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Mapping Φ
P in Normed Linear Spaces and

Characterization of Orthogonality Problem
of Best Approximations in 2-norm1
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Abstract

In order to characterizations of best approximations have been

given in 2-norm space (X, ‖ ., . ‖). Some generalization of the func-

tion Φp of Dragomir type have been given in the context where the

said generalization help to formulate the characterizations what have

been proposed in this article.
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1 Introduction

In a 2-normed linear space (X, ‖ ., . ‖) our present aim is to characterize

the set of best approximations and related generalized orthogonality of a

pair of elements in 2-normed space with reference to the 2-norm ([7] and

[11]). We introduce below the Φp function and their properties as were done
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by Dragomir in an earlier reference [6]. We also study the boundedness,

monotonocity and convexicity properties of the generalized Φp functions.

Let (X, ‖ ., . ‖) be real 2 - normed linear space. Consider the 2- norm

derivative

(y, x/z)i = lim
t→0−

‖ x + ty, z ‖2 − ‖ x, z ‖2

2t

and

(y, x/z)s = lim
t→0+

‖ x + ty, z ‖2 − ‖ x, z ‖2

2t

which are well defined for every pair x, y ∈ X and z ∈ X/L{x, y}, G) (where

L({x,y}, G) stands for the linear manifolds - spaned by x and y).

For the sake of completeness we list here some of the main properties of

these mappings that will be used in the sequel([2],[3],[4],[5] and [6]),assuming

that p, z ∈ {s, i} and p 6= 2.

(i) (x, x/z)p =‖ x, z ‖2

(ii) (αx, βy/z)p = αβ(x, y/z)p if α, β ≥ 0

(iii) | (x, y/z)p |≤‖ x, z ‖ ‖ y, z ‖

(iv) (αx + y, x/z)p = α(x, x/z)p + (y, x/z)p where α ∈ R

(v) (−x, y/z)p = −(x, y/z)q

(vi) (x + y, w/z)p ≤‖ x, z ‖ ‖ w, z ‖ +(y, w/z)p

(vii) The mapping (., ./z)p is continuous and subadditive in the first variable

for p = s(or p = i).

(viii)The element x ∈ X is Birkhoff orthogonal to the element y ∈ X ( i.e.

‖ x + ty, z ‖≥‖ x, z ‖ t for all t ∈ R and z ∈ X/L({x, y}, G) if and only if

(y, x/z)i ≤ 0 ≤ (y, x/z)s

(ix) The 2 - normed linear space (X, ‖ ., . ‖) is smooth at the point x0 ∈

X\{0} if and only if the mapping y → (y, x0/z)p is linear, or if and only

if (y, x0/z)s = (y, x0/z)i for all y ∈ X and z ∈ X/L({x, y}, G). (x) If the

2-norm ‖ ., . ‖ is induced by an 2 - inner product (., ./z) then

(y, x/z)i = (y, x/z) = (y, x/z)s for all x, y ∈ X and z ∈ X/L({x, y}, G).
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2 Properties of the mapping Φ
p
x,y/z

For three fixed linearly independent vectors x, y in X and

z ∈ X/L({x, y}, G) we consider the mapping

Φp
x,y/z(t) =

(y, x + ty/z)p

‖ x + ty, z ‖
, p = s or p = i

which is well defined for all t ∈ R.

Theorem 2.1. Let (X, ‖ ., . ‖) be a real 2- normed liner space and x,y, z

two linearly independent vectors in X and z ∈ X/L({x, y}, G). Then

(i) The mapping Φp
x,y/z is bounded on R with

(2.1) | Φp
x,y/z(t) |≤‖ y, z ‖ for all t ∈ R

(ii) We have the inequality

(2.2)
‖ x + 2uy, z ‖ − ‖ x + uy, z ‖

u
≤ Φi

x,y/z(u) ≤ Φs
x,y/z

≤
‖ x + uy, z ‖ − ‖ x, z ‖

u
for all u < 0

and

(2.3)
‖ x + 2ty, z ‖ − ‖ x + ty, z ‖

t
≥ Φs

x,y/z(t) ≥ Φi
x,y/z(t)

≥
‖ x + ty, z ‖ − ‖ x, z ‖

t
(iii) The mapping Φp

x,y/z are strictly increasing on R.

(iv) We have the limits

(2.4) lim
u→−∞

Φp
x,y/z(u) =‖ y, z ‖, lim

t→+∞

Φp
x,y/z(t) =‖ y, z ‖

and

(2.5) lim
t→0+

Φp
x,y/z(t) =

(y, x/z)s

‖ x, z ‖
, lim

u→0−
Φp

x,y/z(u) =
(y, x/z)i

‖ x, z ‖

(v) The mapping Φs is right continuous and Φi is left continuous at every

point of R.
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Proof. (i) Follows by the Schwarz inequality.

(ii) Let u < 0. By the Schwarz inequality (iii) and by properties (iv) and

(ii) of 2 -norm derivatives (., ./z)i, we have

‖ x+2uy, z ‖ ‖ x+uy, z ‖≥ (x+2uy, x+uy/z)s = (x+uy+uy, x+uy/z)s

=‖ x + uy, z ‖2 −u(−y, x + uy/z)s

=‖ x + uy, z ‖2 + u(y, x + uy/z)i.

From which we get

‖ x + 2uy, z ‖ − ‖ x + uy, z ‖‖ x + uy, z ‖≥ u(y, x + uy/z)i.

This implies

‖ x + 2uy, z ‖ − ‖ x + uy, z ‖

u
≤

(y, x + uy/z)i

‖ x + uy, z ‖

and the (i) inequality in (2.2) is proved.

Further,

‖ x, z ‖ ‖ x + uy, z ‖≥ (x, x + uy/z)s

= (x + uy − uy, x + uy/z)s

=‖ x + uy, z ‖2 +(−uy, x + uy/z)s.

From which we get

‖ x + uy, z ‖2 − ‖ x, z ‖2

u
≥

(y, x + uy/z)s

‖ x + uy, z ‖
= Φs

x,y/z(u).

The (iii) inequality in (2.2) is proved.

Inequality (2.3) is proved similarly.

(iii) Suppose that p ∈ {i, s} and t2 > t1. Then by Schwarz inequality

‖ x + t2y, z ‖‖ x + t1y, z ‖≥ (x + t2y, x + t1y/z)p
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for all x, y ∈ X and z ∈ X/L({x, y}, G). Using properties of 2-norm deriva-

tives, we obtain

(x + t2y, x + t1y/z)p ≥ (t2 − t1/y + x + t1y/z)p

‖ x + t1y, z ‖2 +(t2 − t1)(y, x + t1y/z)p

and the above inequality yields

‖ x + t2y, z ‖‖ x + t1y, z ‖≥‖ x + t1y, z ‖2 +(t2 − t1)(y, x + t1y/z)p

Hence

Φp
x,y/z(t1) =

(y, x + t1y/z)p

‖ x + t1y, z ‖
≤

‖ x + t2y, z ‖ − ‖ x − t1y, z ‖

t2 − t1

put t = t2 − t1 > 0 then by (2.3)

‖ x + t2y, z ‖ − ‖ x − t1y, z ‖

t2 − t1
=

‖ x + t1y + ty, z ‖ − ‖ x + t1y, z ‖

t

Φp
x,y/z(t1) =

(y, x + t1y/z)p

‖ x + t1y, z ‖

≤ Φp
x+t1y,y/z(t) =

(y, x + t1y + ty/z)p

‖ x + t1y + ty, z ‖

=
(y, x + t2y/z)p

‖ x + t2y, z ‖
= Φp

x,y/z(t2)

and the statement is proved.

(iv)We have

lim
t→+∞

‖ x + ty, z ‖ − ‖ x, z ‖

t
= lim

α→0+

‖ x + y
α
, z ‖ − ‖ x, z ‖

1

α

lim
α→0+

‖ αx + y, z ‖ −α ‖ x, z ‖

t
= ‖ y, z ‖

and

lim
t→+∞

‖ x + 2ty, z ‖ − ‖ x + ty, z ‖

t
= lim

α→+∞

| t |‖
x

t
+ 2y, z ‖ − ‖

x

t
+ y, z ‖
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= lim
t→+∞

(‖ 2y +
x

t
, z ‖ − ‖ y +

x

t
, z ‖)

= lim
α→0+

(‖ 2y + αx, z ‖ − ‖ y + αx, z ‖)

= 2 ‖ y, z ‖ − ‖ y, z ‖ − ‖ y, z ‖ .

Applying the inequality (2.3) we get the second limit in (2.4) the first limit

is obtained similarly.

Further

lim
t→0+

‖ x + ty, z ‖ − ‖ x, z ‖

t
=

lim
t→0+

‖ x + ty, z ‖2 − ‖ x, z ‖2

2t
× lim

t→0+

2

‖ x + ty, z ‖ + ‖ x, z ‖

=
(y, x/z)s

‖ x, z ‖

and

lim
t→0+

‖ x + 2ty, z ‖ − ‖ x + ty, z ‖

t

= lim
t→0+

‖ x + 2ty, z ‖ − ‖ x, z ‖ −(‖ x + ty, z ‖ − ‖ x, z ‖)

t

= 2 lim
t→0+

‖ x + 2ty, z ‖ − ‖ x, z ‖

2t
− lim

t→0+

‖ x + ty, z ‖ − ‖ x, z ‖

t

2(y, x/z)s

‖ x, z ‖
−

(y, x/z)s

‖ x, z ‖
=

(y, x/z)s

‖ x, z ‖)
.

Inequality (2.3) applied to these limit yields the first in (2.3); the second

limit is obtained similarly.

(v) Let t0 ∈ R

lim
α→t+

0

Φp
x,y/z(α) = lim

t→0+
Φp

x,y/z(t0 + t) = lim
t→0+

(y, x + t0y + ty/z)p

‖ x + t0y + ty, z ‖

lim
t→0+

Φp
x,y/z(t) =

(y, x + t0y/z)s

‖ x + t0y, z ‖
= Φs

x,y/z(t0)

in the statement above the right continuity is proved. The statement about

the left continuity is proved similarly.
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3 New Characterizations of Birkhoff Orthog-

onality and Smoothness

The mapping Φp
x,y/z can be used to give a characterization of Birkhoff Or-

thogonality.

Theorem 3.1. Let (X, ‖ ., . ‖) be a real normed linear space, and let x,y

be a two elements of X and ∈ X/L({x, y}, G). The following statement are

equivalent

(i) x⊥zy(B)

(ii) If p, q ∈ {i, s} and u < 0 < t then the following inequality holds:

(3.1) Φp
x,y/z(u) ≤ 0 ≤ Φq

x,y/z(t)

Proof. We know that Birkhoff Orthogonality x⊥zy(B) is equivalent to the

inequality

(3.2) (y, x/z)i ≤ 0 ≤ (y, x/z)s

According to the Theorem 2.1, we have that

(3.3) Φp
x,y/z(u) ≤

‖ x + uy, z ‖ − ‖ x, z ‖

u
, u < 0

(3.4) Φp
x,y/z(t) ≥

‖ x + ty, z ‖ − ‖ x, z ‖

t
, t > 0

whenever p ∈ {s, i}.

(i) ⇒ (ii) if x⊥zy(B), then ‖ x + αy, z ‖≥‖ x, z ‖ for all α ∈ R. Hence

‖ x + uy, z ‖ − ‖ x, z ‖

u
≤ 0 ≤

‖ x + ty, z ‖ − ‖ x, z ‖

t

for u < 0 < t. Using inequality (3.3) and (3.4) we get (3.1).

(ii) ⇒ (i) According to the Theorem 2.1, we have that

lim
t→0+

Φp
x,y/z(t) =

(y, x/z)s

‖ x, z ‖
, lim

u→0−
Φp

x,y/z(u) =
(y, x/z)i

‖ x, z ‖
.
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If (3.1) holds then (y, x/z)s ≥ 0 ≥ (y, x/z)i using (3.2) we deduce that

x⊥zy(B).

Theorem 3.2. Let (X, ‖ ., . ‖) be a real 2-normed linear space and let

x ∈ X\{0}. The following statements are equivalent

(i) X is smooth at x0,

(ii) The mapping Φp
x,y/z is continuous at 0 for all y ∈ X and some p ∈ {s, i}.

Proof. The space X is smooth at x0 if and only if the function x →‖ x, z ‖

is Gateaux differentiable at x0, this is equivalent to (y, x0/z)i = (y, x0/z)s

for all y ∈ X and z ∈ X/L({x, y}, G). The equivalence of (i) and (ii) then

follows in view of (2.5).

4 New Characterizations of Elements of Best

Approximations in 2 - norm Spaces

Definition 4.1. Let X be a 2- normed linear space, G a set in X, and

x ∈ X. An element g0 ∈ G is called an element of best approximation at x,

if

(4.1) ‖ x − g0, z ‖= inf
g∈G

‖ x − g, z ‖

where z ∈ X/L({x, y}, G).

We denote by PG,z(X) the set at all such elements g0, that is

(4.2) PG,z(x) = {g0 ∈ G ‖ x − g0, z ‖= inf
g∈G

‖ x − g, z ‖}.

It is of interest to consider the problem of finding necesary and sufficient

conditions such that g0 ∈ Pg,z(x).

Lemma 4.1. Let (X, ‖ ., . ‖) be a 2-normed linear space, G a linear subspace

of X, x ∈ X\Ḡ and g0 ∈ G. Then g0 ∈ PG,z(x) if and only if x−g0 ⊥z G(B).

The following preposition is true.
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Proposition 4.1. Let (X, ‖ ., . ‖) be a 2 -normed linear space, G a linear

subspace of X, x ∈ X\Ḡ and g0 ∈ G. The following statement are equivalent:

(i) g0 ∈ PG,z(x)

(ii) We have the equality

(4.3) sup
g∈G

(g + x − g0, x − g0/z)i =‖ x − g0, z ‖2

Proof. By Lemma 4.1, g0 ∈ PG,z(x) is equivalent to

x − g0 ⊥z G(B)

and the property (viii) of the introduction to

(4.4) (g, x − g0/z)i ≤ 0 ≤ (g, x − g0/z)s for all g ∈ G

But

(g, x − g0/z)i = (x − g0 + g − x + g0, x − g0/z)i(4.5)

= ‖ x − g0, z ‖2 +(g + x − g0, x − g0/z)i

and

(g, x − g0/z)s = (x − g0 + g − x + g0, x − g0/z)s(4.6)

= ‖ x − g0, z ‖2 −(−g + x − g0, x − g0/z)s

= ‖ x − g0 ‖
2 −(−g + x − g0, x − g0/z)i

Then (4.4) is equivalent to

(g + x − g0, x − g0/z)i ≤‖ x − g0, z ‖2 for all g ∈ G

(−g + x − g0, x − g0/z)i ≤‖ x − g0, z ‖2 for all g ∈ G

g ∈ G if and only if −g ∈ G, we deduce that (4.4) is equivalent to (4.3) and

the proposition is proved.
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Lemma 4.2. Let (X, ‖ ., . ‖) be a real 2 -normed space and x, y two elements

of X and z ∈ X/L({x, y}, G). The following statements are equivalent:

(i)x ⊥z y(B)

(ii) (y, x+uy/z)p ≤ 0 ≤ (y, x+ ty/z)q whenever u < 0 < t and p, q ∈ {i, s}.

Using this Lemma, we obtain the following new characterization of best

approximants in terms of the 2- norm derivatives.

Theorem 4.1. Let X, G, x and g be as in Proposition4.1 The following

statements are equivalents.

(i) g0 ∈ PG,z(x)

(ii) We have the inequality

(4.7) (g, x − g0 + ug/z)p ≤‖ x − g0 + w, z ‖2 if w ∈ G, p ∈ {i, s}

Proof By Lemma 4.2, g0 ∈ PG,z(x) is equivalent to

(4.8) (g, x − g0 + ug/z)p ≤ 0 ≤ (g, x − g0 + tg/z)q if u < 0 < t, q ∈ {i, s}

But

(4.9) (g, x − g0 + tg/z)q ≤ 0, t > 0

is equivalent to

(tg, x − g0 + tg/z)q ≥ 0, t > 0

As

(tg, x − g0 + tg/z)q = (x − g0 + tg − x + g0, x − g0 + tg/z)q

=‖ x − g0 + tg, z ‖2 −(x − g0, x − g0 + tg/z)r

with r ∈ {i, s}, r 6= q (4.9) is equivalent to

(4.10) (x − g0, x − g0 + tg/z)q ≤‖ x − g0 + tg, z ‖2
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for all g ∈ G, t > 0, g ∈ {i, s}.

The relation

(4.11) (g, x − g0 + ug/z)p ≤ 0, u < 0, p ∈ {i, s}

is equivalent to

−u(g, x − g0 + ug/z)p ≤ 0, p ∈ {i, s}.

But

−u(g, x − g0 + ug/z)p = (−ug, x − g0 + ug/z)p = −(ug, x − g0 + ug/z)r

with r ∈ {i, s}, r 6= p; hence (4.11) is equivalent to

(ug, x − g0 + ug/z)p ≥ 0, p ∈ {i, s}, u < 0.

On the other hand

(ug, x − g0 + ug/z)p = (x − g0 + ug − x + g0, x − g0 + ug/z)p

=‖ x − g0 + ug, z ‖2 −(x − g0, x − g0 + ug/z)r

and (4.11) is equivalent to

(4.12) (x − g0, x − g0 + ug/z)p ≤‖ x − g0 + ug, z ‖2

for all g ∈ G, u < 0, p ∈ {i, s}.

Combining (4.10) and (4.12) and observing that (4.10) holds (with equal-

ity) also for t = 0, we conclude that

(x − g0, x − g0 + tg/z)p ≤‖ x − g0 + tg, z ‖2

for all g ∈ G and all t ∈ R.

As g ∈ G if and only if t, g ∈ G for t 6= 0, we deduce the desired

equivalence, and the theorem is proved.
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