General Mathematics Vol. 17, No. 2 (2009), 41-52

Certain Convolution Properties of Multivalent Analytic Functions Associated with a Linear Operator ${ }^{1}$
 Jin-Lin Liu

Abstract

Very recently N.E.Cho, O.S.Kwon and H.M.Srivastava (J.Math. Anal. Appl. 292(2004), 470-483) have introduced and investigated a special linear operator $\mathscr{I}_{p}^{\lambda}(a, c)$ defined by the Haramard product (or convolution). In this paper we consider some inclusion properties of a class $\mathscr{B}_{p}^{\lambda}(a, c, \alpha ; h)$ of multivalent analytic functions associated with the operator $\mathscr{I}_{p}^{\lambda}(a, c)$. We have made use of differential subordinations and properties of convolution in geometric function theory.

2000 Mathematics Subject Classification: 30C45
Key words and phrases. Multivalent function; analytic function; convex univalent function; Hadamard product (or convolution); subordination; linear operator.

1 Introduction and Preliminaries

Let $\mathscr{A}(p)$ denote the class of functions of the form

$$
\begin{equation*}
f(z)=z^{p}+\sum_{n=1}^{\infty} a_{n} z^{n+p} \quad(p \in \mathbb{N}:=\{1,2,3, \cdots\}) \tag{1.1}
\end{equation*}
$$

[^0]which are analytic in the open unit disk $\mathbb{U}:=\{z: z \in \mathbb{C}$ and $|z|<1\}$. Also let the Hadamard product (or convolution) of two functions
$$
f_{j}(z)=z^{p}+\sum_{n=1}^{\infty} a_{n, j} z^{n+p} \quad(j=1,2)
$$
be given by
$$
\left(f_{1} * f_{2}\right)(z):=z^{p}+\sum_{n=1}^{\infty} a_{n, 1} a_{n, 2} z^{n+p}=:\left(f_{2} * f_{1}\right)(z)
$$

Given two functions $f(z)$ and $g(z)$, which are analytic in \mathbb{U}, we say that the function $g(z)$ is subordinate to $f(z)$ and write $g(z) \prec f(z) \quad(z \in \mathbb{U})$, if there exists a Schwarz function $w(z)$, analytic in \mathbb{U} with $w(0)=0$ and $|w(z)|<1 \quad(z \in \mathbb{U})$ such that $g(z)=f(w(z)) \quad(z \in \mathbb{U})$. In particular, if $f(z)$ is univalent in \mathbb{U}, we have the following equivalence

$$
g(z) \prec f(z) \quad(z \in \mathbb{U}) \Leftrightarrow g(0)=f(0) \text { and } g(\mathbb{U}) \subset f(\mathbb{U})
$$

A function $f(z) \in \mathscr{A}(1)$ is said to be in the class $\mathscr{S}^{*}(\rho)$ if

$$
\operatorname{Re}\left\{\frac{z f^{\prime}(z)}{f(z)}\right\}>\rho \quad(z \in \mathbb{U})
$$

for some $\rho(\rho<1)$. When $0 \leq \rho<1, \mathscr{S}^{*}(\rho)$ is the class of starlike functions of order ρ in \mathbb{U}. A function $f(z) \in \mathscr{A}(1)$ is said to be prestarlike of order ρ in \mathbb{U} if

$$
\frac{z}{(1-z)^{2(1-\rho)}} * f(z) \in \mathscr{S}^{*}(\rho) \quad(\rho<1)
$$

We note this class by $\mathscr{R}(\rho)$ (see [6]). Clearly a function $f(z) \in \mathscr{A}(1)$ is in the class $\mathscr{R}(0)$ if and only if $f(z)$ is convex univalent in \mathbb{U} and

$$
\mathscr{R}\left(\frac{1}{2}\right)=\mathscr{S}^{*}\left(\frac{1}{2}\right) .
$$

In [7] Saitoh introduced a linear operator

$$
\mathscr{L}_{p}(a, c): \mathscr{A}(p) \rightarrow \mathscr{A}(p)
$$

defined by

$$
\begin{equation*}
\mathscr{L}_{p}(a, c) f(z):=\phi_{p}(a, c ; z) * f(z) \quad(z \in \mathbb{U} ; f \in \mathscr{A}(p)) \tag{1.2}
\end{equation*}
$$

where

$$
\begin{gather*}
\phi_{p}(a, c ; z):=\sum_{n=0}^{\infty} \frac{(a)_{n}}{(c)_{n}} z^{n+p} \\
\left(a \in \mathbb{R}, c \in \mathbb{R} \backslash \mathbb{Z}_{0}^{-}, \mathbb{Z}_{0}^{-}:=\{0,-1,-2, \cdots\} ; z \in \mathbb{U}\right) . \tag{1.3}
\end{gather*}
$$

and $(x)_{n}$ is the Pochhammer symbol defined by

$$
(x)_{n}=\left\{\begin{array}{lr}
1 & \text { for } n=0 \\
x(x+1) \cdots(x+n-1) & \text { for } n \in \mathbb{N}
\end{array}\right.
$$

The operator $\mathscr{L}_{p}(a, c)$ is an extension of the Carlson-Shaffer operator [1]. Very recently, Cho, Kwon and Srivastava [2] introduced the following linear operator $\mathscr{J}_{p}^{\lambda}(a, c)$ analogous to $\mathscr{L}_{p}(a, c)$:

$$
\begin{gather*}
\mathscr{I}_{p}^{\lambda}(a, c): \mathscr{A}(p) \rightarrow \mathscr{A}(p) \\
\mathscr{I}_{p}^{\lambda}(a, c) f(z):=\phi_{p}^{\dagger}(a, c ; z) * f(z) \\
\left(a, c \in \mathbb{R} \backslash \mathbb{Z}_{0}^{-}, \lambda>-p ; z \in \mathbb{U} ; f \in \mathscr{A}(p)\right), \tag{1.4}
\end{gather*}
$$

where $\phi_{p}^{\dagger}(a, c ; z)$ is the function defined in terms of the Hadamard product (or convolution) by the following condition

$$
\begin{equation*}
\phi_{p}(a, c ; z) * \phi_{p}^{\dagger}(a, c ; z)=\frac{z^{p}}{(1-z)^{\lambda+p}}, \tag{1.5}
\end{equation*}
$$

where $\phi_{p}(a, c ; z)$ is given by (1.3). It is well known that for $\lambda>-p$

$$
\begin{equation*}
\frac{z^{p}}{(1-z)^{\lambda+p}}=\sum_{n=0}^{\infty} \frac{(\lambda+p)_{n}}{n!} z^{n+p} \quad(z \in \mathbb{U}) . \tag{1.6}
\end{equation*}
$$

Therefore the function $\phi_{p}^{\dagger}(a, c ; z)$ has the following form

$$
\begin{equation*}
\phi_{p}^{\dagger}(a, c ; z)=\sum_{n=0}^{\infty} \frac{(\lambda+p)_{n}(c)_{n}}{n!(a)_{n}} z^{n+p} \quad(z \in \mathbb{U}) \tag{1.7}
\end{equation*}
$$

Cho, Kwon and Srivastava [2] have obtained the following properties of the operator $\mathscr{I}_{p}^{\lambda}(a, c)$:

$$
\begin{gather*}
\mathscr{I}_{p}^{1}(p+1,1) f(z)=f(z), \quad \mathscr{I}_{p}^{1}(p, 1) f(z)=\frac{z f^{\prime}(z)}{p}, \tag{1.8}\\
z\left(\mathscr{I}_{p}^{\lambda}(a+1, c) f(z)\right)^{\prime}=a \mathscr{I}_{p}^{\lambda}(a, c) f(z)-(a-p) \mathscr{I}_{p}^{\lambda}(a+1, c) f(z), \tag{1.9}
\end{gather*}
$$

and

$$
\begin{equation*}
z\left(\mathscr{I}_{p}^{\lambda}(a, c) f(z)\right)^{\prime}=(\lambda+p) \mathscr{I}_{p}^{\lambda+1}(a, c) f(z)-\lambda \mathscr{I}_{p}^{\lambda}(a, c) f(z) . \tag{1.10}
\end{equation*}
$$

Many interesting results of multivalent analytic functions associated with the linear operator $\mathscr{J}_{p}^{\lambda}(a, c)$ have been given in [2]. Also, the authors [2] presented a long list of papers connected with the operators (1.2) and (1.4) and classes of functions defined by means of those operators.

Let \mathscr{P} be the class of functions $h(z)$ with $h(0)=1$, which are analytic and convex univalent in \mathbb{U}.

In this paper, we shall introduce and investigate the following subclass of $\mathscr{A}(p)$ associated with the operator $\mathscr{I}_{p}^{\lambda}(a, c)$.

Definition 1. A function $f(z) \in \mathscr{A}(p)$ is said to be in the class $\mathscr{B}_{p}^{\lambda}(a, c, \alpha ; h)$ if it satisfies the subordination condition

$$
\begin{equation*}
(1-\alpha) z^{-p} \mathscr{I}_{p}^{\lambda}(a, c) f(z)+\frac{\alpha}{p} z^{-p+1}\left(\mathscr{I}_{p}^{\lambda}(a, c) f(z)\right)^{\prime} \prec h(z), \tag{1.11}
\end{equation*}
$$

where α is a complex number, a, $c \in \mathbb{R} \backslash \mathbb{Z}_{0}^{-}$and $h(z) \in \mathscr{P}$.
The following lemmas will be used in our investigation.

Lemma 1. (see $[4,5])$ Let $g(z)$ be analytic in \mathbb{U} and $h(z)$ be analytic and convex univalent in \mathbb{U} with $h(0)=g(0)$. If

$$
\begin{equation*}
g(z)+\frac{1}{\mu} z g^{\prime}(z) \prec h(z), \tag{1.12}
\end{equation*}
$$

where $\operatorname{Re} \mu \geq 0$ and $\mu \neq 0$, then $g(z) \prec h(z)$.
Lemma 2. (see [6]) Let $\rho<1, f(z) \in \mathscr{S}^{*}(\rho)$ and $g(z) \in \mathscr{R}(\rho)$. Then, for any analytic function $F(z)$ in \mathbb{U},

$$
\frac{g *(f F)}{g * f}(\mathbb{U}) \subset \overline{c o}(F(\mathbb{U}))
$$

where $\overline{c o}(F(\mathbb{U}))$ denotes the closed convex hull of $F(\mathbb{U})$.

2 Inclusion Properties Involving the Operator $\mathscr{I}_{p}^{\lambda}(a, c)$

Theorem 1. Let $0 \leq \alpha_{1}<\alpha_{2}$. Then

$$
\mathscr{B}_{p}^{\lambda}\left(a, c, \alpha_{2} ; h\right) \subset \mathscr{B}_{p}^{\lambda}\left(a, c, \alpha_{1} ; h\right) .
$$

Proof. Let $0 \leq \alpha_{1}<\alpha_{2}$ and suppose that

$$
\begin{equation*}
g(z)=z^{-p} \mathscr{I}_{p}^{\lambda}(a, c) f(z) \tag{2.1}
\end{equation*}
$$

for $f(z) \in \mathscr{B}_{p}^{\lambda}\left(a, c, \alpha_{2} ; h\right)$. Then the function $g(z)$ is analytic in \mathbb{U} with $g(0)=1$. Differentiating both sides of (2.1) with respect to z and using (1.11), we have

$$
\begin{align*}
& \left(1-\alpha_{2}\right) z^{-p} \mathscr{I}_{p}^{\lambda}(a, c) f(z)+\frac{\alpha_{2}}{p} z^{-p+1}\left(\mathscr{I}_{p}^{\lambda}(a, c) f(z)\right)^{\prime} \\
& =g(z)+\frac{\alpha_{2}}{p} z g^{\prime}(z) \prec h(z) . \tag{2.2}
\end{align*}
$$

Hence an application of Lemma 1 yields

$$
\begin{equation*}
g(z) \prec h(z) . \tag{2.3}
\end{equation*}
$$

Noting that $0 \leq \frac{\alpha_{1}}{\alpha_{2}}<1$ and that $h(z)$ is convex univalent in \mathbb{U}, it follows from (2.1), (2.2) and (2.3) that

$$
\begin{aligned}
& \left(1-\alpha_{1}\right) z^{-p} \mathscr{I}_{p}^{\lambda}(a, c) f(z)+\frac{\alpha_{1}}{p} z^{-p+1}\left(\mathscr{I}_{p}^{\lambda}(a, c) f(z)\right)^{\prime} \\
& =\frac{\alpha_{1}}{\alpha_{2}}\left(\left(1-\alpha_{2}\right) z^{-p} \mathscr{I}_{p}^{\lambda}(a, c) f(z)+\frac{\alpha_{2}}{p} z^{-p+1}\left(\mathscr{I}_{p}^{\lambda}(a, c) f(z)\right)^{\prime}\right)+\left(1-\frac{\alpha_{1}}{\alpha_{2}}\right) g(z) \\
& \prec h(z) .
\end{aligned}
$$

Thus $f(z) \in \mathscr{B}_{p}^{\lambda}\left(a, c, \alpha_{1} ; h\right)$ and the proof of Theorem 1 is completed.
Theorem 2. Let

$$
\begin{equation*}
\operatorname{Re}\left\{z^{-p} \phi_{p}\left(a_{1}, a_{2} ; z\right)\right\}>\frac{1}{2} \quad(z \in \mathbb{U}) \tag{2.4}
\end{equation*}
$$

where $\phi_{p}\left(a_{1}, a_{2} ; z\right)$ is defined as in (1.3). Then

$$
\mathscr{B}_{p}^{\lambda}\left(a_{1}, c, \alpha ; h\right) \subset \mathscr{B}_{p}^{\lambda}\left(a_{2}, c, \alpha ; h\right) .
$$

Proof. For $f(z) \in \mathscr{A}(p)$ it is easy to verify that

$$
\begin{equation*}
z^{-p} \mathscr{I}_{p}^{\lambda}\left(a_{2}, c\right) f(z)=\left(z^{-p} \phi_{p}\left(a_{1}, a_{2} ; z\right)\right) *\left(z^{-p} \mathscr{I}_{p}^{\lambda}\left(a_{1}, c\right) f(z)\right) \tag{2.5}
\end{equation*}
$$

and

$$
\begin{equation*}
z^{-p+1}\left(\mathscr{I}_{p}^{\lambda}\left(a_{2}, c\right) f(z)\right)^{\prime}=\left(z^{-p} \phi_{p}\left(a_{1}, a_{2} ; z\right)\right) *\left(z^{-p+1}\left(\mathscr{I}_{p}^{\lambda}\left(a_{1}, c\right) f(z)\right)^{\prime}\right) \tag{2.6}
\end{equation*}
$$

Let $f(z) \in \mathscr{B}_{p}^{\lambda}\left(a_{1}, c, \alpha ; h\right)$. Then from (2.5) and (2.6) we deduce that

$$
\begin{align*}
& (1-\alpha) z^{-p} \mathscr{I}_{p}^{\lambda}\left(a_{2}, c\right) f(z)+\frac{\alpha}{p} z^{-p+1}\left(\mathscr{I}_{p}^{\lambda}\left(a_{2}, c\right) f(z)\right)^{\prime} \tag{2.7}\\
& =\left(z^{-p} \phi_{p}\left(a_{1}, a_{2} ; z\right)\right) * \psi(z)
\end{align*}
$$

and

$$
\begin{align*}
\psi(z) & =(1-\alpha) z^{-p} \mathscr{I}_{p}^{\lambda}\left(a_{1}, c\right) f(z)+\frac{\alpha}{p} z^{-p+1}\left(\mathscr{I}_{p}^{\lambda}\left(a_{1}, c\right) f(z)\right)^{\prime} \tag{2.8}\\
& \prec h(z) .
\end{align*}
$$

In view of (2.4), the function $z^{-p} \phi_{p}\left(a_{1}, a_{2} ; z\right)$ has the Herglotz representation

$$
\begin{equation*}
z^{-p} \phi_{p}\left(a_{1}, a_{2} ; z\right)=\int_{|x|=1} \frac{d \mu(x)}{1-x z} \quad(z \in \mathbb{U}) \tag{2.9}
\end{equation*}
$$

where $\mu(x)$ is a probability measure defined on the unit circle $|x|=1$ and

$$
\int_{|x|=1} d \mu(x)=1
$$

Since $h(z)$ is convex univalent in \mathbb{U}, it follows from (2.7), (2.8) and (2.9) that

$$
\begin{aligned}
& (1-\alpha) z^{-p} \mathscr{I}_{p}^{\lambda}\left(a_{2}, c\right) f(z)+\frac{\alpha}{p} z^{-p+1}\left(\mathscr{I}_{p}^{\lambda}\left(a_{2}, c\right) f(z)\right)^{\prime} \\
& =\int_{|x|=1} \psi(x z) d \mu(x) \prec h(z) .
\end{aligned}
$$

This shows that $f(z) \in \mathscr{B}_{p}^{\lambda}\left(a_{2}, c, \alpha ; h\right)$.
Theorem 3. Let

$$
\begin{equation*}
\operatorname{Re}\left\{z^{-p} \phi_{p}\left(c_{1}, c_{2} ; z\right)\right\}>\frac{1}{2} \quad(z \in \mathbb{U}) \tag{2.10}
\end{equation*}
$$

where $\phi_{p}\left(c_{1}, c_{2} ; z\right)$ is defined as in (1.3). Then

$$
\mathscr{B}_{p}^{\lambda}\left(a, c_{2}, \alpha ; h\right) \subset \mathscr{B}_{p}^{\lambda}\left(a, c_{1}, \alpha ; h\right)
$$

Proof. For $f(z) \in \mathscr{A}(p)$ it is easy to verify that

$$
z^{-p} \mathscr{I}_{p}^{\lambda}\left(a, c_{1}\right) f(z)=\left(z^{-p} \phi_{p}\left(c_{1}, c_{2} ; z\right)\right) *\left(z^{-p} \mathscr{I}_{p}^{\lambda}\left(a, c_{2}\right) f(z)\right)
$$

and

$$
z^{-p+1}\left(\mathscr{I}_{p}^{\lambda}\left(a, c_{1}\right) f(z)\right)^{\prime}=\left(z^{-p} \phi_{p}\left(c_{1}, c_{2} ; z\right)\right) *\left(z^{-p+1}\left(\mathscr{I}_{p}^{\lambda}\left(a, c_{2}\right) f(z)\right)^{\prime}\right) .
$$

The remaining part of the proof of Theorem 3 is similar to that of Theorem 2 and hence we omit it.

Theorem 4. Let $0<a_{1}<a_{2}$. Then

$$
\mathscr{B}_{p}^{\lambda}\left(a_{1}, c, \alpha ; h\right) \subset \mathscr{B}_{p}^{\lambda}\left(a_{2}, c, \alpha ; h\right) .
$$

Proof. Define

$$
g(z)=z+\sum_{n=1}^{\infty} \frac{\left(a_{1}\right)_{n}}{\left(a_{2}\right)_{n}} z^{n+1} \quad\left(z \in \mathbb{U} ; 0<a_{1}<a_{2}\right)
$$

Then

$$
\begin{equation*}
z^{-p+1} \phi_{p}\left(a_{1}, a_{2} ; z\right)=g(z) \in \mathscr{A}(1) \tag{2.11}
\end{equation*}
$$

where $\phi_{p}\left(a_{1}, a_{2} ; z\right)$ is defined as in (1.3), and

$$
\begin{equation*}
\frac{z}{(1-z)^{a_{2}}} * g(z)=\frac{z}{(1-z)^{a_{1}}} . \tag{2.12}
\end{equation*}
$$

By (2.12) we see that

$$
\frac{z}{(1-z)^{a_{2}}} * g(z) \in \mathscr{S}^{*}\left(1-\frac{a_{1}}{2}\right) \subset \mathscr{S}^{*}\left(1-\frac{a_{2}}{2}\right)
$$

for $0<a_{1}<a_{2}$ which shows that

$$
\begin{equation*}
g(z) \in \mathscr{R}\left(1-\frac{a_{2}}{2}\right) . \tag{2.13}
\end{equation*}
$$

Let $f(z) \in \mathscr{B}_{p}^{\lambda}\left(a_{1}, c, \alpha ; h\right)$. Then we deduce from (2.7) and (2.8) (used in the proof of Theorem 2) and (2.11) that

$$
\begin{align*}
& (1-\alpha) z^{-p} \mathscr{I}_{p}^{\lambda}\left(a_{2}, c\right) f(z)+\frac{\alpha}{p} z^{-p+1}\left(\mathscr{I}_{p}^{\lambda}\left(a_{2}, c\right) f(z)\right)^{\prime} \tag{2.14}\\
& =\frac{g(z)}{z} * \psi(z)=\frac{g(z) *(z \psi(z))}{g(z) * z}
\end{align*}
$$

where

$$
\begin{equation*}
\psi(z)=(1-\alpha) z^{-p} \mathscr{I}_{p}^{\lambda}\left(a_{1}, c\right) f(z)+\frac{\alpha}{p} z^{-p+1}\left(\mathscr{I}_{p}^{\lambda}\left(a_{1}, c\right) f(z)\right)^{\prime} \tag{2.15}
\end{equation*}
$$

Since the function z belongs to $\mathscr{S}^{*}\left(1-\frac{a_{2}}{2}\right)$ and $h(z)$ is convex univalent in \mathbb{U}, it follows from (2.13), (2.14), (2.15) and Lemma 2 that

$$
(1-\alpha) z^{-p} \mathscr{I}_{p}^{\lambda}\left(a_{2}, c\right) f(z)+\frac{\alpha}{p} z^{-p+1}\left(\mathscr{I}_{p}^{\lambda}\left(a_{2}, c\right) f(z)\right)^{\prime} \prec h(z) .
$$

Thus $f(z) \in \mathscr{B}_{p}^{\lambda}\left(a_{2}, c, \alpha ; h\right)$ and the proof is completed.

Theorem 5. Let $0<c_{1}<c_{2}$. Then

$$
\mathscr{B}_{p}^{\lambda}\left(a, c_{2}, \alpha ; h\right) \subset \mathscr{B}_{p}^{\lambda}\left(a, c_{1}, \alpha ; h\right)
$$

Proof. Define

$$
g(z)=z+\sum_{n=1}^{\infty} \frac{\left(c_{1}\right)_{n}}{\left(c_{2}\right)_{n}} z^{n+1} \quad\left(z \in \mathbb{U} ; 0<c_{1}<c_{2}\right)
$$

Then

$$
z^{-p+1} \phi_{p}\left(c_{1}, c_{2} ; z\right)=g(z) \in \mathscr{A}(1)
$$

where $\phi_{p}\left(c_{1}, c_{2} ; z\right)$ is defined as in (1.3), and

$$
\begin{equation*}
\frac{z}{(1-z)^{c_{2}}} * g(z)=\frac{z}{(1-z)^{c_{1}}} . \tag{2.16}
\end{equation*}
$$

From (2.16) we see that

$$
\frac{z}{(1-z)^{c_{2}}} * g(z) \in \mathscr{S}^{*}\left(1-\frac{c_{1}}{2}\right) \subset \mathscr{S}^{*}\left(1-\frac{c_{2}}{2}\right)
$$

for $0<c_{1}<c_{2}$ which shows that

$$
g(z) \in \mathscr{R}\left(1-\frac{c_{2}}{2}\right) .
$$

The remaining part of the proof is similar to that of Theorem 4 and we omit it.

Theorem 6. Let $f(z) \in \mathscr{B}_{p}^{\lambda}(a, c, \alpha ; h)$,

$$
\begin{equation*}
g(z) \in \mathscr{A}(p) \text { and } \operatorname{Re}\left\{z^{-p} g(z)\right\}>\frac{1}{2} \quad(z \in \mathbb{U}) \tag{2.17}
\end{equation*}
$$

Then

$$
(f * g)(z) \in \mathscr{B}_{p}^{\lambda}(a, c, \alpha ; h)
$$

Proof. For $f(z) \in \mathscr{B}_{p}^{\lambda}(a, c, \alpha ; h)$ and $g(z) \in \mathscr{A}(p)$, we have

$$
\begin{align*}
& \quad(1-\alpha) z^{-p} \mathscr{I}_{p}^{\lambda}(a, c)(f * g)(z)+\frac{\alpha}{p} z^{-p+1}\left(\mathscr{I}_{p}^{\lambda}(a, c)(f * g)(z)\right)^{\prime} \\
& =(1-\alpha)\left(z^{-p} g(z)\right) *\left(z^{-p} \mathscr{I}_{p}^{\lambda}(a, c) f(z)\right)+\frac{\alpha}{p}\left(z^{-p} g(z)\right) *\left(z^{-p+1}\left(\mathscr{I}_{p}^{\lambda}(a, c) f(z)\right)^{\prime}\right) \\
& (2.18) \quad=\left(z^{-p} g(z)\right) * \psi(z), \tag{2.18}
\end{align*}
$$

where

$$
\begin{equation*}
\psi(z)=(1-\alpha) z^{-p} \mathscr{I}_{p}^{\lambda}(a, c) f(z)+\frac{\alpha}{p} z^{-p+1}\left(\mathscr{I}_{p}^{\lambda}(a, c) f(z)\right)^{\prime} \prec h(z) . \tag{2.19}
\end{equation*}
$$

In view of (2.17), the function $z^{-p} g(z)$ has the Herglotz representation

$$
\begin{equation*}
z^{-p} g(z)=\int_{|x|=1} \frac{d \mu(x)}{1-x z} \quad(z \in \mathbb{U}) \tag{2.20}
\end{equation*}
$$

where $\mu(x)$ is a probability measure defined on the unit circle $|x|=1$ and

$$
\int_{|x|=1} d \mu(x)=1
$$

Since $h(z)$ is convex univalent in \mathbb{U}, it follows from (2.18) to (2.20) that

$$
\begin{aligned}
& (1-\alpha) z^{-p} \mathscr{I}_{p}^{\lambda}(a, c)(f * g)(z)+\frac{\alpha}{p} z^{-p+1}\left(\mathscr{I}_{p}^{\lambda}(a, c)(f * g)(z)\right)^{\prime} \\
& =\int_{|x|=1} \psi(x z) d \mu(x) \prec h(z) .
\end{aligned}
$$

This shows that $(f * g)(z) \in \mathscr{B}_{p}^{\lambda}(a, c, \alpha ; h)$ and the theorem is proved.
Theorem 7. Let $f(z) \in \mathscr{B}_{p}^{\lambda}(a, c, \alpha ; h)$,

$$
g(z) \in \mathscr{A}(p) \text { and } z^{-p+1} g(z) \in \mathscr{R}(\rho) \quad(\rho<1)
$$

Then

$$
(f * g)(z) \in \mathscr{B}_{p}^{\lambda}(a, c, \alpha ; h) .
$$

Proof. For $f(z) \in \mathscr{B}_{p}^{\lambda}(a, c, \alpha ; h)$ and $g(z) \in \mathscr{A}(p)$, from (2.18) we can write

$$
\begin{gather*}
(1-\alpha) z^{-p} \mathscr{I}_{p}^{\lambda}(a, c)(f * g)(z)+\frac{\alpha}{p} z^{-p+1}\left(\mathscr{I}_{p}^{\lambda}(a, c)(f * g)(z)\right)^{\prime} \tag{2.21}\\
=\frac{\left(z^{-p+1} g(z)\right) *(z \psi(z))}{\left(z^{-p+1} g(z)\right) * z} \quad(z \in \mathbb{U})
\end{gather*}
$$

where $\psi(z)$ is defined as in (2.19).
Since $h(z)$ is convex univalent in \mathbb{U},

$$
\psi(z) \prec h(z), z^{-p+1} g(z) \in \mathscr{R}(\rho) \text { and } z \in \mathscr{S}^{*}(\rho) \quad(\rho<1)
$$

it follows from (2.21) and Lemma 2 the desired result.

References

[1] B.C.Carlson, D.B.Shaffer, Starlike and prestarlike hypergeometric functions, SIAM J.Math.Anal. 15(1984), 737-745.
[2] N.E.Cho, O.S.Kwon, H.M.Srivastava, Inclusion relationships and argument properties for certain subclasses of multivalent functions associated with a family of linear operators, J.Math.Anal.Appl. 292(2004), 470-483.
[3] J.Dziok, H.M.Srivastava, Classes of analytic functions associated with the generalized hypergeometric function, Appl.Math.Comput. 103(1999), 1-13.
[4] D.J.Hallenbeck, S.Ruscheweyh, Subordination by convex functions, Proc.Amer.Math.Soc. 52(1975), 191-195.
[5] S.S.Miller, P.T.Mocanu, Differential subordinations and univalent functions, Michigan Math.J. 28(1981), 157-171.
[6] S.Ruscheweyh, Convolutions in Geometric Function Theory, Les Presses de 1'Université de Montréal, Montréal, 1982.
[7] H.Saitoh, A linear operator and its applications of first order differential subordinations, Math.Japon. 44(1996), 31-38.
[8] J.Sokol, L.T.Spelina, Convolution properties for certain classes of multivalent functions, J.Math.Anal.Appl., in press.

Department of Mathematics,
Yangzhou University
Yangzhou 225002, Jiangsu, P.R.China
E-mail: jlliu@yzu.edu.cn

[^0]: ${ }^{1}$ Received 20 April, 2008
 Accepted for publication (in revised form) 5 June, 2008

