Kalecki‘s model of business cycle. Data dependence ${ }^{1}$

I. M. Olaru , C. Pumnea, A. Bacociu , A. D. Nicoară

Abstract

In this paper we study date dependence for a delay equation which models a business cycle. The study is made using weakly Picard operators.

2000 Mathematical Subject Classification: 34K05, 47H10
Keywords: integral equations, Picard operators, fixed points, data dependence, Kalecki model.

1 Introduction

Let (X, d) be a metric space and $A: X \longrightarrow X$ an operator. We shall use the following notations:

$$
P(X):=\{Y \subseteq X \mid Y \neq \emptyset\}
$$

the set of valid parts of X;

$$
F_{A}:=\{x \in X \mid A(x)=x\},
$$

[^0]the fixed point set of A;
$$
I(A):=\{Y \in P(X) \mid A(Y) \subset Y\}
$$
the family of the nonempty invariant subset of A.
$$
A^{n+1}=A \circ A^{n}, A^{0}=1_{X}, A^{1}=A, n \in \mathbb{N}
$$

Definition 1.1. ([2],[3]) An operator A is weakly Picard operator (WPO) if the sequence $\left(A^{n}(x)\right)_{n \in \mathbb{N}}$ converges, for all $x \in X$ and the limit (which depend on x) is a fixed point of A.

Definition 1.2. ([2],[3]) If the operator A is weakly Picard operator and $F_{A}=\left\{x^{*}\right\}$ then by definition A is Picard operator.

Definition 1.3. ([2],[3]) If A is weakly Picard operator, then we consider the operator

$$
A^{\infty}: X \longrightarrow X, A^{\infty}(x)=\lim _{n \longrightarrow \infty} A^{n}(x)
$$

Observation 1.1. $A^{\infty}(x)=F_{A}$.
Definition 1.4. ([2],[3]) Let be A an $W P O$ and $c>0$. The operator A is c-weakly Picard operator if

$$
d\left(x, A^{\infty}(x) \leq c \cdot d(x, A(X))\right.
$$

for all $x \in X$.
Observation 1.2. ([4]) If (X, d) is a metric space and $A: X \longrightarrow X$ an operator is a a-contraction, then A is c-weakly Picard operator with $c=\frac{1}{1-a}$.

The next result it is a characteristic of weakly Picard operator, respectively c-weakly Picard.

Theorem 1.1. ([2],[3]) Let (X, d) be a metric space and $A: X \longrightarrow X$ an operator. The operator A is weakly Picard operator (c-weakly Picard operator) if and only if there exists a partition of X,

$$
X=\bigcup_{\lambda \in \Lambda} X_{\lambda}
$$

such that:
(a) $X_{\lambda} \in I(A)$;
(b) $A \mid X_{\lambda}: X_{\lambda} \longrightarrow X_{\lambda}$ is a Picard (c-Picard)operator, for all $\lambda \in A$.

2 Main result

We consider the equation

$$
\begin{equation*}
I^{\prime}(t)=\frac{m}{t} I(t)-\left(\frac{m}{\tau}+n\right) I(t-\tau)+n u, t \in[0, T] \tag{1}
\end{equation*}
$$

where $\tau>0, m=\frac{p}{1-\alpha}, p>0, n>0, \alpha \in(0,1), u>0$, with the initial condition

$$
\begin{equation*}
I(t)=\varphi(t), t \in[-\tau, 0] \tag{2}
\end{equation*}
$$

with $\varphi:[-\tau, 0] \longrightarrow \mathbb{R}$.
The Cauchy problem (1) $+(2)$ is equivalent with the next integral equation

$$
I(t)=\left\{\begin{array}{cc}
\varphi(0)+\int_{0}^{t}\left[\frac{m}{\tau} I(s)-\left(\frac{m}{\tau}+\eta\right) I(s-\tau)+n u\right] d s & , \quad t \in[0, T] \tag{3}\\
\varphi(t) & , \quad t \in[-\tau, 0]
\end{array}\right.
$$

We search the solutions for the integral equation (3) in the continuous functions space $\left(C[-\tau, T]|\cdot|_{r}\right)$ endowed with Bielecki norm,

$$
|x|_{r}=\sup _{t \in[-\tau, T]}|x(t)| e^{-r t}
$$

Next, we consider the operator $A: C[-\tau, T] \longrightarrow C[-\tau, T]$, defined by

$$
A(I)(t)=\left\{\begin{array}{ccc}
\varphi(0)+\int_{0}^{t}\left[\frac{m}{\tau} I(s)-\left(\frac{m}{\tau}+\eta\right) I(s-\tau)+n u\right] d s & , \quad t \in[0, T] \\
\varphi(t) & , \quad t \in[-\tau, 0]
\end{array}\right.
$$

Then for any $I_{1}, I_{2} \in C[-\tau, T]$ we have

$$
\begin{gathered}
\left|A\left(I_{1}\right)(t)-A\left(I_{2}\right)(t)\right| \leq \int_{0}^{t}\left[\frac{m}{\tau}\left|I_{1}(s)-I_{2}(s)\right|+\left(\frac{m}{\tau}+n\right)\left|I_{1}(s-\tau)-I_{2}(s-\tau)\right|\right] d s \leq \\
\leq\left|I_{1}-I_{2}\right|_{r} \int_{0}^{t} \frac{m}{\tau} e^{r s}+\left(\frac{m}{\tau}+n\right) e^{r(s-\tau)} d s \leq \\
\leq I_{1}-\left.I_{2}\right|_{r} e^{r t} \frac{\frac{2 m}{\tau}+n}{r} e^{r t}
\end{gathered}
$$

It follows that

$$
\left|A\left(I_{1}\right)-A\left(I_{2}\right)\right|_{r} \leq \frac{\frac{2 m}{\tau}+n}{r} \cdot\left|I_{1}-I_{2}\right|_{r}
$$

Using the Banach principle of fixed point it results that equation (3) has, in $C[-\tau, T]$, a unique solution $I^{\star}(\cdot, \varphi)$.
In the following lines, using the characterization theorem of the weakly Picard operator we show that equation (1) has a infinity of solutions. Indeed, for $\varphi \in C[-\tau, 0]$, we consider

$$
X_{\varphi}=\left\{x \in C[-\tau, T] \mid x_{[[-\tau, 0]}=\varphi\right\}
$$

We choose $r>0$ thus

$$
\frac{2 m}{\tau}+n<1
$$

it results

$$
\left|A\left(I_{1}\right)-A\left(I_{2}\right)\right|_{r} \leq \frac{\left(\frac{2 m}{\tau}+n\right)}{r}\left|I_{1}+I_{2}\right|
$$

According to the above, the operator $\left.A\right|_{X_{\varphi}}: X_{\varphi} \longrightarrow X_{\varphi}$ is a Picard operator. Then A is a weakly Picard operator and as consequence the equation (1) has a infinity of solutions.

Next we assume that it exists $\eta>0$ thus

$$
\left|\varphi_{1}(t)-\varphi_{2}(t)\right| \leq \eta
$$

Let $I^{\star}\left(\cdot, \varphi_{1}\right), I^{\star}\left(\cdot, \varphi_{2}\right)$ be the solution of the equation (3) with data φ_{1}, φ_{2}. Then

$$
\begin{gathered}
\left|I^{\star}\left(t, \varphi_{1}\right)-I^{\star}\left(t, \varphi_{2}\right)\right| \leq \\
\leq \eta \int_{0}^{t}\left[\frac{m}{\tau}\left|I^{\star}\left(s, \varphi_{1}\right)-I^{\star}\left(s, \varphi_{2}\right)\right|+\left(\frac{m}{\tau}+n\right)\left|I^{\star}\left(s-\tau, \varphi_{1}\right)-I^{\star}\left(t, \varphi_{2}\right)\right|\right] d s
\end{gathered}
$$

According with Theorem 14.6 (see [1] pp 145) we obtain

$$
\left|I_{1}(t)-I_{2}(t)\right| \leq \eta k(m, n, \tau) e^{\int_{0}^{t}\left(\frac{2 m}{\tau}+n\right) d s} \leq \eta k(m, n, \tau) e^{\left(\frac{2 m}{\tau}+n\right) T}
$$

So, from above we obtain the following result
Theorem 2.1. We consider the equation (1). Then:
(a) the equation (1) has, in $\left(C([-\tau, T]),|\cdot|_{r}\right)$ a infity of solutions;
(b) the problem (1) + (2) has, in $C([-\tau, T]),|\cdot|_{r}$, a unique solution $I^{\star}(\cdot, \varphi)$;
(c) if there exists $\eta>0$ such that

$$
\left|\varphi_{1}(t)-\varphi_{2}(t)\right| \leq \eta,
$$

for all $t \in[-\tau, T]$, then there exists $k($ m.n. $\tau)>0$ such that

$$
\left|I^{\star}\left(t, \varphi_{1}\right)-I^{\star}\left(t, \varphi_{2}\right)\right| \leq \eta k(m, n, \tau) e^{\left(\frac{2 m}{\tau}+n\right) T} .
$$

References

[1] D.D Bainov, P.P. Simeonov Integral inequalities and applications, Kluwer Academic Publishers, 1992.
[2] I.A. Rus, Weakly operators and applications, Seminar on Fixed Point Theory, Cluj-Napoca, Vol.2(2001), pp 41-57.
[3] I.A. Rus, Functional-Differential of mixed Type via weakly Picard operators, Seminar on Fixed Point Theory, Cluj-Napoca, Vol. 3(2002), pp 335-345.
[4] I.A. Rus, S. Mureşan, Data dependence of the fixed points set of weakly Picard Operators, Universitatea "Babes-Bolyai", Mathematica, Volumul XLIII, No. 1(1998), pp 79-83.

Departament of Mathematics, Faculty of Sciences, University "Lucian Blaga" of Sibiu, Dr. Ion Ratiu 5-7, Sibiu, 550012, Romania

[^0]: ${ }^{1}$ Received 15 May, 2008
 Accepted for publication (in revised form) 28 September, 2008

