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On the confluent hypergeometric function

coming from the Pareto distribution

Katsuo Takano

Abstract

Making use of the confluent hypergeometric function we can ob-
tain the Laplace-Stieltje transform of the Pareto distribution in the

following form
((s) =hU(1;1— hys)

= 1 F1(1;1—hys) —T(1 — h)s" 1 Fi(14 h; 1+ h;s).

About this transform, we obtain an identity,
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1 Introduction

If h=1+hy, 0 < hy <1, where [ is a positive integer, let us denote

L F(l—hl)SlD 7Th1 ho—t
u(t) == (h—l)-~(h—l)t e,

and
! t/
v(t) .:1—1-2]-:1(]1_1).”(]1_],)
+ 2 ¥ v
(=1 (=) 7 (= 1) (b — J)
['(1—hy)

t" et cos hy.

C(h=1)-(h 1)
Let us denote

1 1 1
O;ii=14+—-+—-+---+—-, =12, ..
J +2+3+ +]7j 3 4y

and let v be the Euler constant. If h = [, which is the case hy = 0 in the

above, let us denote

m 1 —t
t N
0= gt
and
J
o(t) =1+ 37} !
(l=1)---(—1)
t -t
+<l_1>‘{2]oil( 1)3(5]?4_76 ! € tlog t}

Let us denote
['(1 — hy)sinmhy
REDERED)

and
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It is the purpose of this paper to show that the following identity holds:

(2) 1h {u(t) + (1)} = // N Af e dyd

for positive t, where ¢(1,h) = ¢; if h is non-integer, ; = co if h = [ is a

positive integer.

2 Pareto distribution

The Pareto distribution is usually defined by

Fz) = 1— (9" z>e

. >
= 0, x<eg

where ¢ > 0, h > 0 are the determing parameters. In this paper we take

¢ =1 and let the Pareto distribution be

1
F = 1—-— >0
(3) = 0, z<0.
Then the Pareto density is
h
F’({L‘) = m, T > O,
(4) = 0, z<0.

Suppose that h =1+ hy, 0 < hy; < 1. Integrating by parts, we see that

oo h [e.@]
C(s) = / e ————-dr = he’ / e St dy
0 ( )t 1

) / —Sttl—hdt

- 14

D‘/\

h —
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We see that

00 00 1
/ et tMdt = / ettt — / ettt
1 0 0

1
= T(1—hy)s™! — / et Mt
0
Repeating integration by parts j times, we obtain

! —st y—h _ -5 1 (_S)
/Oe thdt = —e {h1—1+(h1—1)(h1—2)+”'
(—sp
" (hl—l)“‘(hl—j)}

(—s)’ ! —st 1j—h1
- <h1—1>---<h1—j>/o‘“’ i

It is seen that

(—s)/ b j—ha (—s)’ 1 R
o b N S T T
as j — oo for |s| < oco. Hence we obtain

C(s)zl—i—%

(=s)?, 1 (=s) (=s)'~!

B R R R S} (U R W DOy ) S

() ~ T e o

for h =14 hy, 0 < hy <1 and |s| < co. In general, if [ is a positive integer

and h =1+ hy, 0 < hy < 1, we obtain

l (—s)’
C(s) = 1+2j:1(h—1)---(h—z’)
(5 ()
) G0 D ()
(6) (L= /) (—s)le® s™.

T (h- )
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If 0 < h <1, we have

(=s) — —T(1—h)s"e".

In the above ((s), in order to have a single-valued function, we take the
branch of sM = e¢hilog s a5 sh > ( for s > 0. The function ((s) can be
defined by analytic continuation on the whole complex plane with the cut
along the negtive real axis including zero. If s = —t+ip, t >0, p > 0, we

see that

Re ¢t (—t) = pliglo Re ((—t+ip)
t ¢ t

S ) D D =D ()

I(1—h .
i (h — f) — (;l)_ l)tleft pl_i)I_’T_lo Re €h1 log(—t+ip)
t t t
=143t ¥
PGS ) D) ) =) (=)

I'(1—h)
O/ Sowy

the=t coshy .
In the same manner, we have
Re (T(=t) = Re ¢ (—1).
We also see that
Im C*(=) = limy Tm C(~t + )

T h)
(®) =TG- o))

the~t sin mhy
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and Im ¢t (—t) = —Im ¢~ (—t) for t > 0. We have —Im (*(—t) = u(t) and
Re (T (—t) = v(t). From (7) we have

T=n) - G—h)
T TG )

F(l_hl) l s _hi

) e e T

((s) =1+ Eé‘:1

and using the confluent hypergeometric function,

a ala+1)s* ala+1)(a+2)s’
Flabs) =12 @ s° co..
1F1(a; by s) + bs—l— b(b+1)2!  bb+1)(b+2) 3! T

where b # —1,—2,---, we can write as follows;

C(s) =1 (151 = hys) = T(1 = h)s" Fi(1 + s 1+ hs s)
(10) =hU(1;1— h;s),
(cf. [5. (1.3.1)]). Until here, we supposed that h =1+ hy, 0 < hy <1, lis

a positive integer. Next, we suppose that h is a positive integer, and now

we consider the limit case as hy — +0. We show that as h; — 0,

—1)i¢i
L e
(11) —>Z§°1(—1)j(1+%+---+§)%tj
for |t] < co. As x — 40, it holds that
—1)i4i
Ii{l +3%, = QE) 1) (tj e e '}
N e Fr e (G
1, .1 1
(12) S2?11ﬁ|t|‘7|;{(1_w)(1_%)_”(1_% — 1}
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By the mean value theorem we see that
1 1 1, 1 _ ,
|xﬁ1—@u_gy“u_§) H_xgl_@j b= j(1—02) 77 < 20t

(0<@<1)for0<a <3 Henceif 0 <z <1/2, (11) converges uniformly

with respect to t in each finite interval including the origin. Since
1 f 1
T-ai-5-0-3

differentiating by term by term, we obtain (10). As h;y — +0, we have

lim

11 1
— =144+ 4,
z—=+0 T J

2 3

I'(1 — hy)sin why , T,
l) = [;t) = te™".
=g mopn' ¢ —ul=goote
We obtain that
1+ % 4
t) = _
= Gy )
tt ti
+ Dyl :
(h=1)---(h =177 (hy = 1)+ (hy — j)
P(l_hl) h _—t
(h—1)~-(h—l)t e " cosmhy
v(l;t) =1+ %2} d
— . = .
’ FH=1) - (1 =)
tf 0o J t —t —t
(13) +m Y52 (—1) (Sjﬁ +ye " —e log t}
In fact, it is seen that
['(1 — hy)sin why T
= = h
1 (h—l)-~~(1—|—h1)h1_>(l—1)! Ca as hy — +0,
and from (6) we have
v(t) =1+ %7} d
B =t h—1)---(h —1)
tt i
+ {1+%52,

(h—1)--(h— L+ Dk (hi = 1)+ (71 = 4)

(14) —T(1 = h)t" e *cosmhy},
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and we obtain that

t
(hl— RN CE)
(15) — 02, (—)(5——|—’yet—e_tlogt

1
h—{l + 352, —T(1— hy)t" et cosmhy}
1

as hy — +0.

3 An identity on the confluent hypergeo-
metric function

Let us denote the Pareto density by
h

ph(l’) = m, x>0
Theorem 1.1t holds that
h —)\ Y
16 '+ hn)U(1,1— dyd\
a6 raenUa-neP = [0 [T

for —m < arg s < +4m. Hence the confluent hypergeometric function
U(1,1 = h,s) does not have zeros outside except cut along nonpositive real

line. If s = —t < 0 it holds that

L(1+Rr)|U(1,1—h,—t)|* =

L e + (0}

)\h —A—y
1 AT yd
(17) / / N2+ Ay Y

and the double integral is convergent for t > 0.



72 Katsuo Takano

Proof. The Laplace transform of the Pareto density ((s) is defined for
Re s> 0 and ((4+0) = 1. Let us denote the extension of ((s) by analytic
continuation by ¢(s). The density function py(z) can be extended to the

complex plane by analytic continuation and we have

o(s) = ew/ e py (e”x)da
0

for —m < arg s < mand —% < 6 < 7, such that Re se? > 0. (cf. G. Sansone
and J.C.H. Gerretsen, [4], section 8.13) By Schwartz’s reflection principle it
holds that

o(s) = eie/ e Tp (e x)da.
0

Hence we have

|qb(s)|2 = /0 /0 exp{—sei% — Ee_wy}ph(ewx)ph(e_wy)dxdy,

and by change of variables, x = uv, y = ¥, we have

9 ) . ) )
|p(5)]* = / / kel exp{—se®uv — §6_Zeg}ph(e’guv)ph(e_wg)dvdu,
o Jo v v v

From the following relation,

u 9 1
ph(uv)ph(;) =h {14+u(v+1/v) + u?}+h
= 1 h? 271 \h
(18) :/0 exp{— (v + 1)} gy (AL + )} N

we see that
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6(s)* = / / —exp{ seuvy — ’w%}dudv
/ Pt A“(eww v )}'F(fih)
/ / )exp{—)\(1+u2)}d)\du

(19) '/0 —exp{ ()\—i-s)e uv — (A+§)e*ie%}dv.

exp{—=A(1 + u?)} A\'d\

In fact, by the assumption that —w < arg s <m, —F <6 < 7, such that

Re se® > 0, the three fold integral is written as follows,

2
/ / / —u|eXp{ seuv — Fe Zau}]

- )}I : F(1h+ A exp{ =M1 + u?)} N'd\dudv

@) = [ [ epl(Re se) (o ) [

| exp{—Au(e®v 4 &

h2
14 (z+y)cost + zy]

T drdy

and the double integral is convergent and so we can change the order of

integration in the three fold integral by the Fubini theorem. Let
O = argu(\ +35)e "

and suppose © > 0. From Reu(\ +5)e™™ > 0 it holds that © < Z. On the

following integral
1 if = —i0\ Y
—exp{—(A + s)e"uv — (A +35e7")=}dv
0 v v

consider the contour integral along the curve C,app, which is compose of

a real interval [a, A] and a large arc A ~ B with radius R and a segment
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starting from b = 7¢® to B = Re™® and a small arc a —~ b with radius 7.
We can see that the contour integral along the arc A —~ B tends to 0 as
R tends to oo and the contour integral along the small arc a —~ b tends to
0 as r tends 0. By the Cauchy theorem it is seen that the variable can be

changed such as v = u(\ +35)e""p. Hence we obtain

//d)\du/ 2u)\h zh)exp{—)\(1+u2)}

~exp{|A + s|*u’p — —}—
p’p

/oo/ood/\d o M exp{—\ 1} !
= U XP1—A— —5 - —
o Jo g I'(1+h) P PP

/ 2w exp{—(]A + sPp + Au}du

)\h —A—y
21 ——d\du.
(21) 1+h/ / A+ 52+ Ay “

From this and the relation

T D(h)?
c(1,h)h  T(1+h)’

we obtain the identity (15) and the right hand side of (15) is always positive
and finite if Im s # 0. Considering the limit of the left hand side of (15) as
s = —t+1p — —t < 0 then the integrand of right hand side is positive, and
by using the Lebesgue monotone convergence theorem and by the fact that
the left hand side of the series is convergent we see that the right hand side

of (16), i.e. the double integral, is convergent for ¢ > 0. q.e.d.
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