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Abstract

In this paper we define and study some properties of the classes

B, (A) of univalent functions.
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1 Introduction

Let U denote the open unit disc: U = {z; 2 € C, |z| < 1}, let A denote

the class of functions

f(z)=z+ iajzj

which are analytic in U, and let S denote the class of functions of this form

wich are analytic and univalent in U.

A function f (z) € A is said to be starlike of order o (0 < v < 1) in the

unit disk U if
zf'(2)
f(z)

33

Re

> o
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for all z € U. The class of starlike functions of order « it is denoted by
S* () and S* (0) = S*.
For f € S we define the Salagean’s differential operator D" (see [2])

D°f(z) = [f(2)
D'f(z) = Df(z) =2f'(2)

and
D"f(z)=D(D" 'f(z)) ; mneN'={1,23 .1}.
For a € [0,1) and n € N Salagean introduced the class of n-starlike
functions of order «

D" (2)
Drf(z)

and for this class be obtained the following results:

Sn(a)—{fe.A:Re > a, zEU}

Theorem 1.(see [2]) For n € N and o € [0,1) we have Sp41 () C
Sy (6 (), where

and the result s sharp.
Corollary 1.(see [2]) Sp41(a) C Sy (a), foralln e N and a €[0,1).

Remark 1. Since

Sp () C Sy (@) C ... € S1(a) CSp(a) =58 (a)
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and S* (o) C S*(0) = S*, all functions of S, (a), n € N and a € [0,1)
are starlike and univalent, and because Sy () = K (o) C K (0) = K, all
functions of S, (o), n € N* =N\ {0}, a € [0,1) are convez.

Theorem 2.(see [1]) Let —1 < B < 1, let A,3,v € C with 5 # 0 and
A # B such that (A — B) € R, Re(f+7) >0,

Re[f(1+A)+~v(1+B)] >0, i B#-1
Re[p(1-A)+7(1=B)] =20, if B#1

and

|BA+~B| < |B+7].

Then the differential equation

has a univalent solution q, with

(

chalUE 5 B Y
5/ztﬁ+71 (1+BH*'5 at g
0
q(z) =
Pl 7 J B=0
3 / (otr—1 84ty
\ 0

If the function p is analytic in U and satisfy the differential subordination

zp' (2) 1+ Az
Bp(z)+~y 1+ Bz

p(2)+

then
1+ Az

1+ Bz

and the function q it is the best dominant.

p(2) <q(z) <
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Definition 1. Let n € N* and let A € (0,1). We define the class

D (2)
Drf (z)
Remark 2. B, (A) C S, (1 — A). From this we deduce that all functions of

Bn(A):{fE.A: <14+ Az, zEU}.

By, (A) are univalent.

2 Some properties of the classes B,(A).
Theorem 3. Let n € N* and A € (0,1), The B,4+1 (A) C B, (4).

Proof. Let f € B,;11(A). Then from definition of the class B, (A) we have

Dn+2f (Z)

Let

0 p) =t

We observe that p is analityc in U, and from definition of the Salagean’s

. zeU and p(0)=1.

differential operator D" we have

2p' (z) _ D"*f(2)
p(z)  Df(z)
Since the conditions by the hypothessis of Theorem 4 are satisfied for B = 0,
B=1,v=0and A € (0,1), then the differential equation

(2) p(z)+ <1+ Az

2q'(2) s
q(z)—l—q(Z)_i_lfl—i-A

has a univalent solution given by
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and because p is analytic in U and satisfies (2) we have
(3) p(z) <q(z) <1+ Az

and ¢ is the best dominant. From (3) and (1) we have

DL f (2) ze*
D f (z) = e 1

A A
therefore f € B, (A) and hence B,,+1 (A) C B, (A).

<1+ Az

Theorem 4. If A€ (0,1), ¢ > A—1 and f € B,(A), then I (f) € B,(A)

where
_ c+ 1 - c—1
10E =2 [ roeta
Proof. Since f € B,(A) we have
D™ f (2)
(4) W <14+ Az
If we denote
c+1 [~ .
0 =1 == [ rora
then
_ () | 29 (?)
J(z) = c+1 * c+1
and
Dn+29 (Z)
DHf(z) D (x)C T Drvig(z)
D) D) D)
Drg (z)
If we get
Dn+lg (Z)
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then ) t2g(2)
zp (z)  D"P%g(z
PET LG T D)

and
5 DUE) L

Drf(z)
From (4) and (5) and because the conditions of Theorem 4 are satisfied for

B=0,=1v=c¢> A—1 > —1 then we have that the differential

c+p(z)

equation
z2q (2
q(z)+ EAC =1+ Az
q(z)+c
has a univalent solution given by
Zl+ceAz

Q(Z) = foz tCeAtdt —C.

Since p is analityc in U, then
p(z) <q(z) <1+ Az

and ¢ is the best dominant. Hence

Dn+1g (Z) Zl-l—ceAz
= < — —c<14+A
p(z) Drg (2) oy teeAtdt ‘ :

then g € B, (A) and I (f) € B,, (A).
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