General Mathematics Vol. 17, No. 2 (2009), 53-66

Generalized Difference Sequence Spaces Defined by Orlicz Functions¹

Ayhan Esi

Abstract

The idea of difference sequences was first introduced by Kizmaz [4]. In this first paper we define some generalized difference sequence combining lacunary sequences and Orlicz function. We establish some relations between these sequence space.

2000 Mathematics Subject Classification: 40A05, 40C05A, 46A45 Key words and phrases: Lacunary sequence, difference sequence, Orlicz function, strongly almost convergence.

1 Definitions and notations

Let l_{∞} , c and c_0 be the sequence spaces of bounded, convergent and null sequences $x = (x_i)$, respectively.

A sequence $x = (x_i) \in l_{\infty}$ is said to be almost convergent [2] if all Banach limits of $x = (x_i)$ coincide. In [2], it was shown that

$$\hat{c} = \left\{ x = (x_i) : \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n x_{i+s} \text{ exits, uniformly in } s \right\}$$

 $^{1}Received 5 May, 2008$

Accepted for publication (in revised form) 5 June, 2008

In [3,4], Maddox defined a sequence $x = (x_i)$ to strongly almost convergent to a number L if

$$\lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} |x_{i+s} - L| = 0, \text{ uniformly in s}$$

By a lacunary sequence $\theta = (k_r)$, r = 0, 1, 2, ..., where $k_0 = 0$, we shall mean an increasing sequence of non-negative integers $h_r = (k_r - k_{r-1}) \rightarrow \infty(r \rightarrow \infty)$. The intervals determined by θ are denoted by $I_r = (k_{r-1}, k_r]$ and the ratio $\frac{k_r}{k_{r-1}}$ will be denoted by q_r . The space of lacunary strongly convergent sequence N_{θ} was defined by Freedman et al. [10] as follows:

$$N_{\theta} = \left\{ x = (x_i) : \lim_{r \to \infty} \frac{1}{h_r} \sum_{i \in I_r} |x_i - L| = 0, \text{ fot some } L \right\}.$$

In [1], Kizmaz defined the sequence spaces $Z(\Delta) = \{x = (x_i) : (\Delta x_i) \in Z\}$ for $Z = l_{\infty}$, c and c_0 , where $\Delta x = (\Delta x_i) = (x_i - x_{i+1})$. After Et and Çolak [8] generalized the difference sequence spaces to the sequence spaces $Z(\Delta^m) = \{x = (x_i) : (\Delta^m x_i) \in Z\}$ for $Z = l_{\infty}, c$ and c_0 , where $m \in N$, $\Delta^0 x = (x_i), \ \Delta x = (x_i - x_{i+1}), \ \Delta^m x = (\Delta^m x_i) = (\Delta^{m-1} x_i - \Delta^{m-1} x_{i+1})$ and so that

$$\Delta^m x_i = \sum_{v=0}^m (-1)^v \begin{pmatrix} m \\ v \end{pmatrix} x_{i+v}.$$

An Orlicz function is a function $M : [0, \infty) \to [0, \infty)$ which is continuous, nondecreasing an convex with M(0) = 0, M(x) > 0 for x > 0 and $M(x) \to \infty$ as $x \to = \infty$.

An Orlicz function M is said to satisfy Δ_2 -condition for all values of u, if there exists a constant T > 0, such that $M(2u) \leq TM(u)(u \geq 0)$. The Δ_2 -condition is equivalent to $M(Lu) \leq TLM(u)$, for all values of u and for L > 1.

An Orlicz function M can be always be represented (see[6]) in the integral form $M(x) = \int_0^x q(t)dt$, where q known as the kernel of M, is right differentiable for $t \ge 0$, q(t) > 0 for t > 0, q is non-decreasing and $q(t) \to \infty$ as $t \to \infty$.

Remark 1.1. An Orlicz function satisfies the inequality $M(\lambda u) \leq \lambda M(u)$ for all λ with $0 < \lambda < 1$.

Lindenstrauss and Tzafriri [7] used the idea of Orlicz function to construct Orlicz sequence space,

$$l_M = \left\{ x = (x_i) : \sum_i M\left(\frac{|x_i|}{\rho}\right) < \infty, \text{ for some } \rho > 0 \right\}.$$

The sequence space l_m with the norm

$$||x|| = \inf\left\{\rho > 0: \sum_{i} M\left(\frac{|x_i|}{\rho}\right) \le 1\right\}$$

becomes a Banach space which is called an Orlicz Sequence Space. The space l_M is closely related to the space l_p , which is an Orlicz sequence space with $M(x) = x^p$ for $1 \le p < \infty$.

Let M be an Oriclz function and $p = (p_i)$ be any sequence of strictly positive real numbers. Güngör and Et[3] defined the following sequence spaces:

$$\begin{split} [\hat{c}, M, p](\Delta^m) &= \left\{ x = (x_i) : \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n \left[M\left(\frac{|\Delta^m x_{i+s} - L|}{\rho}\right) \right]^{p_i} = 0, \\ uniformly \ in \ s, \ for \ some \ \rho > 0 \ and \ L > 0 \ \right\}, \\ [\hat{c}, M, p]_0 &= \left\{ x = (x_i) : \right. \\ \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n \left[M\left(\frac{|\Delta^m x_{i+s}|}{\rho}\right) \right]^{p_i} = 0, \ uniformly \ in \ s, for \ some \ \rho > 0 \right\}, \\ [\hat{c}, M, p]_{\infty}(\Delta^m) &= \left\{ x = (x_i) : \right. \\ \left. \sup_{n,s} \frac{1}{n} \sum_{i=1}^n \left[M\left(\frac{|\Delta^m x_{i+s}|}{\rho}\right) \right]^{p_i} < \infty, \ for \ some \ \rho > 0 \right\}. \end{split}$$

The purpose of this paper is to introduce and study a concept of lacunary almost generalized Δ^m – convergence function and to examine some properties of these new sequence spaces which also generalize the well known Orlicz sequence space l_M and strongly summable sequence [C, 1, p], $[C, 1, p]_0$ and $[C, 1, p]_{\infty}$ [9].

In the present paper we introduce and examine the following spaces defined by Orlicz function.

Definition 1.1. Let M be an Orlicz function and $p = (p_i)$ be any bounded sequence of strictly positive real numbers. We have

$$\begin{split} [\hat{c}, M, p]^{\infty}(\Delta^{m}) &= \left\{ x = (x_{i}): \lim_{r \to \infty} \frac{1}{h_{r}} \sum_{i \in I_{r}} \left[M\left(\frac{|\Delta^{m} x_{i+s} - L|}{\rho}\right) \right]^{p_{i}} = 0, \\ uniformly \ in \ s, \ for \ some \ \rho > 0 \ and \ L > 0 \ \right\}, \\ [\hat{c}, M, p]_{0}^{\infty} &= \left\{ x = (x_{i}): \right. \\ \lim_{r \to \infty} \frac{1}{h_{r}} \sum_{i \in I_{r}} \left[M\left(\frac{|\Delta^{m} x_{i+s}|}{\rho}\right) \right]^{p_{i}} = 0, \ uniformly \ in \ s, for \ some \ \rho > 0 \right\}, \\ [\hat{c}, M, p]_{\infty}(\Delta^{m}) &= \left\{ x = (x_{i}): \right. \\ \left. \sup_{r,s} \frac{1}{h_{r}} \sum_{i=1}^{n} \left[M\left(\frac{|\Delta^{m} x_{i+s}|}{\rho}\right) \right]^{p_{i}} < \infty, \ for \ some \ \rho > 0 \right\}. \end{split}$$

If $x = (x_i) \in [\hat{c}, M, p]^{\theta}(\Delta^m)$, we say that $x = (x_i)$ is lacunary almost Δ^m -convergence to L with respect to Orlicz function M.

When M(x) = x, then we write $[\hat{c}, p]^{\theta}(\Delta^m)$, $[\hat{c}, p]^{\theta}_0(\Delta^m)$ for the spaces $[\hat{c}, M, p]^{\theta}(\Delta^m)$, $[\hat{c}, M, p]^{\theta}_0(\Delta^m)$ and $[\hat{c}, M, p]^{\theta}_{\infty}(\Delta^m)$, respectively. If $p_i = 1$ for all $i \in N$, then $[\hat{c}, M, p]^{\theta}(\Delta^m)$, $[\hat{c}, M, p]^{\theta}_0(\Delta^m)$ and $[\hat{c}, M, p]^{\theta}_{\infty}(\Delta^m)$ reduce to $[\hat{c}, M]^{\theta}(\Delta^m)$, $[\hat{c}, M]^{\theta}_0(\Delta^m)$ and $[\hat{c}, M]^{\theta}_{\infty}(\Delta^m)$, respectively.

The following inequality will be used throughout the paper,

(1.1)
$$|x_i + y_i|^{p_i} \le K(|x_i|^{p_i} + |y_i|^{p_i})$$

where x_i and y_i are complex numbers, $k = \max(1, 2^{H-1})$ and $H = \sup_i p_i < \infty$.

2 Main Result

In this section we prove some results involving the sequence spaces $[\hat{c}, M, p]^{\theta}(\Delta^m)$, $[\hat{c}, M, p]^{\theta}_0(\Delta^m)$ and $[\hat{c}, M, p]^{\theta}_{\infty}(\Delta^m)$.

Theorem 2.1. Let M be an Orlicz function and $p = (p_i)$ be a bounded sequence of strictly real numbers. Then $[\hat{c}, M, p]^{\theta}(\Delta^m)$, $[\hat{c}, M, p]^{\theta}_0(\Delta^m)$ and $[\hat{c}, M, p]^{\theta}_{\infty}(\Delta^m)$ are linear spaces over the set of complex numbers \mathbb{C}

Proof. Let $x = (x_i), y = (y_i) \in [\hat{c}, M, p]_0^{\theta}(\Delta^m)$ and $\alpha, \beta \in \mathbb{C}$. Then there exists positive numbers ρ_1 and ρ_2 such that

$$\lim_{r \to \infty} \frac{1}{h_r} \sum_{i \in I_r} \left[M\left(\frac{|\Delta^m x_{i+s}|}{\rho_1}\right) \right]^{p_i} = 0, uniformly in s_i$$

and

$$\lim_{r \to \infty} \frac{1}{h_r} \sum_{i \in I_r} \left[M\left(\frac{\Delta^m x_{i+s}}{\rho_2}\right) \right]^{p_i} = 0, \text{ uniformly in s.}$$

Let $\rho_3 = \max(2|\alpha|\rho_1, 2|\beta|\rho_2)$. Since *M* is non-decreasing convex function, by using (1.1), we have

$$\frac{1}{h_r} \sum_{i \in I_r} \left[M\left(\frac{|\Delta^m(\alpha x_{i+s} + \beta y_{i+s})|}{\rho_3}\right) \right]^{p_i} =$$

$$= \frac{1}{h_r} \sum_{i \in I_r} \left[M\left(\frac{|\alpha \Delta^m(x_{i+s})|}{\rho_3} + \frac{|\beta \Delta^m(y_{i+s})|}{\rho_3}\right) \right]^{p_i}$$

$$\leq K \frac{1}{h_r} \sum_{i \in I_r} \frac{1}{2^{p_i}} \left[M\left(\frac{|\Delta^m(x_{i+s})|}{\rho_1}\right) \right]^{p_i} + K \frac{1}{h_r} \sum_{i \in I_r} \frac{1}{2^{p_i}} \left[M\left(\frac{\Delta^m(y_{i+s})}{\rho_2}\right) \right]^{p_i}$$

Ayhan Esi

$$\leq +K\frac{1}{h_r}\sum_{i\in I_r}\left[M\left(\frac{\Delta^m(x_{i+s})}{\rho_1}\right)\right]^{p_i} + K\frac{1}{h_r}\sum_{i\in I_r}\left[M\left(\frac{\Delta^m(y_{i+s})}{\rho_2}\right)\right]^{p_i} \to 0 \ as$$

 $r \to \infty$, uniformly in s.

So, $\alpha x + \beta x \in [\hat{c}, M, p]^{\theta}_0(\Delta^m)$. Hence $[\hat{c}, M, p]^{\theta}_0(\Delta^m)$ is a linear space.

The proof for the cases $[\hat{c}, M, p]^{\theta}(\Delta^m)$ and $[\hat{c}, M, p]^{\theta}_{\infty}(\Delta^m)$ are routine work in view of the above proof.

Theorem 2.2. For any Orlicz function M and a bounded sequence $p = (p_i)$ of strictly positive real numbers, $[\hat{c}, M, p]_0^{\theta}(\Delta^m)$ is a topological linear space paranormed by

$$h(x) = \inf \left\{ \rho^{p_r/H} : \left(\frac{1}{h_r} \sum_{i \in I_r} \left[M\left(\frac{|\Delta^m x_{i+s}|}{\rho} \right) \right]^{p_i} \right)^{1/H} \le 1,$$

$$1 \quad 2 \quad s = 1 \quad 2 \quad \text{where } H = \max(1 \quad \sup n \in \infty)$$

 $r = 1, 2, \dots, s = 1, 2\dots$, where $H = \max(1, \sup_i p_i < \infty)$.

Proof. Clearly $h(x) \ge$ for all $x = (x_i) \in [\hat{c}, M]^{\theta}_0(\Delta^m)$. Since M(0) = 0, we get h(0) = 0. Conversely, suppose that h(x) = 0, then

$$\inf\left\{\rho^{p_r/H}: \left(\frac{1}{h_r}\sum_{i\in I_r} \left[\frac{|\Delta^m x_{i+s}|}{\rho}\right]^{p_i}\right)^{1/H} \le 1, \ r=1,2,\dots,s=1,2,\dots\right\} = 0.$$

The implies that for a given $\epsilon > 0$, there exists some $\rho_{\epsilon}(0 < \rho_{\epsilon} < \epsilon)$ such that

$$\left(\frac{1}{h_r}\sum_{i\in I_r}\left[M\left(\frac{\Delta^m x_{i+s}}{\rho_\epsilon}\right)\right]^{p_i}\right)^{1/H} \le 1.$$

Thus

$$\left(\frac{1}{h_r}\sum_{i\in I_r} \left[M\left(\frac{|\Delta^m x_{i+s}|}{\epsilon}\right)\right]^{p_i}\right)^{1/H} \le \left(\frac{1}{h_r}\sum_{i\in I_r} \left[M\left(\frac{|\Delta^m x_{i+s}|}{\rho_\epsilon}\right)\right]^{p_i}\right)^{1/H} \le 1$$

for each r and s. Suppose that $x_i \neq 0$ for each $i \in N$. This implies that $\Delta^m x_{i+s} \neq 0$, for each $i, s \in N$. Let $\epsilon \to 0$, then $\frac{|\Delta^m x_{i+s}|}{\epsilon} \to \infty$. It follows

that

$$\left(\frac{1}{h_r}\sum_{i\in I_r}\left[M\left(\frac{|\Delta^m x_{i+s}|}{\epsilon}\right)\right]^{p_i}\right)^{1/H}\to\infty$$

which is contradiction. Therefore, $\Delta^m x_{i+s} = 0$ for each *i* and *s* and thus $x_i = 0$ for each $i \in N$. Let $\rho_1 > 0$ and $\rho_2 > 0$ be such that

$$\left(\frac{1}{h_r}\sum_{i\in I_r} \left[M\left(\frac{|\Delta^m x_{i+s}|}{\rho_1}\right)\right]^{p_i}\right)^{1/H} \le 1$$

and

$$\left(\frac{1}{h_r}\sum_{i\in I_r}\left[M\left(\frac{|\Delta^m x_{i+s}|}{\rho_2}\right)\right]^{p_i}\right)^{1/H} \le 1$$

for each r and s. Let $\rho = \rho_1 + \rho_2$. Then, we have

$$\left(\frac{1}{h_r}\sum_{i\in I_r}\left[M\left(\frac{|\Delta^m(x_{i+s}+y_{i+s})|}{\rho}\right)\right]^{p_i}\right)^{1/H}$$

$$\leq \left(\frac{1}{h_r}\sum_{i\in I_r}\left[M\left(\frac{|\Delta^m(x_{i+s})|+|\Delta^m(y_{i+s})|}{\rho_1+\rho_2}\right)\right]^{p_i}\right)^{1/H}$$

$$\leq \left(\frac{1}{h_r}\sum_{i\in I_r}\left[\frac{\rho_1}{\rho_1+\rho_2}M\left(\frac{|\Delta^m(x_{i+s})|}{\rho_1}\right)+\frac{\rho_2}{\rho_1+\rho_2}M\left(\frac{|\Delta^m(y_{i+s})|}{\rho_2}\right)\right]^{p_i}\right)^{1/H}$$

By Minkowski's inequality

$$\leq \left(\frac{\rho_1}{\rho_1 + \rho_2}\right) \left(\frac{1}{h_r} \sum_{i \in I_r} \left[M\left(\frac{\Delta^m(x_{i+s})}{\rho_1}\right)\right]^{p_i}\right)^{1/H} + \left(\frac{\rho_2}{\rho_1 + \rho_2}\right) \left(\frac{1}{h_r} \sum_{i \in I_r} \left[M\left(\frac{|\Delta^m(y_{i+s})|}{\rho_2}\right)\right]^{p_i}\right)^{1/H} \leq 1$$

Since the ρ 's are non-negative, so we have

$$h(x+y) = \inf\left\{p^{p_r/H} : \left(\frac{1}{h_r}\sum_{i\in I_r}\left[M\left(\frac{\Delta^m(x_{i+s}+y_{i+s})}{\rho}\right)\right]^{p_i}\right)^{1/H} \le 1,$$

$$r = 1, 2, \dots, s = 1, 2, \dots \bigg\},$$

$$\leq \inf \left\{ \rho_1^{p_r/H} : \left(\frac{1}{h_r} \sum_{i \in I_r} \left[M\left(\frac{|\Delta^m(x_{i+s})|}{\rho_1}\right) \right]^{p_i} \right)^{1/H} \leq 1,$$

$$r = 1, 2, \dots, s = 1, 2, \dots \bigg\} +,$$

$$+ \inf \left\{ \rho_2^{p_r/H} : \left(\frac{1}{h_r} \sum_{i \in I_r} \left[M\left(\frac{|\Delta^m(y_{i+s})|}{\rho_2}\right) \right]^{p_i} \right)^{1/H} \leq 1,$$

$$, 2, \dots, s = 1, 2, \dots \bigg\}.$$

 $r = 1, 2, \dots, s = 1, 2, \dots$ Therefore $h(x + y) \le h(x) + h(y)$. Finally, we prove that the scalar multiplication is continuous. Let λ be any complex number. By definition

$$h(\lambda x) = \inf \left\{ \rho^{p_r/H} : \left(\frac{1}{h_r} \sum_{i \in I_r} \left[M\left(\frac{|\Delta^m \lambda x_{i+s}|}{\rho}\right) \right]^{p_i} \right)^{1/H} \le 1,$$
$$r = 1, 2, \dots, \ s = 1, 2, \dots \right\}.$$

Then,

$$h(\lambda x) = \inf\left\{ \left(|\lambda|t)^{p_r/H} : \left(\frac{1}{h_r} \sum_{i \in I_r} \left[M\left(\frac{|\Delta^m x_{i+s}|}{t}\right)\right]^{p_i}\right)^{1/H} \le 1, \\ r = 1, 2, \dots, s = 1, 2, \dots\right\}$$

where $t = \frac{\rho}{|\lambda|}$. Since $|\lambda|^{p_r} \le \max(1, \lambda|^{\sup p_r})$, we have

$$h(\lambda x) \le \max(1, |\lambda|^{\sup p_r}) \inf \left\{ t^{p_r/H} : \left(\frac{1}{h_r} \sum_{i \in I_r} \left[M\left(\frac{|\Delta^m x_{i+s}|}{t}\right) \right]^{p_i} \right)^{1/H} \le 1,$$
$$r = 1, 2, \dots, s = 1, 2, \dots \right\}.$$

So, the fact that scalar multiplication is continuous follows from the above inequality. This completes the proof of the theorem.

Theorem 2.3. Let M be an Orlicz function. If $\sup_i [M(x)]^{p_i} < \infty$ for all fixed x > 0, then

$$[\hat{c}, M, p]^{\theta}_{0}(\Delta^{m}) \subset [\hat{c}, M, p]^{\theta}_{\infty}(\Delta^{m}).$$

Proof. Let $x = (x_i) \in [\hat{c}, M, p]_0^{\theta}(\Delta^m)$. There exists some positive ρ_1 such that

$$\lim_{r \in \infty} \frac{1}{h_r} \sum_{i \in I_r} \left[M\left(\frac{|\Delta^m x_{i+s}|}{\rho_1}\right) \right]^{p_i} = 0, \text{ uniformly in s.}$$

Define $\rho = 2\rho_1$. Since *M* is non-decreasing and convex, by using (1.1), we have

$$\begin{split} \sup_{r,s} \frac{1}{h_r} \sum_{i \in I_r} \left[M\left(\frac{|\Delta^m x_{i+s}|}{\rho}\right) \right]^{p_i} &= \sup_{r,s} \frac{1}{h_r} \sum_{i \in I_r} \left[M\left(\frac{\Delta^m x_{i+s} - L + L}{\rho}\right) \right]^{p_i} \\ &\leq K \sup_{r,s} \frac{1}{h_r} \sum_{i \in I_r} \left[\frac{1}{2^{p_i}} M\left(\frac{|\Delta^m x_{i+s} - L|}{\rho_1}\right) \right]^{p_i} + K \sup_{r,s} \frac{1}{h_r} \sum_{i \in I_r} \left[\frac{1}{2^{p_i}} M\left(\frac{|L|}{\rho_1}\right) \right]^{p_i} \\ &\leq K \sup_{r,s} \frac{1}{h_r} \sum_{i \in I_r} \left[M\left(\frac{|\Delta^m x_{i+s} - L|}{\rho_1}\right) \right]^{p_i} + K \sup_{r,s} \frac{1}{h_r} \sum_{i \in I_r} \left[M\left(\frac{|L|}{\rho_1}\right) \right]^{p_i} < \infty. \end{split}$$

Hence $x = (x_i) \in [\hat{c}, M, p]^{\theta}_{\infty}$. This completes the proof.

Theorem 2.4. Let $0 < \inf p_i = h \le p_i \le \sup p_i = H < \infty$ and M, M_1 be Orlicz function satisfying Δ_2 -condition, then we have $[\hat{c}, M_1, p]_0^{\theta}(\Delta^m) \subset [\hat{c}, MoM_1, p]_0^{\theta}(\Delta^m), [\hat{c}, M_1, p]^{\theta}(\Delta^m) \subset [\hat{c}, MoM_1, p]^{\theta}(\Delta^m)$ and $[\hat{c}, M_1, p]_{\infty}^{\theta}(\Delta^m) \subset [\hat{c}, MoM_1, p]_{\infty}^{\theta}(\Delta^m)$.

Proof. Let $x = (x_i) \in [\hat{c}, M_1, p]_0^{\theta}(\Delta^m)$. Then we have

$$\lim_{r \to \infty} \frac{1}{h_r} \sum_{i \in I_r} \left[M_1\left(\frac{|\Delta^m x_{i+s} - L|}{\rho}\right) \right]^{p_i} = 0, \text{ uniformly in } s, \text{ for some } L.$$

Let $\epsilon > 0$ and choose δ with $0 < \delta < 1$ such that $M(t) < \epsilon$ for $0 \le t \le \delta$. Let

$$y_{i,s} = M_1\left(\frac{|\Delta^m x_{i+s}-L|}{\rho}\right) \text{ for all } i,s \in \mathbb{N}. \text{ We can write}$$
$$\frac{1}{h_r} \sum_{i \in I_r} [M(y_{i,s})]^{p_i} = \frac{1}{h_r} \sum_{\substack{i \in I_r \\ y_{i,s} \le \delta}} [M(y_{i,s})]^{p_i} + \frac{1}{h_r} \sum_{\substack{i \in I_r \\ y_{i,s} > \delta}} [M(y_{i,s})]^{p_i}$$

By the Remark, we have

$$(2.1) \frac{1}{h_r} \sum_{\substack{i \in I_r \\ y_{i,s} \le \delta}} [M(y_{i,s})]^{p_i} \le [M(1)]^H \frac{1}{h_r} \sum_{\substack{i \in I_r \\ y_{i,s} \le \delta}} [M(y_{i,s})]^{p_i} \le [M(2)]^H \frac{1}{h_r} \sum_{\substack{i \in I_r \\ y_{i,s} \le \delta}} [M(y_{i,s})]^{p_i}$$

For $y_{i,s} > \delta$

$$y_{i,s} < \frac{y_{i,s}}{\delta} < 1 + \frac{y_{i,s}}{\delta}.$$

Since M is non-decreasing and convex, it follows that

$$M(y_{i,s}) < M\left(1 + \frac{y_{i,s}}{\delta}\right) < \frac{1}{2}M(2) + \frac{1}{2}M\left(\frac{2y_{i,s}}{\delta}\right).$$

Since M satisfies Δ_2 -condition, we can write

$$M(y_{i,s}) < \frac{1}{2}T\frac{y_{i,s}}{\delta}M(2) + \frac{1}{2}T\frac{y_{i,s}}{\delta}M(2) + \frac{1}{2}T\frac{y_{i,s}}{\delta}M(2) = T\frac{y_{i,s}}{\delta}M(2).$$

Hence,

(2.2)
$$\frac{1}{h_r} \sum_{\substack{i \in I_r \\ y_{i,s} > \delta}} [M(y_{i,s})]^{p_i} \le \max\left(1, \left(\frac{TM(2)}{\delta}\right)^H\right) \frac{1}{h_r} \sum_{\substack{i \in I_r \\ y_{i,s} > \delta}} [(y_{i,s})]^{p_i}$$

By (2.1) and (2.2), we have $x = (x_i) \in [\hat{c}, MoM_1, p]_0^{\theta}(\Delta^m)$.

Following similar arguments we can prove that $[\hat{c}, M_1, p]^{\theta}_0(\Delta^m) \subset [\hat{c}, MoM_1, p]^{\theta}_0(\Delta^m)$ and $[\hat{c}, M_1, p]^{\theta}_{\infty}(\Delta^m) \subset [\hat{c}, MoM_1, p]^{\theta}_{\infty}(\Delta^m)$. This completes the proof.

Taking $M_1(x)$ in Theorem 2.4. we have the following result.

Corollary 2.5. Let $0 < \inf p_i = h \le p_i \le \sup p_i = H < \infty$ and M be an Orlicz function satisfying Δ_2 -condition, then we have $[\hat{c}, p]^{\theta}_0(\delta^m) \subset$ $[\hat{c}, M, p]_0^{\theta}(\Delta^m) \text{ and } [\hat{c}, M_1, p]_{\infty}^{\theta}(\Delta^m) \subset [\hat{c}, M, p]_{\infty}^{\theta}(\Delta^m).$

Theorem 2.6. Let M be an Orlicz function. Then the following statements are equivalent:

- (a) $[\hat{c}, p]^{\theta}_{\infty}(\Delta^m) \subset [\hat{c}, M, p]^{\theta}_{\infty}(\Delta^m),$

(b) $[\hat{c}, p]_0^{\theta}(\Delta^m) \subset [\hat{c}, M, p]_{\infty}^{\theta}(\Delta^m),$ (c) $\sup_r \frac{1}{h_r} \sum_{i \in I_r} \left[M\left(\frac{t}{\rho}\right) \right]^{p_i} < \infty \quad (t, \rho > 0).$

Proof. (a) \Rightarrow (b): It is obvious, since $[\hat{c}, p]^{\theta}_{0}(\Delta^{m}) \subset [\hat{c}, p]^{\theta}_{\infty}(\Delta^{m})$.

(b) \Rightarrow (c): Let $[\hat{c}, p]_0^{\theta}(\Delta^m) \subset [\hat{c}, M, p]_{\infty}^{\theta}(\delta^m)$. Suppose that (c) does not hold. Then for some $t, \rho > 0$

$$\sup_{r} \frac{1}{h_r} \sum_{i \in I_r} \left[M\left(\frac{t}{\rho}\right) \right]^{p_i} = \infty$$

and therefore we cab find a subinterval $I_{r(j)}$ of the set of interval I_r such that

(2.3)
$$\frac{1}{h_{r(j)}} \sum_{i \in I_{r(j)}} \left[M\left(\frac{j^{-1}}{\rho}\right) \right]^{p_i} > j, \quad j = 1, 2, \dots$$

Define the sequence x = x(i) by

$$\Delta^m x_{i+s} = \begin{cases} j^{-1}, \ i \in I_{r(j)} \\ 0, \ i \notin I_{r(j)} \end{cases} \quad for \ all \ s \in \mathbb{N}.$$

Then $x = (x_i) \in [\hat{c}, p]_0^{\theta}(\Delta^m)$ but by (2.3) $x = (x_i) \notin [\hat{c}, M, p]_{\infty}^{\theta}(\delta^m)$, which contradicts (b).

Hence (c) must hold.

(c) \Rightarrow (a): Let (c) hold and $x = (x_i) \in [\hat{c}, p]^{\theta}_{\infty}(\Delta^m)$. Suppose that $x = (x_i) \notin [\hat{c}, M, p]^{\theta}_{\infty}(\Delta^m)$. Then

(2.4)
$$\sup_{r,s} \frac{1}{h_r} \sum_{i \in I_r} \left[M\left(\frac{|\Delta^m x_{i+s}|}{\rho}\right) \right]^{p_i} = \infty$$

Let $t = |\Delta^m x_{i+s}|$ for each *i* and fixed *s*, then by (2.4)

$$\sup_{r} \frac{1}{h_r} \sum_{i \in I_r} \left[M\left(\frac{t}{\rho}\right) \right] = \infty$$

which contradicts (c). Hence (a) must hold.

Theorem 2.7. Let $1 \le p_i \le \sup p_i < \infty$ and M be an Orlicz function. Then the following statement are equivalent:

- (a) $[\hat{c}, M, p]^{\theta}_{0}(\delta^{m}) \subset [\hat{c}, p]^{\theta}_{0}(\Delta^{m}),$
- (b) $[\hat{c}, M, p]^{\theta}_{0}(\Delta^{m}) \subset [\hat{c}, p]^{\theta}_{\infty}(\Delta^{m}),$ (c) $\inf_{r} \frac{1}{h_{r}} \sum_{i \in I_{r}} \left[M\left(\frac{t}{\rho}\right) \right]^{p_{i}} > 0 \quad (t, \rho > 0).$ **Proof.** (a) \Rightarrow (b): It is obvious.

 $(\mathbf{b}) \Rightarrow (\mathbf{c})$: Let (b) hold. Suppose that (c) does not hold. Then

$$\inf_{r} \frac{1}{h_{r}} \sum_{i \in I_{r}} \left[M\left(\frac{t}{\rho}\right) \right]^{p_{i}} = 0 \quad (t, \rho > 0).$$

so we can find a subinterval $I_{r(j)}$ of the set of interval I_r such that

(2.5)
$$\frac{1}{h_{r(j)}} \sum_{i \in I_{r(j)}} \left[M\left(\frac{j}{\rho}\right) \right]^{p_i} < j^{-1}, \ j = 1, 2, ..$$

Define the sequence $x = (x_i)$ by

$$\Delta^m x_{i+s} = \begin{cases} j, \ i \in I_{r(j)} \\ 0, \ i \notin I_{r(j)} \end{cases} \text{ for all } s \in \mathbb{N}$$

Thus, by (2.5), $x = (x_i) \in [\hat{c}, M, p]_0^{\theta}(\Delta^m)$ but by (2.3) $x = (x_i) \notin [\hat{c}, p]_{\infty}^{\theta}(\Delta^m)$, which contradicts (b). Hence (c) must hold.

(c) \Rightarrow (a) Let (c)hold and suppose that $x = (x_i) \in [\hat{c}, M, p]^{\theta}_0(\Delta^m)$, i.e., (2.6) $\lim_{r \to \infty} \frac{1}{h_r} \sum_{i \in I_r} \left[M\left(\frac{|\Delta^m x_{i+s}|}{\rho}\right) \right]^{p_i} = 0, \quad uniformly \ in \ s, \ for some \rho > 0.$

Again, suppose that $x = (x_i) \notin [\hat{c}, p]_0^{\theta}(\Delta^m)$. Then, for some number $\epsilon > 0$ and a subinterval $I_{r(j)}$ of the set of interval I_r , we have $|\Delta^m x_{i+s}| \ge \epsilon$ for all $i \in \mathbb{N}$ and some $s \ge s_0$. Then, from the properties of the Orlicz function, we can write

$$M\left(\frac{|\Delta^m x_{i+s}|}{\rho}\right)^{p_i} \ge M\left(\frac{\epsilon}{\rho}\right)^p$$

and consequently by (2.6)

$$\lim_{r \to \infty} \frac{1}{h_r} \sum_{i \in I_r} \left[M\left(\frac{\epsilon}{\rho}\right) \right]^{p_i} = 0,$$

which contradicts (c). Hence (a) must hold.

Finally, we consider that $p = p_i$ and $q = (q_i)$ are any bounded sequences of strictly positive real numbers. We are able to prove below theorem only under additional conditions.

Theorem 2.8. Let $0 < p_i \leq q_i$ for all $i \in \mathbb{N}$ and $\left(\frac{q_i}{p_i}\right)$ be bounded. Then,

$$[\hat{c}, M, q]^{\theta}(\Delta^m) \subset [\hat{c}, M, p]^{\theta}(\Delta^m).$$

Proof. Using the same technique of Theorem 2 of Nanda [11], it is easy to prove the theorem.

By using Theorem 2.8., it is easy to prove the following result.

Corollary 2.9. (a) If $0 < \inf p_i \le p_i \le 1$ for all $i \in \mathbb{N}$, then

$$[\hat{c}, M, p]^{\theta}(\Delta^m) \subset [\hat{c}, M]^{\theta}(\Delta^m).$$

(b) If $1 \leq p_i \leq \sup p_i < \infty$ for all $i \in \mathbb{N}$, then $[\hat{c}, M]^{\theta}(\Delta^m) \subset [\hat{c}, M, p]^{\theta}(\Delta^m)$.

References

 H. Kizmaz, On certain sequence spaces, Canad.Math.Bull., 24(2) (1981), 169-176.

- G.G. Lorentz, A contribution to the theory of divergent sequences, Acta Mathematica, 80(1) (1948), 167-190.
- [3] I.J. Maddox, Spaces of strongly summable sequences, Quart.J.Math., 18(1967), 345-355.
- [4] I.J. Maddox, A new type of convergence, Math.Proc.Camb.Phil.Soc., 83(1978), 61-64.
- [5] M. Güngör, M. Et, Δ^r -strongly almost summable sequences defined by Orlicz functions, Indian J.Pure Appl.Math., 34(8) (2003), 1141-1151.
- [6] M.A. Krasnoselskii, Y.B. Rutitsky, Convex functions and Orlicz spaces, Groningen, Netherland, 1961.
- [7] J. Lindenstrauss, L. Tzafriri, On Orlicz sequence spaces, Israel J.Math.10 (1971), 345-355.
- [8] M.Et, and R. Çolak, On some generalized difference sequence spaces, Soochow J.Math., 21(4)(1995), 377-386.
- [9] I.J. Maddox, On strong almost convergence, Math. Proc. Camb. Phil. Soc., 85(1979), 345- 350.
- [10] A.R. Freedman, J.J. Sember, M. Raphael, , Some Cesaro-type summability spaces, Proc.London Math.Soc., 37(3) (1978), 508-520.
- S. Nanda, Strongly almost summable and strongly almost convergent sequences, Acta Math.Hung.,49(1-2)(1987), 71-76.

Adiyaman University, Science and Art Faculty Department of Mathematics Adiyaman, 02040, Turkey E-mail: aesi23@gmail.com