{align*}
& c_{j j}=\frac{1}{\lambda-a_{j}} \quad \forall j \in \mathbb{N} \\
& c_{i j}=0 \quad \forall i, j \in \mathbb{N}, \quad i<j \\
& c_{i j}=c_{j+r, j}=\lambda^{r-1} a_{j+r}\left[\prod_{k=j}^{j+r}\left(\lambda-a_{k}\right)\right]^{-1} \quad \forall r \in \mathbb{N}^{*} ; \quad i, j \in \mathbb{N}, \quad i=j+r . \tag{1}
\end{align*}
$$

Proof. The method of the mathematical induction is used.
To calculate the entries $c_{j j}$ are used determinants of some matrices lower triangular with entries of diagonal $\lambda-a_{k}, k \neq j$.

Obviously c_{00} has form $\frac{1}{\lambda-a_{0}}$.
Supposing that for $j \in \mathbb{N}^{*}, c_{i 0}, c_{i 1}, \ldots, c_{i, i-1}$ have the specified form, can be prove that entries $c_{i+1,0}, c_{i+1,1}, \ldots, c_{i+1, i}$ are gived by the specified relations, too.

The condition $c_{i+1, i}\left(\lambda-a_{i}\right)+c_{i+1, i+1}\left(-a_{i+1}\right)=0$ implies

$$
c_{i+1, i}=\frac{a_{i+1}}{\left(\lambda-a_{i}\right)\left(\lambda-a_{i+1}\right)} .
$$

The condition

$$
\begin{aligned}
& c_{i+1, i-1}\left(\lambda-a_{i-1}\right)+c_{i+1, i}\left(-a_{i}\right)+c_{i+1, i+1}\left(-a_{i+1}\right)=0 \Longleftrightarrow \\
& \Longleftrightarrow c_{i+1, i-1}=\frac{a_{i}}{\lambda-a_{i-1}} \cdot \frac{a_{i+1}}{\prod_{k=i}^{i+1}\left(\lambda-a_{k}\right)}+\frac{a_{i+1}}{\lambda-a_{i-1}} \cdot \frac{1}{\lambda-a_{i+1}}
\end{aligned}
$$

implies

$$
c_{i+1, i-1}=\frac{\lambda a_{i+1}}{\left(\lambda-a_{i-1}\right)\left(\lambda-a_{i}\right)\left(\lambda-a_{i+1}\right)} .
$$

From the equality
$c_{i+1, i-2}\left(\lambda-a_{i-2}\right)+c_{i+1, i-1}\left(-a_{i-1}\right)+c_{i+1, i}\left(-a_{i}\right)+c_{i+1, i+1}\left(-a_{i+1}\right)=0$
result that

$$
\begin{gathered}
c_{i+1, i-2}=\frac{\lambda a_{i-1} a_{i+1}}{\left(\lambda-a_{i-2}\right)\left(\lambda-a_{i-1}\right)\left(\lambda-a_{i}\right)\left(\lambda-a_{i+1}\right)}+ \\
\quad+\frac{a_{i} a_{i+1}\left(\lambda-a_{i-1}\right)}{\left(\lambda-a_{i-2}\right)\left(\lambda-a_{i-1}\right)\left(\lambda-a_{i}\right)\left(\lambda-a_{i+1}\right)}+ \\
\quad+\frac{a_{i+1}\left(\lambda-a_{i-1}\right)\left(\lambda-a_{i}\right)}{\left(\lambda-a_{i-2}\right)\left(\lambda-a_{i-1}\right)\left(\lambda-a_{i}\right)\left(\lambda-a_{i+1}\right)}= \\
=\frac{\lambda^{2} a_{i+1}}{\left(\lambda-a_{i-2}\right)\left(\lambda-a_{i-1}\right)\left(\lambda-a_{i}\right)\left(\lambda-a_{i+1}\right)}, \text { too. }
\end{gathered}
$$

In the same way are found the expressions for $c_{i+1, i-3}, c_{i+1, i-4}, \ldots, c_{i+1,1}$, $c_{i+1,0}$.

Theorem 2. Consider R_{a} as an operator on $l^{p}, p>1$, such that $\left((n+1) a_{n}\right)$ is bounded. Then,

$$
\sigma\left(R_{a}, l^{p}\right) \subseteq\left\{\lambda: \max _{k \in \mathbb{N}}\left|\frac{\lambda}{\lambda-a_{k}}\right| \geq 1\right\}
$$

Proof. From the hypothesis the sequence $\left(\left|a_{n}\right|\right)$ is bounded. So, $\exists m_{1}$, $m_{2} \in \mathbb{R}$, such that: $m_{1} \leq\left|a_{n}\right| \leq m_{2} \quad \forall n \in \mathbb{N}$.

Let $\lambda \in \mathbb{C}^{*}$ with $\max _{k \in \mathbb{N}}\left|\frac{\lambda}{\lambda-a_{k}}\right|<1 . m_{2}$ is choose such that $|\lambda| \neq\left|m_{2}\right|$.
For $i=0$,

$$
\begin{aligned}
& \sum_{j=0}^{\infty}\left|c_{i j}\right|=\frac{1}{\left|\lambda-a_{i}\right|}+|\lambda|^{i-1}\left|a_{i}\right|\left[\prod_{k=0}^{i}\left|\lambda-a_{k}\right|\right]^{-1}+|\lambda|^{i-2}\left|a_{i}\right|\left[\prod_{k=1}^{i}\left|\lambda-a_{k}\right|\right]^{-1}+\ldots+ \\
& \left.+|\lambda|^{0}\left|a_{i}\right|\left[\prod_{k=i-1}^{i}\left|\lambda-a_{k}\right|\right]^{-1} \leq\left|\frac{1}{\lambda\left|-\left|m_{2}\right|\right.}\right|+\frac{\left|m_{2}\right|}{|\lambda|^{2}} \right\rvert\, \frac{|\lambda|^{i+1}}{\prod_{k=0}^{i}\left|\lambda-a_{k}\right|}+\frac{|\lambda|^{i}}{\prod_{k=1}^{i}\left|\lambda-a_{k}\right|}+\ldots+ \\
& +\frac{|\lambda|^{2}}{\prod_{k=i-1}^{i}\left|\lambda-a_{k}\right|}\left|\leq\left|\frac{1}{|\lambda|-\mid m_{2}}\right|+\frac{\left|m_{2}\right|}{|\lambda|^{2}} \cdot \frac{|\lambda|^{2}}{\left|\lambda-a_{i-1}\right|\left|\lambda-a_{i}\right|} \cdot \frac{1}{1-\max _{k \in \mathbb{N}}\left|\frac{\lambda}{\lambda-a_{k}}\right|} .\right.
\end{aligned}
$$

So $C \in B\left(l^{p}\right), \quad \forall p>1$. Result that for λ with the property that $\left|\frac{\lambda}{\lambda-a_{k}}\right|<1, \lambda \in \rho\left(R_{a}, l^{p}\right)$.

Theorem 3. Let R_{a} be a Rhaly matrix with $a=\left(a_{n}\right)$ a sequence of real numbers such that $\left((n+1) a_{n}\right)$ is bounded. Then, for any $p>1$:

$$
\sigma\left(R_{a}, l^{p}\right) \supseteq\left\{\lambda \in \mathbb{C}:\left|\lambda-\frac{q}{2} \sup (n+1)\right| a_{n}| | \leq \frac{q}{2} \sup (n+1)\left|a_{n}\right|\right\} \cup S .
$$

Proof. The sequence $\left(\left|a_{n}\right|\right)$ being a real sequence can be defined lim sup $\left|a_{n}\right|$ and $\liminf \left|a_{n}\right|$. Is noted with $\delta=\limsup \left|a_{n}\right|$ and $\delta=\liminf \left|a_{n}\right|$. Then, obviously that $|\lambda-\delta| \leq|\lambda|$.
$\left|c_{i j}\right|=|\lambda|^{r-1}\left|a_{j+r}\right| \frac{1}{\prod_{k=j}^{j+r}\left|\lambda-a_{k}\right|}=\frac{\left|a_{j+r}\right|}{|\lambda|^{2}} \cdot \frac{1}{\prod_{k=j}^{j+r}\left|1-\frac{a_{k}}{j}\right|} ; \quad r \in \mathbb{N}^{*}, \quad i=j+r$.
$\left|1-\frac{a_{k}}{\lambda}\right| \leq 1 \Leftrightarrow\left|1+a_{k}(\alpha+i \beta)\right| \leq 1 \Leftrightarrow\left(1+a_{k} \alpha\right)^{2}+a_{k}^{2} \beta^{2} \leq 1, \quad$ where $-\frac{1}{\lambda}=\alpha+i \beta$.

But,

$$
\begin{gathered}
\left|1-\frac{\delta}{\lambda}\right| \leq 1 \Leftrightarrow(1+\delta \alpha)^{2}+\delta^{2} \beta^{2} \leq 1 \Rightarrow \\
\Rightarrow \exists N \in \mathbb{N}, \quad \forall n \geq N:\left(1+\alpha \sup _{i \geq n} a_{i}\right)^{2}+\beta^{2}\left(\sup _{i \geq n} a_{i}\right)^{2} \leq 1
\end{gathered}
$$

Results that $\left(1+\alpha a_{k}\right)^{2}+\beta^{2} a_{k}^{2} \leq 1 \forall k \in \mathbb{N}$. It is obtained that for $i>N$,

$$
\sum_{j=N}^{i}\left|c_{i j}\right| \geq \sum_{k=0}^{r} \frac{\left|a_{j+k}\right|}{|\lambda|} \geq\left|m_{1}\right||\lambda|^{-2}(r+1)
$$

where $\left|m_{1}\right|$ is a non - null lower limit of sequence $\left(\left|a_{n}\right|\right)$. So $C \notin B\left(l^{p}\right)$, $\forall p>1$.

If, $\lambda=a_{n}, n \in \mathbb{N}$, $\operatorname{det}\left(\lambda I-R_{a}\right)=0$. Results that in this cases λ is from $\sigma\left(R_{a}, l^{p}\right)$.

Theorem 4. For any Rhaly matrix with $a \in s, a_{n} \neq 0 \forall n \in \mathbb{N}$ and $\left((n+1)\left|a_{n}\right|\right)$ is bounded, $0 \in \operatorname{fr} \sigma\left(R_{a}, l^{p}\right), p>1$.

Proof. From the theorem of the consistence of the spectre, $\sigma\left(R_{a}, l^{p}\right) \neq \varnothing$. Supposing that $0 \notin f r\left(R_{a}, l^{p}\right)$, results that $0 \in \operatorname{int} \sigma\left(R_{a}, l^{p}\right)$ and $\sigma\left(R_{a}, l^{p}\right) \in \mathcal{V}(0)$.
$\Rightarrow \exists \varepsilon>0,[-\varepsilon, \varepsilon] \subseteq \sigma\left(R_{a}, l^{p}\right) \Rightarrow \varepsilon \in \sigma\left(R_{a}, l^{p}\right), \varepsilon>0$.
Considering the operator $C=\varepsilon I-R_{a}, C^{-1}$ has the entries:

$$
\begin{gathered}
c_{j j}=\frac{1}{\varepsilon-a_{j}} \quad \forall j \in \mathbb{N} \quad c_{i j}=0 \quad \forall i, j \in \mathbb{N}, \quad i<j \\
c_{i j}=c_{i+r, j}=\lambda^{r-1} a_{j+r}\left[\prod_{k=r}^{j+r}\left(\varepsilon-a_{k}\right)\right]^{-1} \quad \forall r \in \mathbb{N}^{*} ; \quad i, j \in \mathbb{N}, \quad i=j+r .
\end{gathered}
$$

It can be choose $\varepsilon_{1} \leq \varepsilon$ such that $\max _{h \in \mathbb{N}}\left|\frac{\varepsilon_{1}}{\varepsilon_{1}-a_{k}}\right|<1$. Then $\varepsilon \in \rho\left(R_{a}, l^{p}\right)$ (from theorem 2) and for $\varepsilon \rightarrow 0$ it is obtained that $0 \geq 1$, what is false. $\Rightarrow 0 \in \operatorname{fr} \sigma\left(R_{a}, l^{p}\right)$.

Theorem 5. Let R_{a} be a Rhaly operator such that the sequence $\left((n+1) a_{n}\right)$ is bounded, with positive numbers. If $\lambda \in \sigma\left(R_{a}, l^{p}\right)$ and $\lambda \notin S$, then $\lambda \in \sigma_{c}\left(R_{a}, l^{p}\right)$.

Proof. We must proof that:
a) $\lambda I-R_{a}$ is injective
b) $\overline{\left(\lambda I-R_{a}\right)\left(l^{p}\right)}=l^{p}\left(\Leftrightarrow \lambda I-R_{a}^{*}\right.$ is injective $)$
c) $\left(\lambda I-R_{a}\right)^{-1}$ isn't continuous ($\Leftrightarrow \lambda I-R_{a}^{*}$ isn't surjective)
a) $\lambda \notin S$ implies that $\lambda I-R_{a}$ is injective operator
b) It is proved that the equation $\left(\lambda I-R_{a}^{*}\right) f=0$ hasn't solution $f \in l^{q}$, f non-null

From $\left(\lambda-a_{n}\right) f(n)-\sum_{k=n+1}^{\infty} a_{k} f(k)=0 \quad \forall n \in \mathbb{N}$ it is obtained the recurrent relation:

$$
\begin{equation*}
f(n+1)=\frac{\lambda}{\lambda-a_{n}} f(n) . \tag{2}
\end{equation*}
$$

Results the equalities

$$
f(n+1)=\frac{\lambda^{n+1}}{\left(\lambda-a_{n}\right)\left(\lambda-a_{n-1}\right) \ldots\left(\lambda-a_{0}\right)} f(0), \quad n \geq 1 .
$$

Supposing that $f(0) \neq 0(f(0)=0 \Rightarrow f=0)$, it can be written

$$
\left|\frac{f(n+1)}{f(n)}\right|^{q}=\frac{|\lambda|^{q}}{\left|\lambda-a_{n}\right|^{q}} \geq 1
$$

So $\sum|f(n)|^{q}$ is divergente, that mean that equation $\left(\lambda I-R_{a}^{*}\right) f=0$ hasn't solution $f \in l^{q}, f \neq 0$
c) It will be proof that the operator $\lambda I-R_{a}^{*}$ isn't surjective, that mean the equation $\left(\lambda I-R_{a}^{*}\right) f=g$ hasn't solution $f \in l^{q}$ for any g.

Let $f \in l^{q}$. We consider the equation $\left(\lambda I-R_{a}^{*}\right) f=g, f \in s$. It can be choose $f(0)=f(1)=0$ (this option is good for calculation). We obtained:

$$
\begin{gather*}
\lambda f(n)=g(n)-g(0)-\sum_{k=1}^{n} a_{k} f(k) \Rightarrow \\
f(n)=\lambda^{-1}\left(g(n)-g(0)-\sum_{k=1}^{n-1} a_{k} f(k)\right) \quad \forall n \geq 2 . \tag{3}
\end{gather*}
$$

The equation 3 can be written as a system with the form $f=B g$, where

B has the entries:

$$
\begin{align*}
& b_{20}=-\lambda^{-1} \quad b_{21}=0 \quad b_{22}=\lambda^{-1} \\
& b_{n, n-1}=-a_{n-1} \lambda^{-2} \quad n \geq 3 \\
& b_{n, n-k}=-\lambda^{-1} a_{n-1}\left[1+\sum_{r=1}^{k-1}(-1)^{r}\left(\sum_{n-k<i_{1}<\ldots<i_{r}<n} a_{i 1} a_{i 2} \ldots a_{i r}\right) \lambda^{-(r+1)}\right] \\
& n \geq k+2 \quad b_{n, p}=-\lambda^{-1}\left[1+\sum_{r=1}^{n-1}(-1)^{r}\left(\sum_{2 \leq i_{1}<\ldots<i_{r} \leq n-1} a_{i 1} a_{i 2} \ldots a_{i r}\right) \lambda^{-r}\right], \\
& n \geq 2 . \tag{4}
\end{align*}
$$

It remains to proove that $\sup _{n} \sum_{n=m}^{\infty}\left|b_{n m}\right|^{q}$ isn't finite.
For $m=0$,
$\sum_{n=2}^{\infty}\left|b_{n m}\right|^{q}=\sum_{n=2}^{\infty}\left|\lambda^{q}\right|\left|1+\sum_{r=1}^{n-2}(-1)^{r}\left(\sum_{2 \leq i_{1}<\ldots<i_{r} \leq n-1} a_{i 1} a_{i 2} \ldots a_{i r}\right) \lambda^{-r}\right|^{q}$.
For $m=1, \sum_{n=2}^{\infty}\left|b_{n 1}\right|^{q}=0$.
For $m=2$,

$$
\begin{aligned}
& \sum_{n=m+2}^{\infty}\left|b_{n m}\right|^{q}+\left|b_{m m}\right|^{q}+\left|b_{m+1, m}\right|^{q}=\left|\lambda^{-1}\right|^{q}+\left|a_{m}\right|^{q}\left|\lambda^{-2}\right|^{q}+\sum_{n=m+2}^{\infty}\left|\lambda^{-1}\right|^{q}\left|a_{m}\right|^{q} \mid 1+ \\
& +\sum_{r=1}^{n-m-1}(-1)^{r}\left(\sum_{m<i_{1}<\ldots<i_{n}<n} a_{i 1} a_{i 2} \ldots a_{i r}\right) \lambda^{-(r+1)}| |^{q}\left|\lambda^{-1}\right|^{q}\left|m_{1}\right|^{q} \geq\left|\lambda^{-1}\right|^{q}+\left|m_{1}\right|^{q}\left|\lambda^{-2}\right|^{q}+ \\
& +\left|\lambda^{-1}\right|^{q}\left|m_{1}\right|^{q}+\sum_{n=m+2}^{\infty}\left|1+\sum_{r=1}^{n-m-1}(-1)^{r}\left(\sum_{m<i_{1}<\ldots<i_{r}<n}\left|m_{1}\right|^{r}\right) \lambda^{-(r+1)}\right|^{q} \geq\left|\lambda^{-1}\right|^{2}+ \\
& +\left|m_{1}\right|^{q}\left|\lambda^{-2}\right|^{q}+\left|\lambda^{-1}\right|^{q}\left|m_{1}\right|^{q} \sum_{n=m+2}^{\infty}\left|\left(\sum_{r=1}^{n-m-1}(n-m-1)\left|m_{1}\right|^{r}\right) \lambda^{-(r+1)}-1\right|^{q}
\end{aligned}
$$

where $0<\left|m_{1}\right| \leq\left|a_{n}\right|$, for all n.

From criterion of the ratio,

$$
\sum_{n=m+2}^{\infty}\left|\left(\sum_{r=1}^{n-m-1}(n-m-1)\left|m_{1}\right|^{r}\right) \lambda^{-(r+1)}-1\right|^{q}
$$

is divergente, so $\sup _{n} \sum_{n=m}^{\infty}\left|b_{n m}\right|^{q}$ isn't finite. $\lambda I-R_{a}^{*}$ isn't surjective implies $\lambda \in \sigma_{c}\left(R_{a}, l^{p}\right)$.

Theorem 6. Let R_{a} be a Rhaly operator with $a_{i} \neq a_{j}$ for $i \neq j$ and the sequence $\left((n+1) a_{n}\right)$ is bounded. If $\lambda=a_{n}, n \in \mathbb{N}^{*}$ then $\lambda \in \sigma_{r}\left(R_{a}, l^{p}\right)$, and $\lambda=a_{0} \in \sigma_{p}\left(R_{a}, l^{p}\right)$.

Proof. We must proof that:
a) $\lambda I-R_{a}$ is injective
b) $\overline{\left(\lambda I-R_{a}\right)\left(l^{p}\right)} \neq l^{p}$.

Let $j \geq 1$ arbitrary fixed.
a) It is prove that $\left(\lambda I-R_{a}\right) f=0, f \in l^{p} \Rightarrow f=0$

$$
\left(\lambda I-R_{a}\right)=o \Rightarrow \sum_{k=0}^{n-1} a_{n} f(k)=\left(\lambda-a_{n}\right) f(k), \quad n \geq j .
$$

If $\lambda=a j$ we obtain:

$$
a_{j}-a_{n}=a_{n} \sum_{k=0}^{n-1} f(k), \quad n \geq j .
$$

So, $\sum_{n=0}^{\infty}|f(n)|^{p}<\infty \Leftrightarrow\left|a_{j}\right|^{p} \sum_{n=j}^{\infty}\left|\frac{1}{a_{n+1}}-\frac{1}{a_{n}}\right|^{p}<\infty$.
Let $m<-1$ be a lower limit for the sequence $\left(a_{n}\right)$. Then

$$
\left|a_{j}\right|^{p} \sum_{n=j}^{\infty}\left|\frac{1}{a_{n+1}}-\frac{1}{a_{n}}\right|^{p} \leq 2\left|a_{j}\right|^{p} \sum_{n=j}^{\infty}\left|\frac{1}{a_{n}}\right|^{p}<2\left|a_{j}\right|^{p} \sum_{n=j}^{\infty}\left|\frac{1}{m}\right|^{p}<\infty .
$$

If $\exists a_{n}=0, n \geq j, a_{j}-a_{n}=a_{n} \sum_{k=0}^{n-1} f(k) \Rightarrow a_{j}=0 \Rightarrow \lambda=0$, but from theorem $4,0 \in \sigma_{p}\left(R_{a}, l^{p}\right), p>1$. So we can calculate in hypothesis that $a_{n} \neq 0, \forall n \geq j . \Rightarrow$ the operator $\lambda I-R_{a}$ isn't injective.
b) Obviously $a_{j} I-R_{a}^{*}$ isn't injective, so $\overline{\left(\lambda I-R_{a}\right)\left(l^{p}\right)}=\overline{\left(a_{j} I-R_{a}\right)\left(l^{p}\right)} \neq$ $l^{p}, \forall j \in \mathbb{N}$, what remains for prooving because $\lambda \in \sigma_{r}\left(R_{a}, l^{p}\right)$.

Supposing that $\lambda=a_{0}$, the operator $\left(\lambda I-R_{a}\right)\left(e_{0}\right)=0, e_{0}=(1,0,0, \ldots)$, is this situation the operator $\lambda I-R_{a}$ isn't injective, too $\Rightarrow \lambda \in \sigma_{p}\left(R_{a}, l^{p}\right)$.

Theorem 7. Let R_{a} be a Rhaly operator with the property that the sequence of its main diagonal elements doesn't have distinct elements, doesn't have an infinity of equal terms, and the sequence $\left((n+1) a_{n}\right)$ is bounded. If $\lambda=a_{n}, n \in \mathbb{N}$, then $\lambda \in \sigma_{r}\left(R_{a} l^{p}\right)$.

Proof. The restriction for λ implies the fact that aren't put in discution the entries null of diagonal.

Let $a_{j} \neq 0$ a element that apeares more then two times on diagonal of R_{a} and $k, r \in \mathbb{N}$ the biggest, and the smallest integer for which $a_{j}=a_{k}=a_{r}$. Then, the equation $\left(\lambda I-R_{a}\right) f=0$ has a solution $f \in s, f \neq 0$. Remains to study if the property is true in l^{p}.

Let $I=\left\{n \geq r \mid a_{n+1}=0\right\}$. card $\left\{n \geq r \mid a_{n+1}\right\}$ is finite, because in the principal diagonal of matrix R_{a} isn't an infinite number of entries equal between them.

Then,

$$
\sum_{n=0}^{\infty}|f(n)|^{p}=\sum_{n \geq j, n \notin I}|f(n)|^{p}+\sum_{n \geq j, n \in I}|f(n)|^{p},
$$

and

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{j}}{a_{n+1}}-1\right|^{p} \neq 0
$$

such that $f \notin l^{p}$.
So, the operator $\lambda I-R_{a}$ is injective.
b) Obviously $\lambda I-R_{a}^{*}$ isn't injective.
c) The operator $a_{j} I-R_{a}^{*}$ isn't surjective. For $n \geq j, f=B g$, where B are the entries
$b_{n k}=0 \quad k>n \quad n \geq j+1$
$b_{n n}=\frac{1}{a_{j}} \quad n \geq j+1$
$b_{n, n-1}=-a_{n-1} \lambda^{-2} \quad n \geq j+2$
$b_{n, n-k}=-a_{j}^{-1} a_{n-k}\left[1+\sum_{r=1}^{k-1}(-1)^{r}\left(\sum_{n-k<i_{1}<\ldots<i_{r}<n} a_{i 1} a_{i 2} \ldots a_{i r}\right) \lambda^{-(r+1)}\right], n \geq j+3$
$b_{n, 0}=-a_{j}^{-1}\left[1+\sum_{r=1}^{n-2}(-1)^{r}\left(\sum_{2 \leq i_{1}<\ldots<i_{r} \leq n-1} a_{i 1} a_{i 2} \ldots a_{i r}\right) a_{j}^{-r}\right], n \geq j+1$.

If $j=0$ and $\left|m_{1}\right| \leq\left|a_{2}\right| \leq\left|m_{2}\right| \quad \forall n \in \mathbb{N}$,

$$
\begin{aligned}
\sum_{n=j+1}^{\infty}\left|b_{n_{j}}\right| \geq & \geq \sum_{n=j+1}^{\infty}\left|\frac{1}{a_{j}}\right|\left|1+\sum_{\substack{r=1 \\
r \text { impar }}}^{n-2}(-1)^{r}\left(\sum_{2 \leq i_{1}<\ldots<i_{r} \leq n-1} a_{i 1} a_{i 2} \ldots a_{i r}\right) a_{j}^{-r}\right| \geq \\
\geq & \geq \sum_{n=j+1}^{\infty} \frac{1}{\left|m_{2}\right|}\left|1+\sum_{\substack{r=1 \\
r \text { impar }}}^{n-2}(-1)^{r} \sum_{2 \leq i_{1}<\ldots<i_{r} \leq n-1} \frac{\left|m_{1}\right|^{r}}{\left|m_{2}\right|^{r}}\right| \geq \\
& \geq \frac{1}{\left|m_{2}\right|}\left|1+\sum_{\substack{r=1 \\
r \text { impar }}}^{j-1}(-1)^{r} \frac{\left|m_{1}\right|^{r}}{\left|m_{2}\right|^{r}}(j-1)\right|
\end{aligned}
$$

$\rightarrow \infty(j \rightarrow \infty)$. So, the operator $a_{j} I-R_{a}^{*}$ isn't surjective.

References

[1] Boyd, D. W., The spectrum of the Cesàro operator, Acta Soc. Math., 29(1980).
[2] Leibowitz, G., Rhaly matrices, J. math. Analysis Appl., 128, 272386(1987).
[3] Rhaly, H. C. Jr., Posinormal operators, J. Math. Soc. Japan, vol. 46, no. 4, 425-428(1999).
[4] Rhaly, H. C. Jr., Hyponormal terraced matrices, For East J. Math. Soc. 5, (1997).
[5] Rhaly, H. C. Jr., Terraced matrices, Bull. London Math. Soc., 21, 399406(1989).
"Lucian Blaga" University, Sibiu
Department of Mathematics
Str. Dr. I. Raţiu, no. 5-7
2400 Sibiu, Romania
E-mail: amelia.bucur@mail.ulbsibiu.ro

