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Abstract

In this paper, sufficient and necessary conditions such that the

function
[

e/(1 + 1/x)x+β
]x+α

is completely monotonic or logarith-

mically completely monotonic in (0,∞) are established. As by-

products, several inequalities related to (1 + 1/x)x are obtained and

one of them is used to strengthen van der Corput’s inequality.
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1 Introduction

It is well known [10] that a function f is said to be completely monotonic on

an interval I if f has derivative of all orders on I such that (−1)nf (n)(x) ≥ 0

for x ∈ I and nonnegative integer n. In [14], it was coined that a positive

function f is said to be logarithmically completely monotonic on an interval

I if its logarithm ln f satisfies (−1)n[ln f(x)](n) ≥ 0 for x ∈ I and n ∈ N.

It has been proved in [12, 14] that a logarithmically completely monotonic

function on an interval I must be completely monotonic on I, but not con-

versely. (Logarithmically) completely monotonic functions have important

applications in many areas such as potential theory, physics, numerical and

asymptotic analysis, number theory, and combinatorics. For more informa-

tion on the logarithmically completely monotonic functions, please refer to

[2, 6, 10, 11, 12, 14, 15, 16] and the references therein.

The real number e is one of the most important constants in mathe-

matics, it plays crucial roles in many branches of mathematics and other

subjects. In recent years, many papers, such as [1, 18, 20, 21], about e and

function
(

1 + 1
x

)x
were emerged. In [18], the monotonicity and convexity

of two functions (x + 1)
[

e −
(

1 + 1
x

)x]
and

(

x + 1
2

)[

e −
(

1 + 1
x

)x]
in (0,∞)

were discussed. Later, in [1], the sufficient and necessary conditions such

that pn(x)
[

e−
(

1 + 1
x

)x]
is completely monotonic in (0,∞) were presented,

where pn(x) = xn +
∑n−1

v=0 avx
v is a polynomial of degree n ≥ 1 with real

coefficients av.

In [9], a new notion or term was coined as follows: A positive function

f is said to be logarithmically absolutely monotonic on an interval I if it

has derivatives of all orders and [ln f(t)](k) ≥ 0 for t ∈ I and k ∈ N. It was

proved in [9] that a logarithmically absolutely monotonic function on an

interval I is also absolutely monotonic on I, but not conversely. Moreover,

the sufficient and necessary conditions such that the function
(

1 + α
x

)x+β

or its reciprocal is logarithmically completely (absolutely) monotonic are

showed also in [9], which generalizes and extends the corresponding results

in [1, 17, 23].

The first aim of this paper, motivated by [1, 18], is to consider the
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logarithmically complete monotonicity of the function
[

e
(1+1/x)x+β

]x+α

. The

first main result is the following necessary and sufficient conditions.

Theorem 1.1. Let α and β be real numbers and

(1) f(x) =

[

e

(1 + 1/x)x+β

]x+α

.

Then the following three statements are equivalent each other:

(i) Either α + β ≥ 2
3

and αβ ≤ 0 or α + β < 2
3

and αβ ≤ 3(α+β)−2
6

is

valid.

(ii) The function f(x) is logarithmically completely monotonic in (0,∞).

(iii) The function f(x) is completely monotonic in (0,∞).

As direct consequences of Theorem 1.1, the following inequalities related

to
(

1 + 1
x

)x
are obtained.

Corollary 1 If either α + β ≥ 2
3

and αβ ≤ 0 or α + β < 2
3

and αβ ≤
3(α+β)−2

6
, then inequality

(2)
e

(1 + 1/x)x
>

(

1 +
1

x

)β

exp
1 − 2β

2(x + α)

holds in (0,∞). In particular,

(3)
e

(1 + 1/x)x
> exp

1

2x + 4/3

and

(4)
e

(1 + 1/x)x
>

(

1 +
1

x

)
2

3

exp
1

6x
.

hold for x ∈ (0,∞).

As a generalization of Theorem 1.1, we obtain the following Theorem

1.2.
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Theorem 1.2. Let pn(x) = xn +
∑n−1

v=0 cvx
v be a polynomial of degree n ≥ 1

with real coefficients cv. Then the function

(5) g(x) =

[

e

(1 + 1/x)x+β

]pn(x)

is logarithmically completely monotonic in (0,∞) if and only if n = 1, β and

c0 satisfies either c0 +β ≥ 2
3

and c0β ≤ 0 or c0 +β < 2
3

and c0β ≤ 3(c0+β)−2
6

.

The van der Corput’s inequality [19] reads that inequality

(6)
∞

∑

n=1

(

n
∏

k=1

a
1/k
k

)1/Hn

< e1+γ

∞
∑

n=1

(n + 1)an

holds true for an ≥ 0 such that 0 <
∑

∞

n=1(n + 1)an < ∞, where Hn =
∑n

m=1
1
m

is the harmonic number and γ = 0.57721566 · · · stands for Euler-

Mascheroni’s constant.

As an application of Corollary 1, we are about to present a strengthened

van der Corput’s inequality below.

Theorem 1.3. For n ∈ N, let Hn =
∑n

m=1
1
m

. If an ≥ 0 and

0 <

∞
∑

n=1

n

(

1 − ln n

2n + ln n + 4/3

)

an < ∞,

then

(7)
∞

∑

n=1

(

n
∏

k=1

a
1/k
k

)1/Hn

< e1+γ

∞
∑

n=1

e−
3γ

6n+4 n

(

1 − ln n

2n + ln n + 4/3

)

an,

where γ = 0.57721566 · · · is the Euler-Mascheroni’s constant.

Remark 1.1. Recently, some strengthened van der Corput’s inequalities are

given in [3, 4, 7, 8, 22], but they are not better than (7).
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2 Lemmas

In order to prove our theorems, the following two lemmas are necessary.

Lema 2.1. The function 2
3

+ 3x + 2x2 − 2x(1 + x)2 ln
(

1 + 1
x

)

is completely

monotonic and

(8) 0 < 2x(1 + x)2 ln

(

1 +
1

x

)

− 2x2 − 3x <
2

3

in (0,∞).

Proof. Let ϕ(x) = 2x(1 + x)2 ln(1 + 1
x
) − 2x2 − 3x is defined in (0,∞).

Then

ϕ′(x) = 2(3x2 + 4x + 1) ln

(

1 +
1

x

)

− 6x − 5,

ϕ′′(x) = 2

[

2(3x + 2) ln

(

1 +
1

x

)

− 6x + 1

x

]

,

ϕ′′′(x) = 2

[

6 ln

(

1 +
1

x

)

+
1 − 3x − 6x2

x2(x + 1)

]

,

ϕ(4)(x) = − 4

x3(x + 1)2
.

Since ϕ(4)(x) < 0 in (0,∞), then ϕ′′′(x) is decreasing in (0,∞). It is clear

that limx→∞ ϕ′′′(x) = 0. From this, it follows that ϕ′′′(x) > 0 and ϕ′′(x)

increases. It is also clear that limx→∞ ϕ′′(x) = 0, thus ϕ′′(x) < 0 in (0,∞),

therefore ϕ′(x) is decreasing. By L’Hôspital’s rule, it is easy to obtain that

limx→∞ ϕ′(x) = 0. Hence ϕ′(x) > 0 and ϕ(x) is increasing in (0,∞). Using

L’Hôspital’s rule once again yields limx→0 ϕ(x) = 0 and limx→∞ ϕ(x) = 2
3
,

this means 0 < ϕ(x) < 2
3

in (0,∞).

Let ω(x) = 2
3
− ϕ(x) in (0,∞). By the argument above, it easy to see

that (−1)iω(i)(x) > 0 for i = 0, 1, 2, 3, 4 and ω(4)(x) = 4
x3(x+1)2

. Since the

functions 1
x3 and 1

(x+1)2
are completely monotonic in (0,∞) and the product

of finite completely monotonic functions is also completely monotonic, then

ω(4)(x) is completely monotonic in (0,∞). The proof of Lemma 2.1 is

complete.
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Lema 2.2.[[5, 13]] For n ∈ N,

(9)
1

2n + 1/(1 − γ) − 2
< Hn − ln n − γ <

1

2n + 1/3
.

The constants 1
1−γ

− 2 and 1
3

in (9) are the best possible.

3 Proofs of theorems and Corollary 1

Proof. [Proof of Theorem 1.1] It is sufficient to prove the circle (i) ⇒ (ii)

⇒ (iii) ⇒ (i).

(i) ⇒ (ii)

Direct computation yields

ln f(x) = (x + α)

[

1 − (x + β) ln

(

1 +
1

x

)]

,(10)

[ln f(x)]′ = 1 − (2x + α + β) ln

(

1 +
1

x

)

+
(x + α)(x + β)

x(1 + x)
,

[ln f(x)]′′ = −2 ln

(

1 +
1

x

)

+
2 − α − β

1 + x
+

α + β

x
+

1 + αβ − α − β

(1 + x)2
− αβ

x2
.

(11)

Using the well-known formulas

(12) ln

(

1 +
1

x

)

=

∫

∞

0

e−xt − e−(x+1)t

t
dt

and

(13)
1

xn
=

1

(n − 1)!

∫

∞

0

tn−1e−xt dt

for n ∈ N and x > 0 leads to

[ln f(x)]′′ =

∫

∞

0

2(e−(x+1)t − e−xt)

t
dt + (2 − α − β)

∫

∞

0

e−(1+x)t dt+
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+(α + β)

∫

∞

0

e−xt dt − αβ

∫

∞

0

te−xt dt+

+(1 + αβ − α − β)

∫

∞

0

te−(1+x)t dt =

=

∫

∞

0

1

t

{[

(α + β)t − 2 − αβt2
]

e−xt+

+
[

2 + (2 − α − β)t + (1 + αβ − α − β)t2
]

e−(1+x)t
}

dt =

=

∫

∞

0

1

te(1+x)t

{[

(α + β)t − 2 − αβt2
]

et + 2+

+(2 − α − β)t + (1 + αβ − α − β)t2
}

dt ,

∫

∞

0

g(t)

t
e−(1+x)t dt,

(−1)n[ln f(x)](n) =

∫

∞

0

xn−2g(t)

t
e−(1+x)t dt.

For n ≥ 2, and

g′(t) = [−2 + α + β + (α + β − 2αβ)t − αβt2]et

+ 2 − α − β + 2(1 + αβ − α − β)t,

g′′(t) = [−2 + 2(α + β) − 2αβ + (α + β − 4αβ)t − αβt2]et

+ 2(1 + αβ − α − β),

g′′′(t) = [−2 + 3(α + β) − 6αβ + (α + β − 6αβ)t − αβt2]et

, h(t)et.

If h(t) ≥ 0, then g′′′(t) ≥ 0 and g′′(t) is increasing in (0,∞). From g′′(0) =

0, it is concluded that g′′(t) > 0 and g′(t) is increasing in (0,∞). From

g′(0) = 0, it is deduced that g′(t) > 0 and g(t) is increasing in (0,∞).

From g(0) = 0, it is followed that g(t) > 0 in (0,∞). This means that

(−1)n[ln f(x)](n) > 0 for n ≥ 2.

Now we are in a position to find the conditions such that h(t) ≥ 0 in

(0,∞). Let

(14) C1 ,

{

αβ < 0,

∆ ≤ 0,
C2 ,















αβ < 0,

∆ ≥ 0,

y1 ≤ 0,

C3 ,

{

αβ = 0,

α + β ≥ 2
3
,
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where ∆ = α2 + β2 + 12α2β2 − 6αβ is the discriminant of the root of the

equation h(t) = 0 and

y1 =
6αβ − α − β +

√
∆

−2αβ

is the larger root of the equation h(t) = 0. it is clear to say that the function

h(t) is positive is equivalent to say that either C1 or C2 or C3 holds. By

simplifying them we find that C1 has no solution and that C2 is equivalent

to either

(15)
{

α + β ≥ 1,

αβ < 0,
or

{

2
3
≤ α + β < 1,

αβ < 0,
or

{

α + β < 2
3
,

αβ ≤ 3(α+β)−2
6

.

From (14) and (15), we conclude that the function h(t) being positive is

equivalent to

(16)

{

α + β ≥ 2
3

αβ ≤ 0,
or

{

α + β < 2
3

αβ ≤ 3(α+β)−2
6

.

For n = 1, we have proved [ln f(x)]′′ ≥ 0 under the condition (16), this

implies [ln f(x)]′ ≥ 0 is increasing in (0,∞). Applying the Talyor expansion

(17) ln

(

1 +
1

x

)

=
2

2x + 1
+

2

3(2x + 1)3
+

2

5(2x + 1)5
+ · · ·

for x > 0 yields limx→∞[ln f(x)]′ = 0, this means that if (16) holds then

[ln f(x)]′ < 0. Hence, for n ≥ 1 we show (−1)n[ln f(x)](n) > 0 in (0,∞). So,

the sufficient condition of the function f(x) being logarithmically completely

monotonic is (16).

(ii) ⇒ (iii)

This follows from a fact obtained in [2, 9, 12, 14] that a logarithmically

completely monotonic function must be completely monotonic.
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(iii) ⇒ (i)

If f(x) is completely monotonic in (0,∞), we have

f ′′(x) =
[

eln f(x)
]

′′

= f(x)[ln f(x)]′′ + f(x){[ln f(x)]′}2 > 0,

that is, {[ln f(x)]′}2 > −[ln f(x)]′′, this implies [ln f(x)]′′ > 0. From (11), it

follows that

(18)

[ln f(x)]′′ = −2 ln

(

1+
1

x

)

+
2 − α − β

1 + x
+

α + β

x
+

1 + αβ − α − β

(1 + x)2
−αβ

x2
> 0,

which can be rearranged as

(19) α + β − αβ

x/(1 + 2x)
> 2x(1 + x)2 ln

(

1 +
1

x

)

− 2x(1 + x)− x = ϕ(x).

Making use of Lemma 2.1 leads to

(20) α + β − αβ

x/(1 + 2x)
≥ sup

x∈(0,∞)

ϕ(x) =
2

3
.

On the other hand, since the function φ(x) = − x
1+2x

is decreasing in (0,∞),

it follows that −1
2

< φ(x) < 0. In virtue of (20) we obtain

(21) φ(x)

(

2

3
− α − β

)

≥ αβ.

If α + β = 2
3
, then αβ ≤ 0. If α + β < 2

3
, then (21) is equivalent to

φ(x) ≥ αβ
2/3−α−β

. Since −1
2

< φ(x) < 0, we deduce

αβ

2/3 − α − β
≤ inf

x∈(0,∞)
φ(x) = −1

2
,

that is, 6αβ ≤ 3(α + β) − 2. If α + β > 2
3
, then (21) is equivalent to

φ(x) ≤ αβ
2/3−α−β

. Since −1
2

< φ(x) < 0, we have

αβ

2/3 − α − β
≥ sup

x∈(0,∞)

φ(x) = 0,
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that is, αβ ≤ 0. These cases are equivalent to (16). The proof of Theorem

1.1 is complete.

Proof. [Proof of Corollary 1] Using Taylor expansion (17) and (10), we

have

ln f(x) = (x + α)

[

1 − 2(x + β)

2x + 1

]

+ O

(

1

x

)

as x → ∞. Therefore,

lim
x→∞

ln f(x) = lim
x→∞

(1 − 2β)(x + α)

2x + 1
=

1

2
− β.

This implies

lim
x→∞

[

e

(1 + 1/x)x+β

]x+α

= e
1

2
−β.

Since (16) holds, inequality (2) follows from Theorem 1.1.

Substituting either α = 2
3

and β = 0 or α = 0 and β = 2
3

into (2)

respectively yield either (3) or (4). The proof is complete.

Proof. [Proof of Theorem 1.2] Let

I1 = {x | pn(x) > 0 and x ≥ 0} and I2 = {x | pn(x) < 0 and x ≥ 0}.

If x ∈ I1 and β ≤ 0, the complete monotonicity of g(x) in (0,∞) gives

g′(x) = g(x)

{

p′n(x)

[

1 − (x + β) ln

(

1 +
1

x

)]

+

+pn(x)

[

x + β

x(1 + x)
− ln

(

1 +
1

x

)]}

≤ 0

which is equivalent to

xp′n(x)

pn(x)

[

1 − (x + β) ln

(

1 +
1

x

)]

+

[

x + β

x + 1
− x ln

(

1 +
1

x

)]

≤ 0,

that is,

xp′n(x)

pn(x)
≤

x ln
(

1 + 1
x

)

− x+β
x+1

1 − (x + β) ln
(

1 + 1
x

) .
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Using (17) leads to

x ln

(

1 +
1

x

)

− x + β

x + 1
= 1 − (x + β) ln

(

1 +
1

x

)

+ O

(

1

x

)

as x → ∞, that is,

lim
x→∞

x ln
(

1 + 1
x

)

− x+β
x+1

1 − (x + β) ln
(

1 + 1
x

) = 1.

Therefore, it follows that n = limx→∞

xp′n(x)
pn(x)

≤ 1, which means n = 1.

If x ∈ I2 and β > 0, the same procedure as above can be employed to

obtain the result of n = 1 also.

In one word, if βpn(x) ≤ 0, then n = 1.

By Theorem 1.1, the sufficient condition of g(x) being completely mono-

tonic is n = 1 and

(22)















βpn(x) = (x + c0)β ≤ 0,

c0 + β ≥ 2
3
,

c0β ≤ 0,

or















βpn(x) = (x + c0)β ≤ 0,

c0 + β < 2
3
,

c0β ≤ 3(c0+β)−2
6

.

Now consider the inequality (x + c0)β ≤ 0, that is, c0β ≤ −xβ. For

x ≥ 0, if β ≥ 0, then c0β ≤ −xβ ≤ 0; if β < 0, then −xβ > 0, which

implies that c0β ≤ inf −xβ = 0. This tells us that (22) is equivalent to (16)

(c0 = α). Thus the sufficiency is proved. The necessary condition is clear

by Theorem 1.1 also.

Proof. [Proof of Theorem 1.3] Let

Bn =

[

(n + 1)Hn+1

nHn

]nHn

.

By applying inequality (3), we have

(Bn)1/(Hn+1) =

(

1 +
Hn + 1

nHn

)nHn/(Hn+1)

< exp

[

1 − Hn + 1

2nHn + 4(Hn + 1)/3

]

< exp

(

1 − 1

2n + 4/3

)

.

(23)
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By using Lemma 2.2 in (23), we obtain

Bn < exp

[

(Hn + 1)

(

1 − 1

2n + 4/3

)]

< exp

(

1 + γ + ln n +
1

2n + 1/3
−

1 + γ + ln n + 1
2n+1/3

2n + 4/3

)

= ne1+γ exp

(

− γ

2n + 4/3

)

exp

(

− ln n

2n + 4/3

)

.

(24)

In virtue of inequality e−x ≤ 1
1+x

for x > −1 in (24), we have

(25) Bn < ne1+γ− 3γ
6n+4

(

1 − ln n

2n + ln n + 4/3

)

.

To prove inequality (7), it suffices to prove

(26)
∞

∑

n=1

(

n
∏

k=1

a
1/k
k

)1/Hn

≤
∞

∑

n=1

Bnan.

For k ≤ 1 ≤ n, let

(27) ck =
[(k + 1)Hk+1]

kHk

(kHk)kHk−1

with assumption S0 = 0. Then

(28)

(

n
∏

k=1

c
1/k
k

)

−1/Hn

=
1

(n + 1)Hn+1

.

By using the discrete weighted arithmetic-geometric mean inequality and
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interchanging the order of summations,

∞
∑

n=1

(

n
∏

k=1

a
1/k
k

)1/Hn

=
∞

∑

n=1

[

n
∏

k=1

(ckak)
1/k

]1/Hn
(

n
∏

k=1

c
1/k
k

)

−1/Hn

≤
∞

∑

n=1

(

n
∏

k=1

c
1/k
k

)

−1/Hn

1

Hn

n
∑

k=1

ckak

k

≤
∞

∑

n=1

1

(n + 1)Hn+1Hn

n
∑

k=1

ckak

k

=
∞

∑

k=1

ckak

k

∞
∑

n=k

1

(n + 1)HnHn+1

=
∞

∑

k=1

ckak

k

∞
∑

n=k

(

1

Hn

− 1

Hn+1

)

=
∞

∑

k=1

ckak

kHk

=
∞

∑

k=1

[

(k + 1)Hk+1

kHk

]kHk

ak

=
∞

∑

n=1

Bnan.

Therefore, inequality (26) is proved.

Substituting (25) into (26) leads to (7). The proof of Theorem 1.3 is

complete.
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