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The Hlawka–Djoković Inequality and Points
in Unitary Spaces 1

Walther Janous

Dedicated to Professor Ph.D. Alexandru Lupaş on the occasion
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Abstract

In this note several inequalities are proved. They are all in con-

nection with the Hlawka–Djoković inequality. At the end a problem

for further research is posed.
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1 Introduction

Starting points of this note was the following problem for planar triangles

recently posed by O. Furdui in [5].

Let G be the centroid of ∆ABC, and let A1, B1, C1 be the mid-points

of BC, CA, AB, respectively. If P is an arbitrary point in the plane of

∆ABC, show that

PA + PB + PC + 3PG ≥ 2(PA1 + PB1 + PC1) .
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(It should be noted that this result dates back at least to the paper [3] by

M. Chiriţă and R. Constantinescu. See also the referential source [6], p.

410.)

The proof of this inequality is as follows.

Let a, b and c denote the three vectors
−→
PA,

−−→
PB and

−→
PC, respectively.

Then the original Hlawka inequality says

|a| + |b| + |c| + |a + b + c| ≥ |a + b| + |b + c| + |c + a|

(See for instance [7], p. 521.)

Because of |a + b + c| = 3PG and |a + b| = 2PA1 etc, the result is

immediate.

In this note we extend this result to a finite number of points in arbitrary

unitary spaces X.

We then go on to exemplify the general inequality for some special

spaces.

At the end we pose a problem concerning the asymptotic behavior of a

difference playing a role in an inequality obtained in this note.

2 General Inequality

We are now in the position to state and prove the following

Theorem. Let A1, A2, . . . , An be n fixed points (n ≥ 3) in an arbitrary

unitary space X. Fix the entire number k such that 2 ≤ k ≤ n − 1.

Let furthermore Gi1...ik be the ”centroid” of the k points Ai1 , . . . Aik where

1 ≤ i1 < . . . < ik ≤ n, that is Gi1...ik =
1

k
(Ai1 + . . . + Aik).

Then for any point P ∈ X the following inequality is valid:

k
∑

1≤i1<...<ik≤n

PGi1...ik ≤

(

n − 2

k − 2

)

(

n − k

k − 1

n
∑

j=1

PAj + nPG

)

.

(Here G denotes the centroid of all n points A1, A2, . . . , An. Furthermore,

AB is the distance between A and B, that is AB = ‖A − B‖.)
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In the spirit of the before-given proof this inequality is an immediate con-

sequence of the Djoković–generalization of the original Hlawka–inequality,

that is

∑

1≤i1<...<ik≤n

‖xi1 + . . . + xik‖ ≤

(

n − 2

k − 2

)

(

n − k

k − 1

n
∑

j=1

‖xj‖ +

∥

∥

∥

∥

∥

n
∑

j=1

xj

∥

∥

∥

∥

∥

)

where x1, . . . , xn ∈ X. (See [4] and also the referential source [7], p. 522–

523.)

Remark. The special case k = 2 of this inequality was originally proved

by D. Adamović in [1]. It was reconsidered by M. Bencze in [2] where he

also gave several applications of it.

3 Some Applications

(1). For X = C and P = reiϕ, r ≥ 0, and Aj = rje
iϕj , rj ≥ 0, j = 1, . . . , n,

there holds

∑

1≤i1<...<ik≤n

√

√

√

√k2r2 +
n

∑

j=1

rijrim cos(ϕij − ϕim) − 2kr

n
∑

j=1

rij cos(ϕ − ϕij) ≤

≤

(

n − 2

k − 2

)

(

n − k

k − 1

n
∑

j=1

√

r2 + r2
j − 2rrj cos(ϕ − ϕj) +

+

√

√

√

√n2r2 +
n

∑

j=1

r2
j + 2 + 2

∑

i≤j<m≤n

rjrm cos(ϕj − ϕm) − 2nr

n
∑

j=1

rj cos(ϕ − ϕj)





• If all involved points are on the unit–circle this inequality reduces to

∑

1≤i1<...<ik≤n

√

√

√

√k(k + 1) + 2
∑

1≤j<m≤n

cos(ϕij − ϕim) − 2k
k

∑

j=1

cos(ϕ − ϕij) ≤
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≤

(

n − 2

k − 2

)

(

2
n − k

k − 1

k
∑

j=1

∣

∣

∣

∣

sin

(

ϕ − ϕj

2

)∣

∣

∣

∣

+

+

√

√

√

√n(n + 1) + 2
∑

i≤j<m≤n

cos(ϕj − ϕm) − 2n
n

∑

j=1

cos(ϕ − ϕj)



 .

• For P = 0 and all the Aj
′s on the unit–circle we get the inequality

∑

1≤i1<...<ik≤n

√

k + 2
∑

i≤j<m≤n

cos(ϕij − ϕim) ≤

≤

(

n − 2

k − 2

)





n − k

k − 1
n +

√

n + 2
∑

1≤j<m≤n

cos(ϕj − ϕm)





(2). Let I = [a, b] be an interval on the real axis and consider the vector

space X = C[a, b] of all continuous functions on I with ‖f‖ =

√

∫ b

a

(f(x))2dx.

For P = f ∈ C[a, b] and Aj = fj ∈ C[a, b], j = 1, . . . , n, there holds the

”master–inequality”

∑

1≤i1<...<ik≤n

√

√

√

√

∫ b

a

(

k
∑

j=1

fij(x) − kf(x)

)2

dx ≤

≤

(

n − 2

k − 2

)





n − k

k − 1

n
∑

j=1

√

∫ b

a

(fj(x) − f(x))2
dx +

+

√

√

√

√

∫ b

a

(

n
∑

j=1

fj(x) − nf(x)

)2

dx



 .

This general integral inequality allows specifications in very many directions.

Of specific interest are, of course, orthogonal polynomials.

We investigate now the cases of Legendre, Laguerre and Hermite poly-

nomials.
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• I = [−1, 1] and Legendre polynomials Pn.

We let fj = Pj−1, j = 1, . . . , n. Due to

∫ 1

−1

Pr(x)Ps(x)dx =
2

2s + 1
δrs,

r, s ≥ 0, there holds

∑

1≤i1<...<ik≤n

√

√

√

√

k
∑

j=1

2

2ij − 1
+ k2

∫ b

a

(f(x))2dx−2k

∫ b

a

(

k
∑

j=1

Pij(x)

)

f(x)dx ≤

≤

(

n − 2

k − 2

)





n − k

k − 1

n
∑

j=1

√

2

2j − 1
+

∫ b

a

(f(x))2dx − 2

∫ b

a

Pj(x)f(x)dx +

+

√

√

√

√

n
∑

j=1

2

2j − 1
+ n2

∫ b

a

(f(x))2
dx − 2n

∫ b

a

(

n
∑

j=1

Pj(x)

)

f(x)dx



 .

If we put in this inequality f = PN , where N ≥ n, then

∑

1≤i1<...<ik≤n

√

√

√

√

k2

2N + 1
+

k
∑

j=1

1

2ij − 1
≤

≤

(

n − 2

k − 2

)





n − k

k − 1

n
∑

j=1

√

1

2j − 1
+

1

2N + 1
+

√

√

√

√

n
∑

j=1

1

2j − 1
+

n2

2N + 1



 .

Letting N → ∞ yields

∑

1≤i1<...<ik≤n

√

√

√

√

k
∑

j=1

1

2ij − 1
≤

≤

(

n − 2

k − 2

)





n − k

k − 1

n
∑

j=1

√

1

2j − 1
+

√

√

√

√

n
∑

j=1

1

2j − 1



 .

If we set here k = n − 1 then it follows

(∗)
n

∑

j=1

√

hn −
1

2j − 1
≤

n
∑

j=1

√

1

2j − 1
+

√

√

√

√

n
∑

j=1

1

2j − 1
+ (n− 2)

√

hn
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where hn =
n

∑

k=1

1

2j − 1
.

• I = [0,∞) and Laguerre functions Λn(x) = e
x
2 Ln(x), where Ln are

the Laguerre polynomials.

Letting fj = Λj−1, j = 1, . . . , n, and noting
∞

∑

0

Λr(x)dx = (s!)2δrs,

r, s ≥ 0, we get for f = ΛN , where N ≥ n:

∑

1≤i1<...<ik≤n

√

√

√

√k2(N !)2 +
k

∑

j=1

(ij!)2 ≤

≤

(

n − 2

k − 2

)





n − k

k − 1

n−1
∑

j=0

√

(N !)2 + (j!)2 +

√

√

√

√n2(N !)2 +
n−1
∑

j=0

(j!)2



 .

This inequality becomes for k = n − 1

n−1
∑

j=0

√

(n − 1)2 + s
(N)
n −

(

j!

N !

)2

≤
n−1
∑

j=0

√

(1 +

(

j!

N !

)2

+(n−2)

√

n2 + s
(N)
n

where s(N)
n =

n−1
∑

j=0

(

j!

N !

)2

.

Dividing both of these inequalities by N ! and letting N −→ ∞ yields

the identities

(

n

k

)

=

(

n

k

)

and (n − 1)n = (n − 1)n, respectively.

This means that these inequalities are sharp (at least ”at infinity”).

• I = (−∞,∞) and Hermite functions ψn(x) = e−
x2

2 Hn(x), where Hn

are the Hermite polynomials.

Proceeding as before we get due to

∫ ∞

−∞

ψr(x)ψs(x)dx = 2ss!δrs,

r, s ≥ 0:

∑

1≤i1<...<ik≤n

√

√

√

√k2 +
k

∑

j=1

2ij ij!

2NN !
≤
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≤

(

n − 2

k − 2

)





n − k

k − 1

n−1
∑

j=0

√

2ij ij!

2NN !
+

√

√

√

√n2 +
n−1
∑

j=0

2j
j!

2NN !



 .

From it similar conclusions as before can be drawn.

As a final example we let I = [0, π] and fj(x) = sin(jx), j = 1, . . . , n.

Then

∫ π

0

sin(rx) sin(sx)dx =
π

2
δrs, r, s ≥ 1.

This, the master–inequality and

∫ π

0

sin(rx) cos(sx)dx =







0, r = s

r((−1)r+s − 1)

s2 − r2
, r 6= s

would enable us to deduce various inequalities for Fourier coefficients

of a functions f(x) having f(x) =
a0

1
+

∞
∑

m=1

(am cos(mx) + bm sin(mx))

as its Fourier series. We leave this an exercise for the reader.

4 An Observation

In the light of the following recently published result many of the before

proven results have natural extensions for the case k = n − 2.

Indeed, the following inequality is valid ([8], p. 64).

Let x1, . . . , xn be elements from a Hilbert space (n ≥ 3) and µ1 ≥

1, . . . , µn ≥ 1. Then

(

n
∑

i=1

µi − 2

)∥

∥

∥

∥

∥

n
∑

i=1

µixi

∥

∥

∥

∥

∥

+
n

∑

i=1

µi‖xi‖ ≥

n
∑

i=1

µi

∥

∥

∥

∥

∥

xi −

n
∑

j=1

µjxj

∥

∥

∥

∥

∥

.

5 An Open Problem

At the end of this note we raise the following question in connection with

inequality (*). Unlike the inequalities obtained from the Hermite and La-

grange polynomials is the one stemming from Legendre polynomials, that

is inequality (*), apparently far from being asymptotically sharp.
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Therefore it is natural to find out the correct asymptotic behavior of the

following difference we denote in honor of Alexandru Lupaş by AL(n) =
n

∑

j=1

√

1 − aj(n) −
n

∑

j=1

√

aj(n) where aj(n) =
1

hn(2j − 1)
, j = 1, . . . , n.

This is, we are left to find f(n), such that AL(n) = n− f(n) + o(f(n)),

as n → ∞.
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