A Structural Theorem of the Generalized Spline Functions ${ }^{1}$

 Adrian Branga

 Adrian Branga}

Abstract

In the introduction of this paper is presented the definition of the generalized spline functions as solutions of a variational problem and are shown some theorems regarding to the existence and uniqueness. The main result of this article consist in a structural theorem of the generalized spline functions based on the properties of the spaces, operator and interpolatory set involved.

2000 Mathematics Subject Classification: 41A15, 41A65, 41A50

1 Introduction

Definition 1. Let E_{1} be a real linear space, $\left(E_{2},\|\cdot\|_{2}\right)$ a normed real linear space, $T: E_{1} \rightarrow E_{2}$ an operator and $U \subseteq E_{1}$ a non-empty set. The problem of finding the elements $s \in U$ which satisfy

$$
\begin{equation*}
\|T(s)\|_{2}=\inf _{u \in U}\|T(u)\|_{2}, \tag{1}
\end{equation*}
$$

is called the general spline interpolation problem, corresponding to the set U.

[^0]A solution of this problem, provided that exists, is named general spline interpolation element, corresponding to the set U.

The set U is called interpolatory set.
In the sequel we assume that E_{1} is a real linear space, $\left(E_{2},(., .)_{2},\|.\|_{2}\right)$ is a real Hilbert space, $T: E_{1} \rightarrow E_{2}$ is a linear operator and $U \subseteq E_{1}$ is a non-empty set.

Theorem 1. (Existence Theorem) If U is a convex set and $T(U)$ is a closed set, then the general spline interpolation problem (1) (corresponding to U) has at least a solution.

The proof is shown in the papers [1, 3].
For every element $s \in U$ we define the set

$$
\begin{equation*}
U(s):=U-s \tag{2}
\end{equation*}
$$

Lemma 1. For every element $s \in U$ the set $U(s)$ is non-empty $\left(0_{E_{1}} \in\right.$ $U(s))$.

The result follows directly from the relation (2).
Theorem 2. (Uniqueness Theorem) If U is a convex set, $T(U)$ is a closed set and exists an element $s \in U$ solution of the general spline interpolation problem (1) (corresponding to U), such that $U(s)$ is linear subspace of E_{1}, then the following statements are true
i) For any elements $s_{1}, s_{2} \in U$ solutions of the general spline interpolation problem (1) (corresponding to U) we have

$$
\begin{equation*}
s_{1}-s_{2} \in \operatorname{Ker}(T) \cap U(s) ; \tag{3}
\end{equation*}
$$

ii) The element $s \in U$ is the unique solution of the general spline interpolation problem (1) (corresponding to U) if and only if

$$
\begin{equation*}
\operatorname{Ker}(T) \cap U(s)=\left\{0_{E_{1}}\right\} . \tag{4}
\end{equation*}
$$

A proof is presented in the papers $[1,2]$.
Lemma 2. For every element $s \in U$ the following statements are true
i) $T(U(s))$ is non-empty set $\left(0_{E_{2}} \in T(U(s))\right)$;
ii) $T(U)=T(s)+T(U(s))$;
iii) If $U(s)$ is linear subspace of E_{1}, then $T(U(s))$ is linear subspace of E_{2}.

For a proof see the paper [1].
Lemma 3. For every element $s \in U$ the set $(T(U(s)))^{\perp}$ has the following properties
i) $(T(U(s)))^{\perp}$ is non-empty set $\left(0_{E_{2}} \in(T(U(s)))^{\perp}\right)$;
ii) $(T(U(s)))^{\perp}$ is linear subspace of E_{2};
iii) $(T(U(s)))^{\perp}$ is closed set;
iv) $(T(U(s))) \cap(T(U(s)))^{\perp}=\left\{0_{E_{2}}\right\}$.

A proof is shown in the paper [1].

2 Main result

Theorem 3. An element $s \in U$, such that $U(s)$ is linear subspace of E_{1}, is solution of the general spline interpolation problem (1) (corresponding to $U)$ if and only if the following equality is true

$$
\begin{equation*}
T(U) \cap(T(U(s)))^{\perp}=\{T(s)\} \tag{5}
\end{equation*}
$$

Proof. Let $s \in U$ be an element, such that $U(s)$ is linear subspace of E_{1}. 1) Suppose that s is solution of the general spline interpolation problem (1) (corresponding to U) and show that the equality (5) is true.

Since $s \in U$ it is obvious that

$$
\begin{equation*}
T(s) \in T(U) \tag{6}
\end{equation*}
$$

Let $\lambda \in[0,1]$ be an arbitrary number and $T\left(u_{1}\right), T\left(u_{2}\right) \in T(U)$ be arbitrary elements $\left(u_{1}, u_{2} \in U\right)$. From Lemma 2 ii) results that there are the elements $T\left(\widetilde{u}_{1}\right), T\left(\widetilde{u}_{2}\right) \in T(U(s))\left(\widetilde{u}_{1}, \widetilde{u}_{2} \in U(s)\right)$ so that $T\left(u_{1}\right)=T(s)+$ $T\left(\widetilde{u}_{1}\right), T\left(u_{2}\right)=T(s)+T\left(\widetilde{u}_{2}\right)$. Consequently, we have

$$
\begin{gathered}
(1-\lambda) T\left(u_{1}\right)+\lambda T\left(u_{2}\right)=(1-\lambda)\left(T(s)+T\left(\widetilde{u}_{1}\right)\right)+\lambda\left(T(s)+T\left(\widetilde{u}_{2}\right)\right)= \\
=T(s)+\left((1-\lambda) T\left(\widetilde{u}_{1}\right)+\lambda T\left(\widetilde{u}_{2}\right)\right) .
\end{gathered}
$$

Because $U(s)$ is linear subspace of E_{1}, applying Lemma 2 iii), results that $T(U(s))$ is linear subspace of E_{2}, hence $(1-\lambda) T\left(\widetilde{u}_{1}\right)+\lambda T\left(\widetilde{u}_{2}\right) \in T(U(s))$. Therefore, we have $(1-\lambda) T\left(u_{1}\right)+\lambda T\left(u_{2}\right) \in T(s)+T(U(s))$ and using Lemma 2 ii) we obtain

$$
(1-\lambda) T\left(u_{1}\right)+\lambda T\left(u_{2}\right) \in T(U)
$$

i.e. $T(U)$ is a convex set.

Since $s \in U$ is solution of the general spline interpolation problem (1) (corresponding to U) it follows that

$$
\|T(s)\|_{2}=\inf _{u \in U}\|T(u)\|_{2}
$$

and seeing the equality $\{T(u) \mid u \in U\}=\{t \mid t \in T(U)\}$ it obtains

$$
\begin{equation*}
\|T(s)\|_{2}=\inf _{t \in T(U)}\|t\|_{2} \tag{7}
\end{equation*}
$$

Let $t \in T(U)$ be an arbitrary element $(u \in U)$.

We consider a certain $\alpha \in(0,1)$ and define the element

$$
\begin{equation*}
t^{\prime}=(1-\alpha) T(s)+\alpha t \tag{8}
\end{equation*}
$$

Because $\alpha \in(0,1), T(s), t \in T(U)$ and taking into account that $T(U)$ is a convex set, from the relation (8) results

$$
\begin{equation*}
t^{\prime} \in T(U) . \tag{9}
\end{equation*}
$$

Therefore, from the relations (7), (9) we deduce

$$
\|T(s)\|_{2} \leq\left\|t^{\prime}\right\|_{2}
$$

and considering the equality (8) we find

$$
\|T(s)\|_{2} \leq\|(1-\alpha) T(s)+\alpha t\|_{2}
$$

which is equivalent to

$$
\begin{equation*}
\|T(s)\|_{2}^{2} \leq\|(1-\alpha) T(s)+\alpha t\|_{2}^{2} \tag{10}
\end{equation*}
$$

Using the properties of the inner product it obtains

$$
\begin{gather*}
\|(1-\alpha) T(s)+\alpha t\|_{2}^{2}=\|T(s)+\alpha(t-T(s))\|_{2}^{2}= \tag{11}\\
=\|T(s)\|_{2}^{2}+2 \alpha(T(s), t-T(s))_{2}+\alpha^{2}\|t-T(s)\|_{2}^{2}
\end{gather*}
$$

Substituting the equality (11) in the relation (10) it follows that

$$
\|T(s)\|_{2}^{2} \leq\|T(s)\|_{2}^{2}+2 \alpha(T(s), t-T(s))_{2}+\alpha^{2}\|t-T(s)\|_{2}^{2},
$$

i.e.

$$
2 \alpha(T(s), t-T(s))_{2}+\alpha^{2}\|t-T(s)\|_{2}^{2} \geq 0
$$

and dividing by $2 \alpha \in(0,2)$ we obtain

$$
\begin{equation*}
(T(s), t-T(s))_{2}+\frac{\alpha}{2}\|t-T(s)\|_{2}^{2} \geq 0 \tag{12}
\end{equation*}
$$

Because $\alpha \in(0,1)$ was chosen arbitrarily it follows that the inequality (12) holds $(\forall) \alpha \in(0,1)$ and passing to the limit for $\alpha \rightarrow 0$ it obtains

$$
(T(s), t-T(s))_{2} \geq 0 .
$$

As the element $t \in T(U)$ was chosen arbitrarily we deduce that the previous relation is true $(\forall) t \in T(U)$, i.e.

$$
\begin{equation*}
(T(s), t-T(s))_{2} \geq 0, \quad(\forall) t \in T(U) \tag{13}
\end{equation*}
$$

Let show that in the relation (13) we have only equality. Suppose that ($\exists) t_{0} \in T(U)$ such that

$$
\begin{equation*}
\left(T(s), t_{0}-T(s)\right)_{2}>0 \tag{14}
\end{equation*}
$$

Using the properties of the inner product, from the relation (14) we find

$$
\begin{equation*}
\left(T(s), T(s)-t_{0}\right)_{2}<0 . \tag{15}
\end{equation*}
$$

Because $t_{0} \in T(U)$ it results that $T(s)-t_{0} \in T(s)-T(U)$ and considering Lemma 2 ii) it obtains $T(s)-t_{0} \in-T(U(s))$. But, $U(s)$ being linear subspace of E_{1}, applying Lemma 2 iii) we deduce that $T(U(s))$ is linear subspace of E_{2}, hence $-T(U(s))=T(U(s))$. Consequently, $T(s)-t_{0} \in$ $T(U(s))$ and using Lemma 2 ii) we find $T(s)-t_{0} \in T(U)-T(s)$, i.e.
($\exists) t_{1} \in T(U)$ such that $T(s)-t_{0}=t_{1}-T(s)$.
From the relations (15) and (16) it follows that there is an element $t_{1} \in T(U)$ so that $\left(T(s), t_{1}-T(s)\right)_{2}<0$, which is in contradiction with the relation (13).

Therefore, the relation (13) is equivalent to

$$
\begin{equation*}
(T(s), t-T(s))_{2}=0, \quad(\forall) t \in T(U) \tag{17}
\end{equation*}
$$

Let $\tilde{t} \in T(U(s))$ be an arbitrary element.

Applying Lemma 2 ii) we obtain that $\tilde{t} \in T(U)-T(s)$, so there is an element $t \in T(U)$ such that $\tilde{t}=t-T(s)$. Using the relation (17) we deduce

$$
(T(s), \widetilde{t})_{2}=0
$$

As the element $\tilde{t} \in T(U(s))$ was chosen arbitrarily we find that the previous relation is true $(\forall) \widetilde{t} \in T(U(s))$, hence

$$
\begin{equation*}
T(s) \in(T(U(s)))^{\perp} \tag{18}
\end{equation*}
$$

Consequently, from the relations (6) and (18) it follows that

$$
\begin{equation*}
T(s) \in T(U) \cap(T(U(s)))^{\perp} \tag{19}
\end{equation*}
$$

Let show that $T(s)$ is the unique element from $T(U) \cap(T(U(s)))^{\perp}$. Suppose that $(\exists) g \in T(U) \cap(T(U(s)))^{\perp}$, with $g \neq T(s)$. Using the properties of the inner product it obtains
(20) $\|g-T(s)\|_{2}^{2}=(g-T(s), g-T(s))_{2}=(g-T(s), g)_{2}-(g-T(s), T(s))_{2}$.

Because $g \in T(U)$ we deduce that $g-T(s) \in T(U)-T(s)$ and applying Lemma 2 ii) we find $g-T(s) \in T(U(s))$. Taking into account that $g \in$ $(T(U(s)))^{\perp}, T(s) \in(T(U(s)))^{\perp}$ it results

$$
\begin{equation*}
(g-T(s), g)_{2}=0 \tag{21}
\end{equation*}
$$

respectively

$$
\begin{equation*}
(g-T(s), T(s))_{2}=0 \tag{22}
\end{equation*}
$$

Substituting the equalities (21), (22) in the relation (20) we obtain

$$
\|g-T(s)\|_{2}^{2}=0
$$

i.e. $g=T(s)$, which is in contradiction with the assumption made before.

Therefore, $T(s)$ is the unique element from $T(U) \cap(T(U(s)))^{\perp}$, hence

$$
T(U) \cap(T(U(s)))^{\perp}=\{T(s)\} .
$$

2) Suppose that the equality (5) is true and show that s is solution of the general spline interpolation problem (1) (corresponding to U).

Let $t \in T(U)$ be an arbitrary element.
Applying Lemma 2 ii) we deduce that there is an element $\tilde{t} \in T(U(s))$ such that $t=T(s)+\widetilde{t}$. Taking into account that $T(s) \in(T(U(s)))^{\perp}$ we find

$$
(T(s), \widetilde{t})_{2}=0
$$

which is equivalent to

$$
\begin{equation*}
(T(s), t-T(s))_{2}=0 . \tag{23}
\end{equation*}
$$

Using the properties of the inner product, considering the relation (23) and taking into account the properties of the norm, it follows that

$$
\begin{gathered}
\|t\|_{2}^{2}=\|T(s)+(t-T(s))\|_{2}^{2}= \\
=\|T(s)\|_{2}^{2}+2(T(s), t-T(s))_{2}+\|t-T(s)\|_{2}^{2}= \\
=\|T(s)\|_{2}^{2}+\|t-T(s)\|_{2}^{2} \geq\|T(s)\|_{2}^{2},
\end{gathered}
$$

with equality if and only if $\|t-T(s)\|_{2}^{2}=0$, i.e. $t=T(s)$.
The previous relation implies

$$
\|T(s)\|_{2} \leq\|t\|_{2},
$$

with equality if and only if $t=T(s)$.
As the element $t \in T(U)$ was chosen arbitrarily we obtain that the previous inequality is true $(\forall) t \in T(U)$, i.e.

$$
\begin{equation*}
\|T(s)\|_{2} \leq\|t\|_{2}, \quad(\forall) t \in T(U) \tag{24}
\end{equation*}
$$

and the equality is attained in the element $t=T(s)$, which is equivalent to

$$
\|T(s)\|_{2}=\inf _{t \in T(U)}\|t\|_{2}
$$

Consequently, s is solution of the general spline interpolation problem (1) (corresponding to U).

References

[1] A. Branga, Contribuţii la Teoria Funcţiilor spline, Teză de Doctorat, Universitatea Babeş-Bolyai, Cluj-Napoca, 2002.
[2] Gh. Micula, Funcţii spline şi aplicaţii, Editura Tehnică, Bucureşti, 1978.
[3] Gh. Micula, S. Micula, Handbook of splines, Kluwer Acad. Publ., Dordrecht-Boston-London, 1999.

Adrian Branga
University "Lucian Blaga" of Sibiu
Department of Mathematics
Dr. I. Raţiu 5-7, Sibiu 550012, Romania
e-mail: adrian_branga@yahoo.com

[^0]: ${ }^{1}$ Received 4 September, 2008
 Accepted for publication (in revised form) 20 November, 2008

