General Mathematics Vol. 17, No. 2 (2009), 73-85

Mapping Φ^{P} in Normed Linear Spaces and Characterization of Orthogonality Problem of Best Approximations in 2-norm ${ }^{1}$

Vinai K. Singh, Santosh Kumar

Abstract

In order to characterizations of best approximations have been given in 2-norm space ($X,\|.,$.$\|). Some generalization of the func-$ tion Φ^{p} of Dragomir type have been given in the context where the said generalization help to formulate the characterizations what have been proposed in this article.

2000 Mathematics Subject Classification: Primary 41A65; Secondary 46B99,41A50,46C99,46C15.
Key words and Phrases: 2-Normed spaces, Best approximations and $p h i^{p}$ functions.

1 Introduction

In a 2-normed linear space $(X,\|.\|$,$) our present aim is to characterize$ the set of best approximations and related generalized orthogonality of a pair of elements in 2-normed space with reference to the 2-norm ([7] and [11]). We introduce below the Φ^{p} function and their properties as were done

[^0]by Dragomir in an earlier reference [6]. We also study the boundedness, monotonocity and convexicity properties of the generalized Φ^{p} functions.

Let $(X,\|.,\|$.$) be real 2$ - normed linear space. Consider the 2 - norm derivative

$$
(y, x / z)_{i}=\lim _{t \rightarrow 0^{-}} \frac{\|x+t y, z\|^{2}-\|x, z\|^{2}}{2 t}
$$

and

$$
(y, x / z)_{s}=\lim _{t \rightarrow 0^{+}} \frac{\|x+t y, z\|^{2}-\|x, z\|^{2}}{2 t}
$$

which are well defined for every pair $x, y \in X$ and $z \in X / L\{x, y\}, G$) (where $\mathrm{L}(\{\mathrm{x}, \mathrm{y}\}, \mathrm{G})$ stands for the linear manifolds - spaned by x and y$)$.

For the sake of completeness we list here some of the main properties of these mappings that will be used in the sequel([2],[3],[4],[5] and [6]), assuming that $p, z \in\{s, i\}$ and $p \neq 2$.
(i) $(x, x / z)_{p}=\|x, z\|^{2}$
(ii) $(\alpha x, \beta y / z)_{p}=\alpha \beta(x, y / z)_{p} \quad$ if $\alpha, \beta \geq 0$
(iii) $\left|(x, y / z)_{p}\right| \leq\|x, z\| \quad\|y, z\|$
(iv) $(\alpha x+y, x / z)_{p}=\alpha(x, x / z)_{p}+(y, x / z)_{p} \quad$ where $\alpha \in R$
(v) $(-x, y / z)_{p}=-(x, y / z)_{q}$
(vi) $(x+y, w / z)_{p} \leq\|x, z\| \quad\|w, z\|+(y, w / z)_{p}$
(vii) The mapping $(., . / z)_{p}$ is continuous and subadditive in the first variable for $p=s($ or $p=i)$.
(viii)The element $x \in X$ is Birkhoff orthogonal to the element $y \in X$ (i.e. $\|x+t y, z\| \geq\|x, z\| t$ for all $t \in R$ and $z \in X / L(\{x, y\}, G)$ if and only if

$$
(y, x / z)_{i} \leq 0 \leq(y, x / z)_{s}
$$

(ix) The $2-$ normed linear space $(X,\|.,\|$.$) is smooth at the point x_{0} \in$ $X \backslash\{0\}$ if and only if the mapping $y \rightarrow\left(y, x_{0} / z\right)_{p}$ is linear, or if and only if $\left(y, x_{0} / z\right)_{s}=\left(y, x_{0} / z\right)_{i}$ for all $y \in X$ and $z \in X / L(\{x, y\}, G)$. (x) If the 2 -norm $\|.,$.$\| is induced by an 2$ - inner product (.,. $/ z$) then
$(y, x / z)_{i}=(y, x / z)=(y, x / z)_{s}$ for all $x, y \in X$ and $z \in X / L(\{x, y\}, G)$.

2 Properties of the mapping $\Phi_{x, y / z}^{p}$

For three fixed linearly independent vectors x , y in X and $z \in X / L(\{x, y\}, G)$ we consider the mapping

$$
\Phi_{x, y / z}^{p}(t)=\frac{(y, x+t y / z)_{p}}{\|x+t y, z\|}, \quad p=s \quad \text { or } \quad p=i
$$

which is well defined for all $t \in R$.
Theorem 2.1. Let $(X,\|.,\|$.$) be a real 2- normed liner space and x, y, z$ two linearly independent vectors in X and $z \in X / L(\{x, y\}, G)$. Then
(i) The mapping $\Phi_{x, y / z}^{p}$ is bounded on R with

$$
\begin{equation*}
\left|\Phi_{x, y / z}^{p}(t)\right| \leq\|y, z\| \quad \text { for all } t \in R \tag{2.1}
\end{equation*}
$$

(ii) We have the inequality

$$
\begin{gather*}
\frac{\|x+2 u y, z\|-\|x+u y, z\|}{u} \leq \Phi_{x, y / z}^{i}(u) \leq \Phi_{x, y / z}^{s} \tag{2.2}\\
\leq \frac{\|x+u y, z\|-\|x, z\|}{u} \quad \text { for all } \quad u<0
\end{gather*}
$$

and

$$
\begin{gather*}
\frac{\|x+2 t y, z\|-\|x+t y, z\|}{t} \geq \Phi_{x, y / z}^{s}(t) \geq \Phi_{x, y / z}^{i}(t) \tag{2.3}\\
\geq \frac{\|x+t y, z\|-\|x, z\|}{t}
\end{gather*}
$$

(iii) The mapping $\Phi_{x, y / z}^{p}$ are strictly increasing on R.
(iv) We have the limits

$$
\begin{equation*}
\lim _{u \rightarrow-\infty} \Phi_{x, y / z}^{p}(u)=\|y, z\|, \quad \lim _{t \rightarrow+\infty} \Phi_{x, y / z}^{p}(t)=\|y, z\| \tag{2.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{t \rightarrow 0^{+}} \Phi_{x, y / z}^{p}(t)=\frac{(y, x / z)_{s}}{\|x, z\|}, \quad \lim _{u \rightarrow 0^{-}} \Phi_{x, y / z}^{p}(u)=\frac{(y, x / z)_{i}}{\|x, z\|} \tag{2.5}
\end{equation*}
$$

(v) The mapping Φ^{s} is right continuous and Φ^{i} is left continuous at every point of R.

Proof. (i) Follows by the Schwarz inequality.
(ii) Let $u<0$. By the Schwarz inequality (iii) and by properties (iv) and (ii) of 2 -norm derivatives $(., . / z)_{i}$, we have

$$
\begin{gathered}
\|x+2 u y, z\|\|x+u y, z\| \geq(x+2 u y, x+u y / z)_{s}=(x+u y+u y, x+u y / z)_{s} \\
=\|x+u y, z\|^{2}-u(-y, x+u y / z)_{s} \\
=\|x+u y, z\|^{2}+u(y, x+u y / z)_{i} .
\end{gathered}
$$

From which we get

$$
\|x+2 u y, z\|-\|x+u y, z\|\|x+u y, z\| \geq u(y, x+u y / z)_{i} .
$$

This implies

$$
\frac{\|x+2 u y, z\|-\|x+u y, z\|}{u} \leq \frac{(y, x+u y / z)_{i}}{\|x+u y, z\|}
$$

and the (i) inequality in (2.2) is proved.
Further,

$$
\begin{gathered}
\|x, z\| \quad\|x+u y, z\| \geq(x, x+u y / z)_{s} \\
=(x+u y-u y, x+u y / z)_{s} \\
=\|x+u y, z\|^{2}+(-u y, x+u y / z)_{s} .
\end{gathered}
$$

From which we get

$$
\frac{\|x+u y, z\|^{2}-\|x, z\|^{2}}{u} \geq \frac{(y, x+u y / z)_{s}}{\|x+u y, z\|}=\Phi_{x, y / z}^{s}(u) .
$$

The (iii) inequality in (2.2) is proved.
Inequality (2.3) is proved similarly.
(iii) Suppose that $p \in\{i, s\}$ and $t_{2}>t_{1}$. Then by Schwarz inequality

$$
\left\|x+t_{2} y, z\right\|\left\|x+t_{1} y, z\right\| \geq\left(x+t_{2} y, x+t_{1} y / z\right)_{p}
$$

for all $x, y \in X$ and $z \in X / L(\{x, y\}, G)$. Using properties of 2-norm derivatives, we obtain

$$
\begin{gathered}
\left(x+t_{2} y, x+t_{1} y / z\right)_{p} \geq\left(t_{2}-t_{1} / y+x+t_{1} y / z\right)_{p} \\
\left\|x+t_{1} y, z\right\|^{2}+\left(t_{2}-t_{1}\right)\left(y, x+t_{1} y / z\right)_{p}
\end{gathered}
$$

and the above inequality yields

$$
\left\|x+t_{2} y, z\right\|\left\|x+t_{1} y, z\right\| \geq\left\|x+t_{1} y, z\right\|^{2}+\left(t_{2}-t_{1}\right)\left(y, x+t_{1} y / z\right)_{p}
$$

Hence

$$
\Phi_{x, y / z}^{p}\left(t_{1}\right)=\frac{\left(y, x+t_{1} y / z\right)_{p}}{\left\|x+t_{1} y, z\right\|} \leq \frac{\left\|x+t_{2} y, z\right\|-\left\|x-t_{1} y, z\right\|}{t_{2}-t_{1}}
$$

put $t=t_{2}-t_{1}>0$ then by (2.3)

$$
\begin{gathered}
\frac{\left\|x+t_{2} y, z\right\|-\left\|x-t_{1} y, z\right\|}{t_{2}-t_{1}}=\frac{\left\|x+t_{1} y+t y, z\right\|-\left\|x+t_{1} y, z\right\|}{t} \\
\Phi_{x, y / z}^{p}\left(t_{1}\right)=\frac{\left(y, x+t_{1} y / z\right)_{p}}{\left\|x+t_{1} y, z\right\|} \\
\leq \Phi_{x+t_{1} y, y / z}^{p}(t)=\frac{\left(y, x+t_{1} y+t y / z\right)_{p}}{\left\|x+t_{1} y+t y, z\right\|} \\
=\frac{\left(y, x+t_{2} y / z\right)_{p}}{\left\|x+t_{2} y, z\right\|}=\Phi_{x, y / z}^{p}\left(t_{2}\right)
\end{gathered}
$$

and the statement is proved.
(iv)We have

$$
\begin{gathered}
\lim _{t \rightarrow+\infty} \frac{\|x+t y, z\|-\|x, z\|}{t}=\lim _{\alpha \rightarrow 0^{+}} \frac{\left\|x+\frac{y}{\alpha}, z\right\|-\|x, z\|}{\frac{1}{\alpha}} \\
\lim _{\alpha \rightarrow 0^{+}} \frac{\|\alpha x+y, z\|-\alpha\|x, z\|}{t}=\|y, z\|
\end{gathered}
$$

and

$$
\lim _{t \rightarrow+\infty} \frac{\|x+2 t y, z\|-\|x+t y, z\|}{t}=\lim _{\alpha \rightarrow+\infty}|t|\left\|\frac{x}{t}+2 y, z\right\|-\left\|\frac{x}{t}+y, z\right\|
$$

$$
\begin{aligned}
& =\lim _{t \rightarrow+\infty}\left(\left\|2 y+\frac{x}{t}, z\right\|-\left\|y+\frac{x}{t}, z\right\|\right) \\
& =\lim _{\alpha \rightarrow 0^{+}}(\|2 y+\alpha x, z\|-\|y+\alpha x, z\|) \\
& =2\|y, z\|-\|y, z\|-\|y, z\| .
\end{aligned}
$$

Applying the inequality (2.3) we get the second limit in (2.4) the first limit is obtained similarly.

Further

$$
\begin{gathered}
\lim _{t \rightarrow 0^{+}} \frac{\|x+t y, z\|-\|x, z\|}{t}= \\
\lim _{t \rightarrow 0^{+}} \frac{\|x+t y, z\|^{2}-\|x, z\|^{2}}{2 t} \times \lim _{t \rightarrow 0^{+}} \frac{2}{\|x+t y, z\|+\|x, z\|} \\
=\frac{(y, x / z)_{s}}{\|x, z\|}
\end{gathered}
$$

and

$$
\begin{gathered}
\lim _{t \rightarrow 0^{+}} \frac{\|x+2 t y, z\|-\|x+t y, z\|}{t} \\
=\lim _{t \rightarrow 0^{+}} \frac{\|x+2 t y, z\|-\|x, z\|-(\|x+t y, z\|-\|x, z\|)}{t} \\
=2 \lim _{t \rightarrow 0^{+}} \frac{\|x+2 t y, z\|-\|x, z\|}{2 t}-\lim _{t \rightarrow 0^{+}} \frac{\|x+t y, z\|-\|x, z\|}{t} \\
\frac{2(y, x / z)_{s}}{\|x, z\|}-\frac{(y, x / z)_{s}}{\|x, z\|}=\frac{(y, x / z)_{s}}{\|x, z\|)} .
\end{gathered}
$$

Inequality (2.3) applied to these limit yields the first in (2.3); the second limit is obtained similarly.
(v) Let $t_{0} \in R$

$$
\begin{gathered}
\lim _{\alpha \rightarrow t_{0}^{+}} \Phi_{x, y / z}^{p}(\alpha)=\lim _{t \rightarrow 0^{+}} \Phi_{x, y / z}^{p}\left(t_{0}+t\right)=\lim _{t \rightarrow 0^{+}} \frac{\left(y, x+t_{0} y+t y / z\right)_{p}}{\left\|x+t_{0} y+t y, z\right\|} \\
\lim _{t \rightarrow 0^{+}} \Phi_{x, y / z}^{p}(t)=\frac{\left(y, x+t_{0} y / z\right)_{s}}{\left\|x+t_{0} y, z\right\|}=\Phi_{x, y / z}^{s}\left(t_{0}\right)
\end{gathered}
$$

in the statement above the right continuity is proved. The statement about the left continuity is proved similarly.

3 New Characterizations of Birkhoff Orthogonality and Smoothness

The mapping $\Phi_{x, y / z}^{p}$ can be used to give a characterization of Birkhoff Orthogonality.

Theorem 3.1. Let $(X,\|.,\|$.$) be a real normed linear space, and let x, y$ be a two elements of X and $\in X / L(\{x, y\}, G)$. The following statement are equivalent
(i) $x \perp_{z} y(B)$
(ii) If $p, q \in\{i, s\}$ and $u<0<t$ then the following inequality holds:

$$
\begin{equation*}
\Phi_{x, y / z}^{p}(u) \leq 0 \leq \Phi_{x, y / z}^{q}(t) \tag{3.1}
\end{equation*}
$$

Proof. We know that Birkhoff Orthogonality $x \perp_{z} y(B)$ is equivalent to the inequality

$$
\begin{equation*}
(y, x / z)_{i} \leq 0 \leq(y, x / z)_{s} \tag{3.2}
\end{equation*}
$$

According to the Theorem 2.1, we have that

$$
\begin{align*}
& \Phi_{x, y / z}^{p}(u) \leq \frac{\|x+u y, z\|-\|x, z\|}{u}, \quad u<0 \tag{3.3}\\
& \Phi_{x, y / z}^{p}(t) \geq \frac{\|x+t y, z\|-\|x, z\|}{t}, \quad t>0 \tag{3.4}
\end{align*}
$$

whenever $p \in\{s, i\}$.
$(i) \Rightarrow(i i)$ if $x \perp_{z} y(B)$, then $\|x+\alpha y, z\| \geq\|x, z\|$ for all $\alpha \in R$. Hence

$$
\frac{\|x+u y, z\|-\|x, z\|}{u} \leq 0 \leq \frac{\|x+t y, z\|-\|x, z\|}{t}
$$

for $u<0<t$. Using inequality (3.3) and (3.4) we get (3.1).
$(i i) \Rightarrow(i)$ According to the Theorem 2.1, we have that

$$
\lim _{t \rightarrow 0^{+}} \Phi_{x, y / z}^{p}(t)=\frac{(y, x / z)_{s}}{\|x, z\|}, \quad \lim _{u \rightarrow 0^{-}} \Phi_{x, y / z}^{p}(u)=\frac{(y, x / z)_{i}}{\|x, z\|}
$$

If (3.1) holds then $(y, x / z)_{s} \geq 0 \geq(y, x / z)_{i}$ using (3.2) we deduce that $x \perp_{z} y(B)$.

Theorem 3.2. Let ($X,\|.,$.$\|) be a real 2-normed linear space and let$ $x \in X \backslash\{0\}$. The following statements are equivalent
(i) X is smooth at x_{0},
(ii) The mapping $\Phi_{x, y / z}^{p}$ is continuous at 0 for all $y \in X$ and some $p \in\{s, i\}$.

Proof. The space X is smooth at x_{0} if and only if the function $x \rightarrow\|x, z\|$ is Gateaux differentiable at x_{0}, this is equivalent to $\left(y, x_{0} / z\right)_{i}=\left(y, x_{0} / z\right)_{s}$ for all $y \in X$ and $z \in X / L(\{x, y\}, G)$. The equivalence of (i) and (ii) then follows in view of (2.5).

4 New Characterizations of Elements of Best Approximations in 2 - norm Spaces

Definition 4.1. Let X be a 2- normed linear space, G a set in X, and $x \in X$. An element $g_{0} \in G$ is called an element of best approximation at x, if

$$
\begin{equation*}
\left\|x-g_{0}, z\right\|=\inf _{g \in G}\|x-g, z\| \tag{4.1}
\end{equation*}
$$

where $z \in X / L(\{x, y\}, G)$.
We denote by $P_{G, z}(X)$ the set at all such elements g_{0}, that is

$$
\begin{equation*}
P_{G, z}(x)=\left\{g_{0} \in G\left\|x-g_{0}, z\right\|=\inf _{g \in G}\|x-g, z\|\right\} . \tag{4.2}
\end{equation*}
$$

It is of interest to consider the problem of finding necesary and sufficient conditions such that $g_{0} \in P_{g, z}(x)$.

Lemma 4.1. Let $(X,\|.\|$,$) be a 2-normed linear space, G$ a linear subspace of $X, x \in X \backslash \bar{G}$ and $g_{0} \in G$. Then $g_{0} \in P_{G, z}(x)$ if and only if $x-g_{0} \perp_{z} G(B)$. The following preposition is true.

Mapping Φ^{P} in Normed Linear Spaces...

Proposition 4.1. Let $(X,\|.,\|$.$) be a 2-normed linear space, G$ a linear subspace of $X, x \in X \backslash \bar{G}$ and $g_{0} \in G$. The following statement are equivalent:
(i) $g_{0} \in P_{G, z}(x)$
(ii) We have the equality

$$
\begin{equation*}
\sup _{g \in G}\left(g+x-g_{0}, x-g_{0} / z\right)_{i}=\left\|x-g_{0}, z\right\|^{2} \tag{4.3}
\end{equation*}
$$

Proof. By Lemma 4.1, $g_{0} \in P_{G, z}(x)$ is equivalent to

$$
x-g_{0} \perp_{z} G(B)
$$

and the property (viii) of the introduction to

$$
\begin{equation*}
\left(g, x-g_{0} / z\right)_{i} \leq 0 \leq\left(g, x-g_{0} / z\right)_{s} \quad \text { for all } g \in G \tag{4.4}
\end{equation*}
$$

But

$$
\begin{align*}
\left(g, x-g_{0} / z\right)_{i} & =\left(x-g_{0}+g-x+g_{0}, x-g_{0} / z\right)_{i} \tag{4.5}\\
& =\left\|x-g_{0}, z\right\|^{2}+\left(g+x-g_{0}, x-g_{0} / z\right)_{i}
\end{align*}
$$

and

$$
\begin{align*}
\left(g, x-g_{0} / z\right)_{s} & =\left(x-g_{0}+g-x+g_{0}, x-g_{0} / z\right)_{s} \tag{4.6}\\
& =\left\|x-g_{0}, z\right\|^{2}-\left(-g+x-g_{0}, x-g_{0} / z\right)_{s} \\
& =\left\|x-g_{0}\right\|^{2}-\left(-g+x-g_{0}, x-g_{0} / z\right)_{i}
\end{align*}
$$

Then (4.4) is equivalent to

$$
\begin{gathered}
\left(g+x-g_{0}, x-g_{0} / z\right)_{i} \leq\left\|x-g_{0}, z\right\|^{2} \quad \text { for all } g \in G \\
\left(-g+x-g_{0}, x-g_{0} / z\right)_{i} \leq\left\|x-g_{0}, z\right\|^{2} \quad \text { for all } g \in G
\end{gathered}
$$

$g \in G$ if and only if $-g \in G$, we deduce that (4.4) is equivalent to (4.3) and the proposition is proved.

Lemma 4.2. Let $(X,\|.\|$,$) be a real 2-normed space and x$, y two elements of X and $z \in X / L(\{x, y\}, G)$. The following statements are equivalent: (i) $x \perp_{z} y(B)$
(ii) $(y, x+u y / z)_{p} \leq 0 \leq(y, x+t y / z)_{q}$ whenever $u<0<t$ and $p, q \in\{i, s\}$.

Using this Lemma, we obtain the following new characterization of best approximants in terms of the 2- norm derivatives.

Theorem 4.1. Let X, G, x and g be as in Proposition4.1 The following statements are equivalents.
(i) $g_{0} \in P_{G, z}(x)$
(ii) We have the inequality

$$
\begin{equation*}
\left(g, x-g_{0}+u g / z\right)_{p} \leq\left\|x-g_{0}+w, z\right\|^{2} \quad \text { if } \quad w \in G, p \in\{i, s\} \tag{4.7}
\end{equation*}
$$

Proof By Lemma 4.2, $g_{0} \in P_{G, z}(x)$ is equivalent to

$$
\begin{equation*}
\left(g, x-g_{0}+u g / z\right)_{p} \leq 0 \leq\left(g, x-g_{0}+t g / z\right)_{q} \text { if } u<0<t, q \in\{i, s\} \tag{4.8}
\end{equation*}
$$

But

$$
\begin{equation*}
\left(g, x-g_{0}+t g / z\right)_{q} \leq 0, \quad t>0 \tag{4.9}
\end{equation*}
$$

is equivalent to

$$
\left(t g, x-g_{0}+t g / z\right)_{q} \geq 0, \quad t>0
$$

As

$$
\begin{gathered}
\left(t g, x-g_{0}+t g / z\right)_{q}=\left(x-g_{0}+t g-x+g_{0}, x-g_{0}+t g / z\right)_{q} \\
=\left\|x-g_{0}+t g, z\right\|^{2}-\left(x-g_{0}, x-g_{0}+t g / z\right)_{r}
\end{gathered}
$$

with $r \in\{i, s\}, r \neq q$ (4.9) is equivalent to

$$
\begin{equation*}
\left(x-g_{0}, x-g_{0}+t g / z\right)_{q} \leq\left\|x-g_{0}+t g, z\right\|^{2} \tag{4.10}
\end{equation*}
$$

for all $g \in G, t>0, g \in\{i, s\}$.
The relation

$$
\begin{equation*}
\left(g, x-g_{0}+u g / z\right)_{p} \leq 0, u<0, p \in\{i, s\} \tag{4.11}
\end{equation*}
$$

is equivalent to

$$
-u\left(g, x-g_{0}+u g / z\right)_{p} \leq 0, p \in\{i, s\} .
$$

But

$$
-u\left(g, x-g_{0}+u g / z\right)_{p}=\left(-u g, x-g_{0}+u g / z\right)_{p}=-\left(u g, x-g_{0}+u g / z\right)_{r}
$$

with $r \in\{i, s\}, r \neq p$; hence (4.11) is equivalent to

$$
\left(u g, x-g_{0}+u g / z\right)_{p} \geq 0, \quad p \in\{i, s\}, u<0
$$

On the other hand

$$
\begin{gathered}
\left(u g, x-g_{0}+u g / z\right)_{p}=\left(x-g_{0}+u g-x+g_{0}, x-g_{0}+u g / z\right)_{p} \\
=\left\|x-g_{0}+u g, z\right\|^{2}-\left(x-g_{0}, x-g_{0}+u g / z\right)_{r}
\end{gathered}
$$

and (4.11) is equivalent to

$$
\begin{equation*}
\left(x-g_{0}, x-g_{0}+u g / z\right)_{p} \leq\left\|x-g_{0}+u g, z\right\|^{2} \tag{4.12}
\end{equation*}
$$

for all $g \in G, u<0, p \in\{i, s\}$.
Combining (4.10) and (4.12) and observing that (4.10) holds (with equality) also for $t=0$, we conclude that

$$
\left(x-g_{0}, x-g_{0}+t g / z\right)_{p} \leq\left\|x-g_{0}+t g, z\right\|^{2}
$$

for all $g \in G$ and all $t \in R$.
As $g \in G$ if and only if $t, g \in G$ for $t \neq 0$, we deduce the desired equivalence, and the theorem is proved.

References

[1] Dan Amir, Characterizations of Inner Product Spaces, Birkhauser, 1986.
[2] S. S. Dragomir, On continuous sublinear functionals in reflexive Banach spaces and applications, Riv., Mat. Univ. Parma, 116(4)(1990), 239250.
[3] S. S. Dragomir, Approximation of continuous linear functionals in real normed spaces, Reconditi di Matematica, 12 (1992), 357-364.
[4] S. S. Dragomir, Continuous real functionals and norm derivatives in real normed spaces, Univ. Beograd. Publ. Elektrotehn Fan., 3 (1992), 5-12.
[5] S. S. Dragomir, Characterization of elements of best approximation in real normed spaces, Studia Univ. Babes- Boyai Math. 33(1988), 74-80
[6] S. S Dragomir, Koliha, J.J., Mappings Φ^{p} in normed linear spaces and new characterizations of Birkhoff orthogonality, Smoothness and best approximations, Soochow J. Math. 23(2) (1997), 227-239.
[7] H.L. Royden, Real analysis, 3rd edition, Macmillan, 1989.
[8] Vinai K. Singh, S. Kumar, A. K. Singh, $(\alpha, \beta)-L^{p}$ 2 - norm orthogonality and characterizations of 2-inner product spaces.
[9] I. Singer, Best in normed linear spaces by elements of linear subspaces. Die Grundlehren der math. Wissen (7), Springer, 1970.
[10] I. Singer, The thoery of best approximation and functional analysis, (BMS-NSF Regional Series in Applied Mathematics 13, SIAM, 1974.
[11] A. White, Y.J. Cho, Linear mapping on linear 2-normed spaces, Bull. Korean Math. Soc. 21(1)(1984), 1-6.

Mapping Φ^{P} in Normed Linear Spaces...

Vinai K. Singh
Department of Mathematics
R.D Engineering College,
N.H-58, Delhi Meerut Road, Duhai, Ghaziabad, U.P-201206
Email: vinaiksingh@rediffmail.com

Santosh Kumar
Department of Applied Mathematics
Inderprastha Engineering College,
Sahibabad, Ghaziabad, U.P-201010,
India.
E-mail: sengar1@rediffmail.com

[^0]: ${ }^{1}$ Received 13 June, 2008
 Accepted for publication (in revised form) 8 September, 2008

