General Mathematics Vol. 17, No. 2 (2009), 127-134

On Continuous Maps in Closure Spaces¹ C. Boonpok

Abstract

The aim of this paper is to study some properties of continuous maps in closure spaces.

2000 Mathematics Subject Classification: 54A05 Key words: closure operator; closure space; continuous map.

1 Introduction

A map $u : P(X) \to P(X)$ defined on the power set P(X) of a set X is called a *closure operator* on X and the pair (X, u) is called a *closure space* if the following axioms are satisfied :

(N1) $u\emptyset = \emptyset$,

(N2) $A \subseteq uA$ for every $A \subseteq X$,

(N3) $A \subseteq B \Rightarrow uA \subseteq uB$ for all $A, B \subseteq X$.

¹Received 29 September, 2008 Accepted for publication (in revised form) 17 April, 2009

A closure operator u on a set X is called *additive* (respectively, *idempotent*) if $A, B \subseteq X \Rightarrow u(A \cup B) = uA \cup uB$ (respectively, $A \subseteq X \Rightarrow uuA = uA$). A subset $A \subseteq X$ is *closed* in the closure space (X, u) if uA = A and it is *open* if its complement is closed. The empty set and the whole space are both open and closed.

A closure space (Y, v) is said to be a *subspace* of (X, u) if $Y \subseteq X$ and $vA = uA \cap Y$ for each subset $A \subseteq Y$. If Y is closed in (X, u), then the subspace (Y, v) of (X, u) is said to be closed too.

2 Continuous Maps

Definition 2.1. Let (X, u) and (Y, v) be closure spaces. A map $f : (X, u) \to (Y, v)$ is said to be *continuous* if $f(uA) \subseteq vf(A)$ for every subset $A \subseteq X$.

Proposition 2.2. Let (X, u) and (Y, v) be closure spaces. If $f : (X, u) \to (Y, v)$ is continuous, then $uf^{-1}(B) \subseteq f^{-1}(vB)$ for every subset $B \subseteq Y$.

Proof. Let $B \subseteq Y$. Then $f^{-1}(B) \subseteq X$. Since f is continuous, we have $f(uf^{-1}(B)) \subseteq vf(f^{-1}(B)) \subseteq vB$. Therefore, $f^{-1}(f(uf^{-1}(B))) \subseteq f^{-1}(vB)$. Hence, $uf^{-1}(B) \subseteq f^{-1}(vB)$.

Clearly, if $f : (X, u) \to (Y, v)$ is continuous, then $f^{-1}(F)$ is a closed subset of (X, u) for every closed subset F of (Y, v).

The following statement is evident:

Proposition 2.3. Let (X, u) and (Y, v) be closure spaces. If $f : (X, u) \to (Y, v)$ is continuous, then $f^{-1}(G)$ is an open subset of (X, u) for every open subset G of (Y, v).

Proposition 2.4. Let (X, u), (Y, v) and (Z, w) be closure spaces. If $f : (X, u) \to (Y, v)$ and $g : (Y, v) \to (Z, w)$ are continuous, then $g \circ f : (X, u) \to ((Z, w)$ is continuous.

Proof. Let $A \subseteq X$. Since $g \circ f(uA) = g(f(uA))$ and f is continuous, $g(f(uA)) \subseteq g(vf(A))$. As g is continuous, we get $g(vf(A)) \subseteq wg(f(A))$. Consequently, $g \circ f(uA) \subseteq wg \circ f(A)$. Hence, $g \circ f$ is continuous. **Proposition 2.5.** Let (X, u) and (Y, v) be closure spaces and let (A, u_A) be a closed subspace of (X, u). If $f : (X, u) \to (Y, v)$ is continuous, then $f|A: (A, u_A) \to (Y, v)$ is continuous.

Proof. If $B \subseteq A$, then

$$f|A(u_A B) = f|A(uB \cap A)$$

= $f|A(uB) = f(uB) \subseteq vf(B) = vf|A(B)$.

Hence, f|A is continuous.

Definition 2.6. Let (X, u) and (Y, v) be closure spaces. A map $f : (X, u) \to (Y, v)$ is said to be *closed* (resp. *open*) if f(F) is a closed (resp. open) subset of (Y, v) whenever F is a closed (resp. open) subset of (X, u).

Proposition 2.7. A map $f : (X, u) \to (Y, v)$ is closed if and only if, for each subset B of Y and each open subset G of (X, u) containing $f^{-1}(B)$, there is an open subset U of (Y, v) such that $B \subseteq U$ and $f^{-1}(U) \subseteq G$.

Proof. Suppose that f is closed. Let B be a subset of Y and G be an open subset of (X, u) such that $f^{-1}(B) \subseteq G$. Then f(X - G) is a closed subset of (Y, v). Let U = Y - f(X - G). Then U is an open subset of (Y, v) and $f^{-1}(U) = f^{-1}(Y - f(X - G)) = X - f^{-1}(f(X - G)) \subseteq X - (X - G) = G$. Therefore, U is an open subset of (Y, v) containing B such that $f^{-1}(U) \subseteq G$.

Conversely, suppose that F is a closed subset of (X, u). Then $f^{-1}(Y - f(F)) \subseteq X - F$ and X - F is an open subset of (X, u). By hypothesis, there is an open subset U of (Y, v) such that $Y - f(F) \subseteq U$ and $f^{-1}(U) \subseteq X - F$. Therefore, $F \subseteq X - f^{-1}(U)$. Consequently, $Y - U \subseteq f(F) \subseteq f(X - f^{-1}(U)) \subseteq Y - U$, which implies that f(F) = Y - U. Thus, f(F) is a closed subset of (Y, v). Hence, f is closed.

The following statement is obvious :

Proposition 2.8. Let (X, u), (Y, v) and (Z, w) be closure spaces, let $f : (X, u) \to (Y, v)$ and $g : (Y, v) \to (Z, w)$ be maps. Then

- (i) If f and g are closed, then so is $g \circ f$.
- (ii) If $g \circ f$ is closed and f is continuous and surjection, then g is closed.

(iii) If $g \circ f$ is closed and g is continuous and injection, then f is closed.

The product of a family $\{(X_{\alpha}, u_{\alpha}) : \alpha \in I\}$ of closure spaces, denoted by $\prod_{\alpha \in I} (X_{\alpha}, u_{\alpha})$, is the closure space $(\prod_{\alpha \in I} X_{\alpha}, u)$ where $\prod_{\alpha \in I} X_{\alpha}$ denotes the cartesian product of sets $X_{\alpha}, \alpha \in I$, and u is the closure operator generated by the projections $\pi_{\alpha} : \prod_{\alpha \in I} (X_{\alpha}, u) \to (X_{\alpha}, u), \alpha \in I$, i.e., is defined by $uA = \prod_{\alpha \in I} u_{\alpha} \pi_{\alpha}(A)$ for each $A \subseteq \prod_{\alpha \in I} X_{\alpha}$. The following statement is evident :

Proposition 2.9. Let $\{(X_{\alpha}, u_{\alpha}) : \alpha \in I\}$ be a family of closure spaces and let $\beta \in I$. Then the projection map $\pi_{\beta} : \prod_{\alpha \in I} (X_{\alpha}, u_{\alpha}) \to (X_{\beta}, u_{\beta})$ is closed and continuous.

Proposition 2.10. Let $\{(X_{\alpha}, u_{\alpha}) : \alpha \in I\}$ be a family of closure spaces and let $\beta \in I$. Then F is a closed subset of (X_{β}, u_{β}) if and only if $F \times \prod_{\alpha \neq \beta \ \alpha \in I} X_{\alpha}$

is a closed subset of $\prod_{\alpha \in I} (X_{\alpha}, u_{\alpha})$.

Proof. Let $\beta \in I$ and let F be a closed subset of (X_{β}, u_{β}) . Since π_{β} is continuous, $\pi_{\beta}^{-1}(F)$ is a closed subset of $\prod_{\alpha \in I} (X_{\alpha}, u_{\alpha})$. But $\pi_{\beta}^{-1}(F) = F \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}$, hence $F \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}$ is a closed subset of $\prod_{\alpha \in I} (X_{\alpha}, u_{\alpha})$. Conversely, let $F \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}$ be a closed subset of $\prod_{\alpha \in I} (X_{\alpha}, u_{\alpha})$. Since π_{β} is closed, $\pi_{\beta} \left(F \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha} \right) = F$ is a closed subset of (X_{β}, u_{β}) .

Proposition 2.11. Let $\{(X_{\alpha}, u_{\alpha}) : \alpha \in I\}$ be a family of closure spaces and let $\beta \in I$. Then G is an open subset of (X_{β}, u_{β}) if and only if $G \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}$ is an open subset of $\prod_{\alpha \in I} (X_{\alpha}, u_{\alpha})$. **Proof.** Let $\beta \in I$ and let G be an open subset of (X_{β}, u_{β}) . Since π_{β} is continuous, $\pi_{\beta}^{-1}(G)$ is an open subset of $\prod_{\alpha \in I} (X_{\alpha}, u_{\alpha})$. But $\pi_{\beta}^{-1}(G) = G \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}$, therefore $G \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}$ is an open subset of $\prod_{\alpha \in I} (X_{\alpha}, u_{\alpha})$. Conversely, let $G \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} (X_{\alpha}, u_{\alpha})$ be an open subset of $\prod_{\alpha \in I} (X_{\alpha}, u_{\alpha})$. Then $\prod_{\alpha \in I} X_{\alpha} - G \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}$ is a closed subset of $\prod_{\alpha \in I} (X_{\alpha}, u_{\alpha})$. But $\prod_{\alpha \in I} X_{\alpha} - G \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha} = (X_{\beta} - G) \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}$, hence $(X_{\beta} - G) \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}$ is a closed subset of (X_{β}, u_{α}) . By Proposition 2.10, $X_{\beta} - G$ is a closed subset of (X_{β}, u_{β}) .

Proposition 2.12. Let (X, u) be a closure space, $\{(Y_{\alpha}, v_{\alpha}) : \alpha \in I\}$ be a family of closure spaces and $f : (X, u) \to \prod_{\alpha \in I} (Y_{\alpha}, v_{\alpha})$ be a map. Then f is closed if and only if $\pi_{\alpha} \circ f$ is closed for each $\alpha \in I$.

Proof. Let f be closed. Since π_{α} is closed for each $\alpha \in I$, also $\pi_{\alpha} \circ f$ is closed for each $\alpha \in I$.

Conversely, let $\pi_{\alpha} \circ f$ be closed for each $\alpha \in I$. Suppose that f is not closed. Then there exists a closed subset F of (X, u) such that $\prod_{\alpha \in I} v_{\alpha} \pi_{\alpha}(f(F)) \notin f(F)$. Therefore, there exists $\beta \in I$ such that $v_{\beta} \pi_{\beta}(f(F)) \notin \pi_{\beta}f(F)$. But $\pi_{\beta} \circ f$ is closed, hence $\pi_{\beta}(f(F))$ is a closed subset of (Y_{β}, v_{β}) . This is a contradiction.

Proposition 2.13. Let $\{(X_{\alpha}, u_{\alpha}) : \alpha \in I\}$ and $\{(Y_{\alpha}, v_{\alpha}) : \alpha \in I\}$ be families of closure spaces. For each $\alpha \in I$, let $f_{\alpha} : (X_{\alpha}, u_{\alpha}) \to (Y_{\alpha}, v_{\alpha})$ be a surjection and let $f : \prod_{\alpha \in I} (X_{\alpha}, u_{\alpha}) \to \prod_{\alpha \in I} (Y_{\alpha}, v_{\alpha})$ be defined by $f((x_{\alpha})_{\alpha \in I}) =$ $(f_{\alpha}(x_{\alpha}))_{\alpha \in I}$. Then f is closed if and only if f_{α} is closed for each $\alpha \in I$.

Proof.Let $\beta \in I$ and let F be a closed subset of (X_{β}, u_{β}) . Then $F \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}$ is a closed subset of $\prod_{\alpha \in I} (X_{\alpha}, u_{\alpha})$. Since f is closed, $f\left(F \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}\right)$ is a

closed subset of $\prod_{\alpha \in I} (Y_{\alpha}, v_{\alpha})$. But $f\left(F \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}\right) = f_{\beta}(F) \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} Y_{\alpha}$, hence $f_{\beta}(F) \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} Y_{\alpha}$ is a closed subset of $\prod_{\alpha \in I} (Y_{\alpha}, v_{\alpha})$. By Proposition 2.10, $f_{\beta}(F)$ is a closed subset of (Y_{β}, v_{β}) . Hence, f_{β} is closed.

Conversely, let f_{β} be closed for each $\beta \in I$. Suppose that f is not closed. Then there exists a closed subset F of $\prod_{\alpha \in I} (X_{\alpha}, u_{\alpha})$ such that $\prod_{\beta \in I} v_{\beta} \pi_{\beta}(f(F)) \notin f(F)$. Therefore, there exists $\beta \in I$ such that $v_{\beta} f_{\beta}(\pi_{\beta}(F)) \notin f_{\beta}(\pi_{\beta}(F))$. But $\pi_{\beta}(F)$ is a closed subset of (X_{β}, u_{β}) and f_{β} is closed, $f_{\beta}(\pi_{\beta}(F))$ is a closed subset of (Y_{β}, v_{β}) . This is a contradiction.

Proposition 2.14. Let (X, u) be a closure space, $\{(Y_{\alpha}, v_{\alpha}) : \alpha \in I\}$ be a family of closure spaces and $f : (X, u) \to \prod_{\alpha \in I} (Y_{\alpha}, v_{\alpha})$ be a map. Then f is continuous if and only if $\pi_{\alpha} \circ f$ is continuous for each $\alpha \in I$.

Proof. Let f be continuous. Since π_{α} is continuous for each $\alpha \in I$, $\pi_{\alpha} \circ f$ is continuous for each $\alpha \in I$.

Conversely, let $\pi_{\alpha} \circ f$ be continuous for each $\alpha \in I$. Suppose that f is not continuous. Then there exists a subset A of X such that $f(uA) \not\subseteq \prod_{\alpha \in I} v_{\alpha} \pi_{\alpha}(f(A))$. Therefore, there exists $\beta \in I$ such that $\pi_{\beta}(f(uA)) \not\subseteq v_{\beta} \pi_{\beta}(f(A))$. This is contradicts the continuity of $\pi_{\beta} \circ f$. Consequently, f is continuous.

Proposition 2.15. Let $\{(X_{\alpha}, u_{\alpha}) : \alpha \in I\}$ and $\{(Y_{\alpha}, v_{\alpha}) : \alpha \in I\}$ be families of closure spaces. For each $\alpha \in I$, let $f_{\alpha} : (X_{\alpha}, u_{\alpha}) \to (Y_{\alpha}, v_{\alpha})$ be a map and let $f : \prod_{\alpha \in I} (X_{\alpha}, u_{\alpha}) \to \prod_{\alpha \in I} (Y_{\alpha}, v_{\alpha})$ be defined by $f((x_{\alpha})_{\alpha \in I}) = (f_{\alpha}(x_{\alpha}))_{\alpha \in I}$. Then f is continuous if and only if f_{α} is continuous for each $\alpha \in I$. **Proof.** Let f be continuous, let $\beta \in I$ and let $A \subseteq X_{\beta}$. Then

$$f_{\beta}(u_{\beta}A) = \pi_{\beta} \left(f_{\beta}(u_{\beta}A) \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} f_{\alpha}(u_{\alpha}X_{\alpha}) \right)$$
$$= \pi_{\beta} \left(f \left(u_{\beta}A \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} u_{\alpha}X_{\alpha} \right) \right)$$
$$= \pi_{\beta} \left(f \left(u \left(A \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha} \right) \right) \right)$$
$$\subseteq \pi_{\beta} \left(v f \left(A \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha} \right) \right)$$
$$= \pi_{\beta} \left(v \left(f_{\beta}(A) \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} f_{\alpha}(X_{\alpha}) \right) \right)$$
$$= \pi_{\beta} \left(v_{\beta}f_{\beta}(A) \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} v_{\alpha}f_{\alpha}(X_{\alpha}) \right)$$
$$= v_{\beta}f_{\beta}(A).$$

Hence, f_{β} is continuous.

Conversely, let f_{α} be continuous for each $\alpha \in I$ and let $A \subseteq \prod_{\alpha \in I} X_{\alpha}$. Then

$$f(uA) = \prod_{\alpha \in I} f_{\alpha}(\prod_{\alpha \in I} u_{\alpha}\pi_{\alpha}(A))$$
$$= \prod_{\alpha \in I} f_{\alpha}(u_{\alpha}\pi_{\alpha}(A))$$
$$\subseteq \prod_{\alpha \in I} v_{\alpha}f_{\alpha}(\pi_{\alpha}(A))$$
$$= \prod_{\alpha \in I} v_{\alpha}\pi_{\alpha}(f(A))$$
$$= vf(A).$$

Therefore f is continuous.

References

- E. Čech , *Topological Spaces*, Topological Papers of Eduard Čech, Academia, Prague 1968, 436–472.
- J. Chvalina, On homeomorphic topologies and equivalent set-systems, Arch. Math. 2, Scripta Fac. Sci. Nat. UJEP Brunensis, XII (1976), 107–116.
- [3] J. Chvalina, Stackbases in power sets of neighbourhood spaces preserving the continuity of mappings, Arch. Math. 2, Scripta Fac. Sci. Nat. UJEP Brunensis, XVII (1981), 81–86.
- [4] L. Skula, Systeme von stetigen abbildungen, Czech. Math. J., 17 (92) (1967), 45–52.
- [5] J. Slapal, Closure operations for digital topology, Theoret. Comput. Sci., 305 (2003), 457–471.

Department of Mathematics Faculty of Science Mahasarakham University Mahasarakham, Thailand 44150 E-mail: chawalit_boonpok@hotmail.com