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Abstract

In this paper we define and study some properties of the classes

Bn(A) of univalent functions.
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1 Introduction

Let U denote the open unit disc: U = {z ; z ∈ C , |z| < 1}, let A denote

the class of functions

f(z) = z +
∞∑
j=2

ajz
j

which are analytic in U , and let S denote the class of functions of this form

wich are analytic and univalent in U.

A function f (z) ∈ A is said to be starlike of order α (0 ≤ α < 1) in the

unit disk U if

Re
zf ′ (z)

f (z)
> α
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for all z ∈ U. The class of starlike functions of order α it is denoted by

S∗ (α) and S∗ (0) = S∗.

For f ∈ S we define the Sălăgean’s differential operator Dn (see [2])

D0f(z) = f(z)

D1f(z) = Df(z) = zf ′(z)

and

Dnf(z) = D(Dn−1f(z)) ; n ∈ N∗ = {1, 2, 3, ...} .

For α ∈ [0, 1) and n ∈ N Sălăgean introduced the class of n-starlike

functions of order α

Sn(α) =

{
f ∈ A : Re

Dn+1f (z)

Dnf (z)
> α, z ∈ U

}

and for this class be obtained the following results:

Theorem 1.(see [2]) For n ∈ N and α ∈ [0, 1) we have Sn+1 (α) ⊂
Sn (δ (α)) , where

δ (α) =





2α− 1

2 (1− 21−2α)
, α ∈ [0, 1) \

{
1

2

}

1

2 ln 2
, α =

1

2

and the result is sharp.

Corollary 1.(see [2]) Sn+1 (α) ⊂ Sn (α) , for all n ∈ N and α ∈ [0, 1) .

Remark 1. Since

Sn (α) ⊂ Sn−1 (α) ⊂ ... ⊂ S1 (α) ⊂ S0 (α) = S∗ (α)
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and S∗ (α) ⊆ S∗ (0) = S∗, all functions of Sn (α) , n ∈ N and α ∈ [0, 1)

are starlike and univalent, and because S1 (α) = K (α) ⊆ K (0) = K, all

functions of Sn (α) , n ∈ N∗ = N \ {0} , α ∈ [0, 1) are convex.

Theorem 2.(see [1]) Let −1 ≤ B ≤ 1, let A, β, γ ∈ C with β 6= 0 and

A 6= B such that β (A−B) ∈ R, Re (β + γ) > 0,




Re [β (1 + A) + γ (1 +B)] ≥ 0, if B 6= −1

Re [β (1− A) + γ (1−B)] ≥ 0, if B 6= 1

and

|βA+ γB| ≤ |β + γ| .

Then the differential equation

q (z) +
zq′ (z)

βq (z) + γ
=

1 + Az

1 + Bz

has a univalent solution q, with q (0) = 1, given by

q (z) =





zβ+γ (1 +Bz)β
A−B
B

β

∫ z

0

tβ+γ−1 (1 +Bt)β
A−B
B dt

− γ

β
, if B 6= 0

zβ+γeβAz

β

∫ z

0

tβ+γ−1eβAtdt
− γ

β
, if B = 0

.

If the function p is analytic in U and satisfy the differential subordination

p (z) +
zp′ (z)

βp (z) + γ
≺ 1 + Az

1 +Bz

then

p (z) ≺ q (z) ≺ 1 + Az

1 + Bz

and the function q it is the best dominant.



36 Amelia Anca Holhoş

Definition 1. Let n ∈ N∗ and let A ∈ (0, 1) . We define the class

Bn (A) =

{
f ∈ A :

Dn+1f (z)

Dnf (z)
≺ 1 + Az, z ∈ U

}
.

Remark 2. Bn (A) ⊂ Sn (1− A) . From this we deduce that all functions of

Bn (A) are univalent.

2 Some properties of the classes Bn(A).

Theorem 3. Let n ∈ N∗ and A ∈ (0, 1) , The Bn+1 (A) ⊂ Bn (A) .

Proof. Let f ∈ Bn+1(A). Then from definition of the class Bn (A) we have

Dn+2f (z)

Dn+1f (z)
≺ 1 + Az.

Let

(1) p (z) =
Dn+1f (z)

Dnf (z)
, z ∈

.

U and p (0) = 1.

We observe that p is analityc in U , and from definition of the Sălăgean’s

differential operator Dn we have

(2) p (z) +
zp′ (z)

p (z)
=
Dn+2f (z)

Dn+1f (z)
≺ 1 + Az.

Since the conditions by the hypothessis of Theorem 4 are satisfied for B = 0,

β = 1, γ = 0 and A ∈ (0, 1), then the differential equation

q (z) +
zq′ (z)

q (z) + 1
= 1 + Az

has a univalent solution given by

q (z) =
zeAz

eAz

A
− 1

A
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and because p is analytic in U and satisfies (2) we have

(3) p (z) ≺ q (z) ≺ 1 + Az

and q is the best dominant. From (3) and (1) we have

Dn+1f (z)

Dnf (z)
≺ zeAz

eAz

A
− 1

A

≺ 1 + Az

therefore f ∈ Bn(A) and hence Bn+1 (A) ⊂ Bn (A) .

Theorem 4. If A ∈ (0, 1) , c ≥ A − 1 and f ∈ Bn(A), then I (f) ∈ Bn(A)

where

I (f) (z) =
c+ 1

zc

∫ z

0

f (t) tc−1dt.

Proof. Since f ∈ Bn(A) we have

(4)
Dn+1f (z)

Dnf (z)
≺ 1 + Az.

If we denote

g (z) = I (f) (z) =
c+ 1

zc

∫ z

0

f (t) tc−1dt

then

f (z) =
cg (z)

c+ 1
+
zg′ (z)

c+ 1

and

Dn+1f (z)

Dnf (z)
=
Dn+1g (z)

Dng (z)

c+
Dn+2g (z)

Dn+1g (z)

c+
Dn+1g (z)

Dng (z)

.

If we get

p (z) =
Dn+1g (z)

Dng (z)
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then

p (z) +
zp′ (z)

p (z)
=
Dn+2g (z)

Dn+1g (z)

and

(5)
Dn+1f (z)

Dnf (z)
= p (z) +

zp′ (z)

c+ p (z)
.

From (4) and (5) and because the conditions of Theorem 4 are satisfied for

B = 0, β = 1, γ = c ≥ A − 1 > −1 then we have that the differential

equation

q (z) +
zq′ (z)

q (z) + c
= 1 + Az

has a univalent solution given by

q (z) =
z1+ceAz∫ z
0
tceAtdt

− c.

Since p is analityc in U , then

p (z) ≺ q (z) ≺ 1 + Az

and q is the best dominant. Hence

p (z) =
Dn+1g (z)

Dng (z)
≺ z1+ceAz∫ z

0
tceAtdt

− c ≺ 1 + Az

then g ∈ Bn (A) and I (f) ∈ Bn (A) .
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