A criteria of ϕ -like functions¹

Sushma Gupta, Sukhjit Singh and Sukhwinder Singh

Abstract

In this paper, we obtain some sufficient conditions for a normalized analytic function to be ϕ -like and starlike of order α .

2000 Mathematical Subject Classification: Primary 30C45, Secondary 30C50.

Key words: ϕ -like function, starlike function, differential subordination.

1 Introduction

Let \mathcal{A} be the class of functions f which are analytic in the unit disc $E = \{z : |z| < 1\}$ and are normalized by the conditions f(0) = f'(0) - 1 = 0. Denote by $S^*(\alpha)$ and $K(\alpha)$, the classes of starlike functions of order α and convex functions of order α respectively, which are analytically defined as follows

$$S^*(\alpha) = \left\{ f(z) \in \mathcal{A} : \Re \frac{zf'(z)}{f(z)} > \alpha, z \in E \right\}$$

and

$$K(\alpha) = \left\{ f(z) \in \mathcal{A} : \Re\left(1 + \frac{zf''(z)}{f'(z)}\right) > \alpha, z \in E \right\}$$

Accepted for publication (in revised form) 20 December, 2007

 $^{^1}Received~20~July,~2007$

where α is a real number such that $0 \leq \alpha < 1$. We shall use S^* and K to denote $S^*(0)$ and K(0), respectively which are the classes of univalent starlike (w.r.t. the origin) and univalent convex functions.

Let f and g be analytic in E. We say that f is subordinate to g in E, written as $f(z) \prec g(z)$ in E, if g is univalent in E, f(0) = g(0) and $f(E) \subset g(E)$. Denote by $S^*[A, B]$, $-1 \leq B < A \leq 1$, the class of functions $f \in A$ which satisfy

$$\frac{zf'(z)}{f(z)} \prec \frac{1+Az}{1+Bz}, \ z \in E.$$

Note that $S^*[1-2\alpha, -1] = S^*(\alpha), \ 0 \le \alpha < 1 \text{ and } S^*[1, -1] = S^*.$

A function $f, f'(0) \neq 0$, is said to be close-to-convex in E, if and only if, there is a starlike function h (not necessarily normalized) such that

$$\Re \frac{zf'(z)}{h(z)} > 0, \ z \in E.$$

Let ϕ be analytic in a domain containing f(E), $\phi(0) = 0$ and $\Re \phi'(0) > 0$, then, the function $f \in \mathcal{A}$ is said to be ϕ -like in E if

$$\Re \frac{zf'(z)}{\phi(f(z))} > 0, \ z \in E.$$

This concept was introduced by L. Brickman [1]. He proved that an analytic function $f \in \mathcal{A}$ is univalent if and only if f is ϕ -like for some ϕ . Later, Ruscheweyh [8] investigated the following general class of ϕ -like functions: Let ϕ be analytic in a domain containing f(E), $\phi(0) = 0$, $\phi'(0) = 1$ and $\phi(w) \neq 0$ for $w \in f(E) - \{0\}$, then the function $f \in \mathcal{A}$ is called ϕ -like with respect to a univalent function q, q(0) = 1, if

$$\frac{zf'(z)}{\phi(f(z))} \prec q(z), z \in E.$$

In the present note, we obtain some sufficient conditions for a normalized analytic function to be ϕ -like. In [9], Silverman defined the class G_b as

$$G_b = \left\{ f \in \mathcal{A} : \left| \frac{1 + zf''(z)/f'(z)}{zf'(z)/f(z)} - 1 \right| < b, \ z \in E \right\}$$

and proved that the functions in the class G_b are starlike in E. Later on, this class was studied extensively by Tuneski [4,11,12,13,14,15]. As particular cases, we obtain many interesting results for the class G_b . Most of the results proved by Tuneski follow as corollaries to our theorem.

2 Preliminaries

We shall need following definition and lemmas to prove our results.

Definition 2.1. A function $L(z,t), z \in E$ and $t \geq 0$ is said to be a subordination chain if L(.,t) is analytic and univalent in E for all $t \geq 0$, L(z,.) is continuously differentiable on $[0,\infty)$ for all $z \in E$ and $L(z,t_1) \prec L(z,t_2)$ for all $0 \leq t_1 \leq t_2$.

Lemma 2.1 [5, page 159]. The function $L(z,t): E \times [0,\infty) \to \mathbb{C}$, (\mathbb{C} is the set of complex numbers), of the form $L(z,t) = a_1(t)z + \ldots$ with $a_1(t) \neq 0$ for all $t \geq 0$, and $\lim_{t \to \infty} |a_1(t)| = \infty$, is said to be a subordination chain if and only if $\operatorname{Re}\left[\frac{z\partial L/\partial z}{\partial L/\partial t}\right] > 0$ for all $z \in E$ and $t \geq 0$.

Lemma 2.2 [3]. Let F be analytic in E and let G be analytic and univalent in \overline{E} except for points ζ_0 such that $\lim_{z \to \zeta_0} F(z) = \infty$, with F(0) = G(0). If $F \not\prec G$ in E, then there is a point $z_0 \in E$ and $\zeta_0 \in \partial E$ (boundary of E) such that $F(|z| < |z_0|) \subset G(E)$, $F(z_0) = G(\zeta_0)$ and $z_0F'(z_0) = m\zeta_0G'(\zeta_0)$ for some $m \ge 1$.

3 Main Result

Lemma 3.1.Let $\gamma, \Re \gamma \geq 0$, be a complex number. Let q be univalent function such that either $\frac{zq'(z)}{q^2(z)}$ is starlike in E or $\frac{1}{q(z)}$ is convex in E. If an analytic function p, satisfies the differential subordination

$$(3.1) 1 - \frac{\gamma}{p(z)} + \frac{zp'(z)}{p^2(z)} \prec 1 - \frac{\gamma}{q(z)} + \frac{zq'(z)}{q^2(z)}, \ p(0) = q(0) = 1, \ z \in E,$$

then $p(z) \prec q(z)$ and q(z) is the best dominant.

Proof. Let us define a function

(3.2)
$$h(z) = 1 - \frac{\gamma}{q(z)} + \frac{zq'(z)}{q^2(z)}, \ z \in E.$$

Firstly, we will prove that h(z) is univalent in E so that the subordination (3.1) is well-defined in E. Differentiating (3.2) and simplifying a little, we get

$$\frac{zh'(z)}{Q(z)} = \gamma + \frac{zQ'(z)}{Q(z)}, \ z \in E,$$

where $Q(z) = \frac{zq'(z)}{q^2(z)}$. In view of the given conditions, we obtain

$$\Re \frac{zh'(z)}{Q(z)} > 0, \ z \in E.$$

Thus, h(z) is close-to-convex and hence univalent in E. We need to show that that $p \prec q$. Suppose to the contrary that $p \not\prec q$ in E. Then by Lemma 2.2, there exist points $z_0 \in E$ and $\zeta_0 \in \partial E$ such that $p(z_0) = q(\zeta_0)$ and $z_0 p'(z_0) = m \zeta q'(\zeta_0)$, $m \geq 1$. Then

(3.3)
$$1 - \frac{\gamma}{p(z_0)} + \frac{z_0 p'(z_0)}{p^2(z_0)} = 1 - \frac{\gamma}{q(\zeta_0)} + \frac{m\zeta_0 q'(\zeta_0)}{q^2(\zeta_0)}, \ z \in E.$$

Consider a function

(3.4)
$$L(z,t) = 1 - \frac{\gamma}{q(z)} + (1+t)\frac{zq'(z)}{q^2(z)}, \ z \in E.$$

The function L(z,t) is analytic in E for all $t \geq 0$ and is continuously differentiable on $[0,\infty)$ for all $z \in E$. Now,

$$a_1(t) = \left(\frac{\partial L(z,t)}{\partial z}\right)_{(0,t)} = q'(0)(\gamma + 1 + t).$$

In view of the condition that $\Re \gamma \ge 0$, we get $|\arg(\gamma + 1 + t)| \le \pi/2$. Also, as q is univalent in E, so, $q'(0) \ne 0$. Therefore, it follows that $a_1(t) \ne 0$ and

 $\lim_{t\to\infty} |a_1(t)| = \infty$. A simple calculation yields

$$z \frac{\partial L/\partial z}{\partial L/\partial t} = \gamma + (1+t) \frac{zQ'(z)}{Q(z)}, \ z \in E.$$

Clearly

$$\Re z \frac{\partial L/\partial z}{\partial L/\partial t} > 0, \ z \in E,$$

in view of given conditions. Hence, L(z,t) is a subordination chain. Therefore, $L(z,t_1) \prec L(z,t_2)$ for $0 \leq t_1 \leq t_2$. From (3.4), we have L(z,0) = h(z), thus we deduce that $L(\zeta_0,t) \notin h(E)$ for $|\zeta_0| = 1$ and $t \geq 0$. In view of (3.3) and (3.4), we can write

$$1 - \frac{\gamma}{p(z_0)} + \frac{z_0 p'(z_0)}{p^2(z_0)} = L(\zeta_0, m - 1) \notin h(E),$$

where $z_0 \in E$, $|\zeta_0| = 1$ and $m \ge 1$ which is a contradiction to (3.1). Hence, $p \prec q$. This completes the proof of the Lemma.

Theorem 3.1. Let $\gamma, \Re \gamma \geq 0$, be a complex number. Let q, q(0) = 1, be a univalent function such that $\frac{zq'(z)}{q^2(z)}$ is starlike in E or, equivalently, $\frac{1}{q(z)}$ is convex in E. If an analytic function $f \in A$ satisfies the differential subordination

$$1 + \frac{1 - \gamma + zf''(z)/f'(z)}{zf'(z)/\phi(f(z))} - \frac{(\phi(f(z)))'}{f'(z)} \prec 1 - \frac{\gamma}{q(z)} + \frac{zq'(z)}{q^2(z)}, \ z \in E,$$

for some function ϕ , analytic in a domain containing f(E), $\phi(0) = 0$, $\phi'(0) = 1$ and $\phi(w) \neq 0$ for $w \in f(E) - \{0\}$, then $\frac{zf'(z)}{\phi(f(z))} \prec q(z)$ and q(z) is the best dominant.

Proof. The proof of the theorem follows by writing $p(z) = \frac{zf'(z)}{\phi(f(z))}$ in Lemma 3.1

In particular, for $\phi(w) = w$ and $q(z) = \frac{zg'(z)}{g(z)}$ in Theorem 3.1, we obtain the following result.

Theorem 3.2. Let $\gamma, \Re \gamma \geq 0$, be a complex number. Let $g \in \mathcal{A}$ be such that $\frac{zg'(z)}{g(z)} = q(z)$ is univalent in E. Assume that either $\frac{zq'(z)}{q^2(z)}$ is starlike

in E or $\frac{1}{q(z)}$ is convex in E. If an analytic function $f \in A$ satisfies the differential subordination

$$\frac{1 - \gamma + zf''(z)/f'(z)}{zf'(z)/f(z)} \prec \frac{1 - \gamma + zg''(z)/g'(z)}{zg'(z)/g(z)}, z \in E,$$

then $\frac{zf'(z)}{f(z)} \prec \frac{zg'(z)}{g(z)}$.

4 Applications to univalent functions

In this section, we obtain a criterion for a normalized analytic function to be ϕ -like. As an application of Theorems 3.1 and 3.2, we obtain some new conditions and also few existing conditions for a function to be in the class S^* and $S^*(\alpha)$.

When the dominant is $q(z) = \frac{1+Az}{1+Bz}$. We observe that q is univalent in E and $\frac{1}{q(z)}$ is convex in E where $-1 \le B < A \le 1$. From Theorem 3.1, we deduce the following result.

Theorem 4.1. Let $\gamma, \Re \gamma \geq 0$, be a complex number and A and B be real numbers $-1 \leq B < A \leq 1$. Let $f \in \mathcal{A}$ satisfy the differential subordination

$$1 + \frac{1 - \gamma + zf''(z)/f'(z)}{zf'(z)/\phi(f(z))} - \frac{(\phi(f(z)))'}{f'(z)} \prec 1 - \gamma \frac{1 + Bz}{1 + Az} + \frac{(A - B)z}{(1 + Az)^2}, \ z \in E,$$

for some function ϕ , analytic in a domain containing f(E), $\phi(0) = 0$, $\phi'(0) = 1$ and $\phi(w) \neq 0$ for $w \in f(E) - \{0\}$, then $\frac{zf'(z)}{\phi(f(z))} \prec \frac{1+Az}{1+Bz}$, $z \in E$.

As an example, if we take $\gamma = i, A = 0, B = -1$ in Theorem 4.1, we obtain the following result.

Example 4.1. Let $f \in \mathcal{A}$ satisfy

$$\left| \frac{1 - \gamma + z f''(z) / f'(z)}{z f'(z) / \phi(f(z))} - \frac{(\phi(f(z)))'}{f'(z)} + i \right| < \sqrt{2}, \ z \in E,$$

then $\frac{zf'(z)}{\phi(f(z))} \prec \frac{1}{1-z}, \ z \in E$.

In particular, for $\gamma = 0$ and A = 1, B = -1, Theorem 4.1, reduces to the following result.

Corollary 4.1. Let $f \in A$ satisfy the differential subordination

$$\frac{1 + zf''(z)/f'(z)}{zf'(z)/\phi(f(z))} - \frac{(\phi(f(z)))'}{f'(z)} \prec \frac{2z}{(1+z)^2}, \ z \in E,$$

for some function ϕ , analytic in a domain containing f(E), $\phi(0) = 0$, $\phi'(0) = 1$ and $\phi(w) \neq 0$ for $w \in f(E) - \{0\}$, then $\operatorname{Re} \frac{zf'(z)}{\phi(f(z))} > 0$, $z \in E$.

Note that several such results are available for different substitutions of constants A, B.

For the dominant $q(z) = \frac{1+Az}{1+Bz}$, Theorem 3.2 gives us the following result.

Theorem 4.2. Let $\gamma, \Re \gamma \geq 0$, be a complex number and A and B be real numbers $-1 \leq B < A \leq 1$. Let $f \in A$ satisfy the differential subordination

$$\frac{1 - \gamma + zf''(z)/f'(z)}{zf'(z)/f(z)} \prec 1 - \gamma \frac{1 + Bz}{1 + Az} + \frac{(A - B)z}{(1 + Az)^2}, \ z \in E,$$

then $f \in S^*[A, B]$.

Writing $\gamma = 1$ in Theorem 4.2, we obtain the following result.

Corollary 4.2. If $f \in A$ satisfies the differential subordination

$$\frac{f''(z)f(z)}{f'^2(z)} \prec 1 - \frac{1+Bz}{1+Az} + \frac{(A-B)z}{(1+Az)^2}, \ z \in E, \ -1 \le B < A \le 1$$

then $f \in S^*[A, B]$.

Writing A = 0 in Theorem 4.2, we obtain the following result.

Corollary 4.3. Let $f \in A$ satisfy

$$\left| \frac{1 - \gamma + z f''(z) / f'(z)}{z f'(z) / f(z)} - (1 - \gamma) \right| < (1 + \gamma)B, \ z \in E, \gamma \ge 0, \ 0 < B \le 1,$$

then

$$\frac{zf'(z)}{f(z)} \prec \frac{1}{1+Bz}, \ z \in E.$$

In particular, for $\gamma = 1$, in Corollary 4.3, we obtain the following result. Corollary 4.4. Let $f \in \mathcal{A}$ satisfy

$$\left| \frac{f(z)f''(z)}{f'^2(z)} \right| < 2B, \ z \in E, \ 0 < B \le 1,$$

then

$$\frac{zf'(z)}{f(z)} \prec \frac{1}{1+Bz}, \ z \in E.$$

The selection of B = 0 in Theorem 4.2 gives us the following result.

Corollary 4.5. Let $f \in A$ satisfy

$$\frac{1-\gamma + zf''(z)/f'(z)}{zf'(z)/f(z)} \prec 1 - \frac{\gamma}{1+Az} + \frac{Az}{(1+Az)^2}, \ z \in E, \ \gamma \geq 0, \ 0 < A \leq 1,$$

then

$$\left| \frac{zf'(z)}{f(z)} - 1 \right| < A, \ z \in E.$$

In particular, for $\gamma = 0$ in Corollary 4.5, we obtain the following result.

Corollary 4.6. Let $f \in A$ satisfy

$$\frac{1+zf''(z)/f'(z)}{zf'(z)/f(z)} \prec 1 + \frac{Az}{(1+Az)^2}, \ z \in E, \ 0 < A \le 1,$$

then

$$\left| \frac{zf'(z)}{f(z)} - 1 \right| < A, \ z \in E.$$

Taking $\gamma = 1$ in corollary 4.5, we obtain the following result.

Corollary 4.7. If

$$\frac{f(z)f''(z)}{f'^2(z)} \prec 1 - \frac{1}{(1+Az)^2}, \ z \in E, \ 0 < A \le 1,$$

then

$$\left| \frac{zf'(z)}{f(z)} - 1 \right| < A, \ z \in E.$$

Remark 4.1. (i) Writing $\gamma = 0$ in Theorem 4.2, we obtain the Theorem 2.3 in [14].

- (ii) Writing A = -1, B = 1 in Theorem 4.2, we obtain Theorem 1 of [15].
- (iii) Taking $A = 1, B = -1, \gamma = 0$ in Theorem 4.2, we obtain Theorem 3 in [4].
- (iv) Taking A = -1, B = 1, $\gamma = 1$ in Theorem 4.2, we get Theorem 1 in [12].
- (v) Taking $A = 0, \gamma = 0$ in Theorem 4.2, we obtain Theorem 1 in [4].
- (vi) Writing $A = 0, B = -1, \gamma = 1$ in Theorem 4.2, we obtain the following result:
- If $f \in \mathcal{A}$ satisfies, $\frac{f''(z)f(z)}{f'^2(z)} \prec 2z$, $z \in E$, then $f \in S^*(1/2)$.

This is an improvement of Corollary 2 proved in [12].

- (vii) Taking $A = -(1 2\alpha)$, $B = 1, 0 \le \alpha < 1$ in Theorem 4.2, we get the Theorem 3 in [15].
- (viii) Writing $A = -(1 2\alpha)$, $B = 1, 0 \le \alpha < 1$ and $\gamma = 0$ in Theorem 4.2, we obtain Corollary 4(i) in [15].
- (ix) Writing $A = -(1 2\alpha)$, $B = 1, 0 \le \alpha < 1$ and for $\gamma = 1$ in Theorem 4.2, Corollary 4(ii) in [15] follows.
- (x) For $B = \frac{1-\beta}{\beta}$, $1/2 \le \beta < 1$ in Corollary 4.4, we obtain the result of Robertson [7].
- (xi) Taking $q(z) = \frac{2\alpha}{1+z}$ in Theorem 3.2, we obtain Theorem 2 in [15].

References

- [1] Brickman, L., ϕ -like analytic functions. I, Bull. Amer. Math. Soc., 79(1973), 555-558.
- [2] Bulboaca, T. and Tuneski, N., New Criteria for Starlikeness and Strongly Starlikeness, Mathematica (Cluj), accepted.
- [3] Miller, S. S. and Mocanu, P. T., Differential subordination and Univalent functions, Michigan Math. J. 28(1981), 157-171.
- [4] Obradovic, M. and Tuneski, N., On the Starlike Criteria Defined by Silverman, Zeszyty Nauk. Politech. Rzeszowskiej. Mat., Vol. 181 No.24 (2000) 59-64.
- [5] Pommerenke, Ch., *Univalent Functions*, Vanderhoeck and Ruprecht, Götingen, 175.

- [6] Ravichandran, V. and Darus, M., On a criteria for starlikeness, International Math. J., 4(2), 2003, 119-125.
- [7] Robertson, M. S., The Michigan Math. J., 32(1985), 13-140.
- [8] Ruscheweyh, St., A subordination theorem for ϕ -like functions, J. London Math. Soc., 2, 13(1976), 275-280.
- [9] Silverman, H., Convex and starlike criteria, Internat. J. Math. Sci. & Math. Sci., vol.22 no.1(1999), 75-79.
- [10] Singh, V., On some criteria for univalence and starlikeness, Indian J. Pure. Appl. Math. 34(4),(2003) 569-577.
- [11] Singh, V. and Tuneski, N. , On a Criteria for Starlikeness and Convexity of Analytic Functions, submitted.
- [12] Tuneski, N., On certain sufficient conditions for starlikeness, Internat. J. Math. & Math. Sci., (23) 8 (2000), 521-527.
- [13] Tuneski, N., On Some Simple Sufficient Conditions for Univalence, Mathematica Bohemica, Vol.126 No.1 (2001) 229-236.
- [14] Tuneski, N., On the quotient of the representations of convexity and starlikeness, Mathematische Nachrichten, 200-203(2003), 248-249.
- [15] Tuneski, N., On a criteria for starlikeness of analytic functions, preprint.

Sushma Gupta and Sukhjit Singh

Department of Mathematics

S.L.I.E.T., Longowal-148 106 (Punjab) India

E-mail: sushmagupta1@yahoo.com

sukhjit_d@yahoo.com

Sukhwinder Singh

Deaprement of Applied Sciences

B.B.S.B. Engineering College

Fatehgarh Sahib-140 407 (Punjab) India

E-mail: ss_billing@yahoo.co.in