Properties regarding the trace of a matrix ${ }^{1}$ Amelia Bucur

In memoriam of Associate Professor Ph. D. Luciana Lupaş

Abstract

There exist in many collection of mathematics problems applications concerning the trace of a matrix (ex. ...). We understand by the trace of a matrix the sum of all elements that are on the matrix first diagonal. The aim of this article is to present some properties regarding the trace of a matrix.

2000 Mathematics Subject Classification: 15A60

Through out the paper if A is an $n \times n$ matrix, we write $\operatorname{tr} A$ to denote the trace of A and $\operatorname{det} A$ for the determinant of A. If A is positive definite we write $A>0$.
Application 1. Let $A \in \mathcal{M}_{2}(\mathbb{C})$ and $n \in \mathbb{N}^{*}$ with $A^{n}=I_{2}$. Show that if $A+\operatorname{det} A$ is a real matrix, then $\operatorname{tr} A$ and $\operatorname{det} A$ are real numbers.
Proof. Let $f(x)=X^{n}-\operatorname{tr} A \cdot X+\operatorname{det} A$ be the characteristic polyoma

[^0]of the A matrix and λ_{1}, λ_{2} its roots. Because $\lambda_{1}^{n}=\lambda_{2}^{n}=1$, results that $\left|\lambda_{1}\right|=\left|\lambda_{2}\right|=1$. By the hypothesis $\operatorname{tr} A+\operatorname{det} A=\lambda_{1}+\lambda_{2}+\lambda_{1} \lambda_{2}$ is a real number, so $\overline{\lambda_{1}}+\overline{\lambda_{2}}+\overline{\lambda_{1} \lambda_{2}}$ is a real number. We obtain $\frac{1}{\lambda_{1}}+\frac{1}{\lambda_{2}}+\frac{1}{\lambda_{1} \lambda^{2}}$ from \mathbb{R}, so $\frac{\operatorname{tr} A+1}{\operatorname{det} A}$ is real number. Then $1+\frac{\operatorname{tr} A+1}{\operatorname{det} A}=\frac{\operatorname{tr} A+\operatorname{det} A+1}{\operatorname{det} A}$ is real number and $\operatorname{tr} A+\operatorname{det} A+1$ also, so $\operatorname{det} A$ and then $\operatorname{tr} A$ is real number.
Application 2. If $A>0$ and $B>0$, then
$$
0<\operatorname{tr}(A B)^{m} \leq(\operatorname{tr}(A B))^{m} \quad \text { for all } \quad m \in \mathbb{N}^{*}
$$

Proof. The equality takes place for $n=1$. If $n>1$, for $B=I$ the inequality is true because $0<\operatorname{tr}\left(A^{n}\right) \leq(\operatorname{tr} A)^{n}$, become

$$
\sum_{i=1}^{n} \lambda_{i}^{m} \leq\left(\sum_{i=1}^{n} \lambda_{i}\right)^{m}
$$

where $\lambda_{1} \lambda_{2}, \ldots, \lambda_{n}$ are the eigenvalues of A.

If $A \mapsto A B$, the result has been proved.
Application 3. If $A_{i}>0$ and $B_{i}>0(i=1,2, \ldots, k)$ then

$$
\left(\operatorname{tr} \sum_{i=1}^{k} A_{i} B_{i}\right)^{n} \leq\left(\operatorname{tr} \sum_{i=1}^{k} A_{i}^{n}\right)\left(\operatorname{tr} \sum_{i=1}^{k} B_{i}^{n}\right)
$$

If $A_{i} B_{i}>0(i=1,2, \ldots, k)$, then

$$
\left(\operatorname{tr} \sum_{i=1}^{k} A_{i} B_{i}\right)^{n} \leq\left(\operatorname{tr} \sum_{i=1}^{k} A_{i}^{n}\right)\left(\operatorname{tr} \sum_{i=1}^{k} B_{i}^{n}\right)
$$

Proof. Because

$$
\begin{aligned}
& 0 \leq \operatorname{tr}\left(\sum_{i=1}^{k} \alpha A_{i}+B_{i}\right)^{n}=\alpha^{n} \operatorname{tr}\left(\sum_{i=1}^{k} A_{i}^{n}\right)+ \\
&+2 \alpha \operatorname{tr}\left(\operatorname{tr} \sum_{i=1}^{k} A_{i} B_{i}\right)+\operatorname{tr}\left(\operatorname{tr} \sum_{i=1}^{k} B_{i}^{n}\right)
\end{aligned}
$$

the result has been proved.

In order to demonstrate the second inequality it is sufficient to demonstrate that

$$
\begin{equation*}
\operatorname{tr}\left(\sum_{i=1}^{k} A_{i} B_{i}\right)^{n} \leq\left(\operatorname{tr} \sum_{i=1}^{k} A_{i} B_{i}\right) \tag{1}
\end{equation*}
$$

Because $A_{i} B_{i}>0$ for all $i=1,2, \ldots, k$, we have $U=\sum_{i=1}^{k} A_{i} B_{i}>0$. The inequality (1) will result by the fact that $\operatorname{tr}(U)^{n} \leq(\operatorname{tr} U)^{n}$, for all $U>0$. Application 4. If $A>0$ and $B>0$ then

$$
n(\operatorname{det} A \operatorname{det} B)^{\frac{m}{n}} \leq \operatorname{tr}\left(A^{n} B^{n}\right)
$$

for any positive integer m.
Proof. Since A is diagonaligable, there exists an orthodiagonal matrix P and a diagonal matrix D such that $D=P^{\top} A$ (see [2]). So if the eigenvalues of A are $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$, then $D=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$.

Let $b_{11}(m), b_{22}(m), \ldots, b_{n n}(m)$ denote the elements of $\left(P B P^{\top}\right)^{n}$. Then

$$
\begin{gathered}
\frac{1}{n} \operatorname{tr}\left(A^{n} B^{n}\right)=\frac{1}{n} \operatorname{tr}\left(P D^{n} P^{\top} B^{n}\right)=\frac{1}{n} \operatorname{tr}\left(D^{n} P^{\top} B^{n} P\right)= \\
=\frac{1}{n} \operatorname{tr}\left[D^{n}\left(P^{\top} B P\right)^{n}\right]=\frac{1}{n}\left[\lambda_{1}^{m} b_{11}(m)+\lambda_{2}^{m} b_{22}(m)+\ldots+\lambda_{n}^{m} b_{n n}(m)\right] .
\end{gathered}
$$

Using the arithmetic - mean geometric - mean inequality, we get

$$
\begin{equation*}
\frac{1}{n} \operatorname{tr}\left(A^{n} B^{n}\right) \leq\left[\lambda_{1}^{m} \lambda_{2}^{m} \ldots \lambda_{n}^{m}\right]^{\frac{1}{n}}\left[b_{11}(m) b_{22}(m) \ldots b_{n n}(m)\right]^{\frac{1}{n}} \tag{2}
\end{equation*}
$$

Since $\operatorname{det} A \leq a_{11} a_{22} \ldots a_{n n}$ for any positive definite matrix A, we conclude that

$$
\operatorname{det}\left(P^{\top} B P\right)^{n} \leq b_{11}(m) b_{22}(m) \ldots b_{n n}(m)
$$

and

$$
\operatorname{det} D^{n} \leq \lambda_{1}^{m} \lambda_{2}^{m} \ldots \lambda_{n}^{m}
$$

Therefore from (2) if fellows that

$$
\begin{aligned}
\frac{1}{n} \operatorname{tr}\left(A^{n} B^{n}\right) & \leq\left[\operatorname{det}\left(D^{n}\right)\right)^{\frac{1}{n}}\left[\operatorname{det}\left(P^{\top} B P\right)^{m}\right]^{\frac{1}{n}}= \\
& =\left[\operatorname{det}\left(P^{\top} A P\right)\right]^{\frac{m}{n}}\left[\operatorname{det}\left(P^{\top} B P\right)\right]^{\frac{m}{n}}=(\operatorname{det} A \operatorname{det} B)^{\frac{m}{n}}
\end{aligned}
$$

Here we used the fact that $A>0$ and $B>0$. The proof is complete.
Corollary 1. Let A and X be positive definite $n \times n$ - matrices such that $\operatorname{det} X=1$. Then

$$
n(\operatorname{det} A) \frac{1}{n} \leq \operatorname{tr}(A X)
$$

Proof. Take $B=X$ and $m=1$ in Applications 4.

References

[1] C. Năstăsescu, Culegere de probleme de algebră, Ed. Didactică şi Pedagogică, Bucureşti, 1984 (in Romanian).
[2] C. Năstăsescu, C. Niţă, Bazele algebrei, vol. I, Ed. Academiei R.S.R., Bucureşti, 1986 (in Romanian).
"Lucian Blaga" University of Sibiu
Faculty of Sciences
Department of Mathematics
Str. Dr. I. Raţiu, no. 5-7
550012 Sibiu - Romania
E-mail address: amelia.bucur@ulbsibiu.ro

[^0]: ${ }^{1}$ Received 9 October, 2006
 Accepted for publication (in revised form), 2006

