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Abstract

We give upper and lower bounds estimates for the best constant
which appears in a multidimensional integral inequality, in the par-
ticular case of homogeneous weights.
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1 Introduction

Let Rn
+ := {(x1, ..., xn) : xi ≥ 0, i = 1, 2, ..., n}. Assume that f : Rn

+ −→ R+

is decreasing which means that it is decreasing with respect to each variable.

We denote f ↓ when f is decreasing (=nonicreasing). Throughout this paper

u and v are positive, locally integrable functions defined on Rn
+, n ≥ 1. χD

denotes the characteristic function of a set D. In order to motivate the

results of this paper and put them into a frame we use Section 2 to remind

the characterization of the inequality
(∫

Rn
+

f qu

)1/q

≤ C

(∫

Rn
+

fpv

)1/p

, 0 < p ≤ q < ∞,(1)
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for all f ↓ and some of the cases when the best constant in the above

inequality can be easily computed or estimated. In Section 3 we present

some new facts about the best constant in the inequality (1) in the case of

homogeneous weights. More precisely we give upper and lower estimates

for the best constant. Section 4 is reserved for particular cases and open

questions.

2 Weighted inequalities for decreasing func-

tions of several variables

In the one-dimensional case the inequality (1) was characterized in [7] as

follows:

If n = 1, 0 < p ≤ q < ∞, then (1) is valid for all f ↓ if and only if

C1 = sup
t>0

(∫ t

0

u

)1/q (∫ t

0

v

)−1/p

< ∞

and the constant C = C1 is sharp.

The multidimensional case was treated in [2] as follows:

If 0 < p ≤ q < ∞, then (1) is valid for all f ↓ if and only if

Cn = sup
D∈D

(∫
D

u
)1/q

(∫
D

v
)1/p

< ∞(2)

and the constant C = Cn is sharp. Here D is the set of all ”decreasing

domains” , i.e. for which the characteristic function is a decreasing function

in each variable. It is not always easy to calculate the constant defined in

(2). It was shown that in the case of weights of product type the supremum

in (2) can be reduced to supremum over a much simpler class of decreasing

sets (the rectangles), which is something much simpler to compute, as the

following theorem shows. For it,s complete proof see [2].
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Theorem 1.If 0 < p ≤ q < ∞, u(x1, . . . , xn) = u1(x1) . . . un(xn) and

v(x1, . . . , xn) = v1(x1) . . . vn(xn) then

sup
D∈D

(∫
D

u
)1/q

(∫
D

v
)1/p

= sup
ai>0

(∫ a1

0
· · · ∫ an

0
u(x1, · · · , xn)dx1 · · · dxn

)1/q

(∫ a1

0
· · · ∫ an

0
v(x1, · · · , xn)dx1 · · · dxn

)1/p
.(3)

In [3] it was given an example which shows that the equality (3) does not

hold for arbitrary weights. The natural and important question is now

whether the constants Cn and

An = sup
ai>0

(∫ a1

0
· · · ∫ an

0
u(x1, · · · , xn)dx1 · · · dxn

)1/q

(∫ a1

0
· · · ∫ an

0
v(x1, · · · , xn)dx1 · · · dxn

)1/p

are comparable in the general case. Clearly An ≤ Cn and we may ask if

the converse inequality Cn ≤ cAn holds with a constant c independent on

the weights. An answer to this question was given in [3] with the help of

the following result of independent interest where explicit lower and upper

estimates are given for the constant Cn when the weights are of the form:

u(xy), v(xy).

Theorem 2.Let 0 < p ≤ q < ∞ and u(s) ≥ 0 and v(s) ≥ 0 be two

measurable functions on R+ such that U(t) =
∫ t

0
u < ∞, V (t) =

∫ t

0
v < ∞

for all t > 0. Then the inequality

(∫

R2
+

f q(x, y)u(xy)dxdy

)1/q

≤ C

(∫

R2
+

fp(x, y)v(xy)dxdy

)1/p

.

holds for all f ≥ 0 decreasing in x and y with a finite constant C > 0

independent on f if and only if

A = Ap,q := sup
t>0

(
U(t)

V (t)

)1/q (∫ t

0

V (x)
dx

x

)1/q−1/p

< ∞

Moreover, C = Ap,p and

2−1/pA ≤ C ≤
(

p

q

)1/q

A, if p < q.
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Using the above theorem it was proved that An and Cn are comparable in

the sense that either both are finite or both are infinite, but the estimate

Cn ≤ cAn is no longer uniform. For more details see [3].

3 Upper and lower estimates of the best con-

stant in the case of homogeneous weights

In this section we study the same type of questions as above but for the

case when the weights are homogeneous functions. The next Lemma gives

important information about the best constant in the inequality (1) when

the weights are homogeneous functions.

Lemma 1. Let 0 < p ≤ q < ∞, α > −n, β > −n, u(εx) = εαu(x),

v(εx) = εβv(x), x ∈ Rn
+ and ε > 0. If Cn < ∞ then

α + n

q
=

β + n

p
.

Proof. Let S = {σ ∈ Rn
+ : |σ| = 1} and suppose that

α + n

q
6= β + n

p
.

Then

Cn = sup
D∈D

(∫
D

u
)1/q

(∫
D

v
)1/p

≥ sup
r>0

(∫ r

0

∫
S

u(ρσ)ρn−1dρdσ
)1/q

(∫ r

0

∫
S

v(ρσ)ρn−1dρdσ
)1/p

= sup
r>0

(∫ r

0

∫
S

ρα+n−1u(σ)dρdσ
)1/q

(∫ r

0

∫
S

ρβ+n−1v(σ)dρdσ
)1/p

= sup
r>0

r(α+n)/q−(β+n)/pC(u, v, p, q) = ∞.
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where C(u, v, p, q) < ∞ and depends only on u, v, p and q. Hence in the

case of homogeneous weights the only interesting case is when

α + n

q
=

β + n

p
.

In fact, for the case n = 2 we have the following result:

Theorem 3. Let 0 < p ≤ q, α > −2, β > −2, u(εx, εy) = εαu(x, y),

v(εx, εy) = εβv(x, y), (x, y) ∈ R2
+, ε > 0.

Denote by U(s) =
∫ s

0
u(1, y)dy < ∞ and V (s) =

∫ s

0
v(1, y)dy < ∞ for

all s > 0. Then the inequality (1) holds for all f ↓ if and only if

A := sup
t>0

(
t(β−α) U(t)

V (t)

)1/q (∫ ∞

t

V (s)
ds

sβ+3

)1/q−1/p

< ∞.

Moreover,

A ≤ C2 ≤ (p/q)1/qA, ifp < q.

and

A = C2 if p = q.

Proof. By Lemma 1 we may suppose that α+2
q

= β+2
p

. We will first prove

the upper bound. We know from (2) that

C2 = sup
t>0,h↓

Ih(t) = sup
t>0,h↓

(∫ t

0
dx

∫ h(x)

0
u(x, y)dy

)1/q

(∫ t

0
dx

∫ h(x)

0
v(x, y)dy

)1/p
(4)

and by using the homogeneity and changing variables, we find that

Ih(t) =

(∫ t

0
xα+1U

(
h(x)

x

)
dx

)1/q

(∫ t

0
xβ+1V

(
h(x)

x

)
dx

)1/p
.

We observe that

U(t) ≤ Aq

(∫ ∞

t

V (s)
ds

sβ+3

)q/p−1

V (t)t(β+2)(q/p−1),∀t > 0.
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By substituting now t by h(x)
x

and multiplying by xα+1 we get

xα+1U

(
h(x)

x

)

≤ Aq

(∫ ∞

h(x)
x

V (s)
ds

sβ+3

)q/p−1

V

(
h(x)

x

)
xβ+1h(β+2)(q/p−1)(x)

i.e.

xα+1U

(
h(x)

x

)
≤ Aq

(∫ ∞

h(x)
x

V (s)

(
h(x)

s

)(β+2)
ds

s

)q/p−1

V

(
h(x)

x

)
xβ+1.

By integrating now with respect to x, from 0 to t, changing the variables

ξ =
h(x)

s
and using the facts that h and V are decreasing, respectively

increasing we obtain

∫ t

0

xα+1U

(
h(x)

x

)
dx ≤ Aq

∫ t

0

(∫ x

0

V

(
h(x)

ξ

)
ξβ+1dξ

)q/p−1

V

(
h(x)

x

)
xβ+1dx

≤
∫ t

0

(∫ x

0

V

(
h(ξ)

ξ

)
ξβ+1dξ

)q/p−1

V

(
h(x)

x

)
xβ+1dx

=
p

q
Aq

(∫ t

0

V

(
h(x)

x

)
xβ+1dx

)q/p

.(5)

This implies that

Ih ≤
(

p

q

)1/q

A

for all t > 0 and h ↓ and we got the desired upper bound.

For the lower bound suppose first that p = q, thus also that α = β. Consider

a strictly increasing sequence (an)n≥1, a1 = 0 which converges to 1 and take

h(x) ≡ 1. For a fix t > 0, by using the fact that U is increasing and y−(α+3)

is decreasing we get

∫ ant

0

xα+1U

(
1

x

)
dx =

n∑

k=2

∫ akt

ak−1t

xα+1U

(
1

x

)
dx
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=
n∑

k=2

∫ 1
ak−1t

1
akt

y−(α+3)U(y)dy

≥
n∑

k=2

U

(
1

akt

)
(ak−1t)

α+3

≥ tα+3U

(
1

t

) n∑

k=2

ak−1
α+3.(6)

In the same way since V is also increasing we get

∫ ant

0

xα+1V

(
1

x

)
dx =

∫ a2t

0

xα+1V

(
1

x

)
dx +

n∑

k=3

∫ 1
ak−1t

1
akt

y−(α+3)V (y)dy

≤
∫ a2t

0

xα+1V

(
1

x

)
dx + tα+3

n∑

k=3

V

(
1

ak−1t

)
ak

α+3.(7)

By (6) and (7) we have

∫ ant

0
xα+1U

(
1
x

)
dx∫ ant

0
xα+1V

(
1
x

)
dx

≥
tα+3U

(
1
t

) n∑

k=2

ak−1
α+3

∫ a2t

0
xα+1V

(
1
x

)
dx + tα+3

n∑

k=3

V

(
1

ak−1t

)
ak

α+3

.

Dividing now by tα+3
∑n

k=2 ak−1
α+3 we get

∫ ant

0
xα+1U

(
1
x

)
dx∫ ant

0
xα+1V

(
1
x

)
dx

≥ U
(

1
t

)

∫ a2t

0
xα+1V

(
1
x

)
dx

tα+3

n∑

k=2

ak−1
α+3

+

n∑

k=3

V

(
1

ak−1t

)
ak

α+3

n∑

k=2

ak−1
α+3

.(8)

Since V is continuous, we get by a theorem of Stolz-Cesaro (see e.g Theorem

2.10.2 in [5]) that

lim
n→∞

∑n
k=3 V

(
1

ak−1t

)
ak

α+3

∑n
k=2 ak−1

α+3
= V

(
1

t

)
.
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Since t was arbitrarily chosen, letting now n →∞ in (8) we finally get

C2 ≥ sup
t>0

(
U(t)

V (t)

)1/q

.

If now p < q, i.e. α 6= β one can prove exactly as above that for any t > 0,

(∫ t

0
xα+1U

(
1
x

)
dx

)1/q

(∫ t

0
xβ+1V

(
1
x

)
dx

)1/q
≥

(
tα−β U(1

t
)

V (1
t
)

)1/q

.

Hence

C2 ≥

(∫ t

0
xα+1U

(
1
x

)
dx

)1/q

(∫ t

0
xβ+1V

(
1
x

)
dx

)1/p

=

(∫ t

0
xα+1U

(
1
x

)
dx

)1/q

(∫ t

0
xβ+1V

(
1
x

)
dx

)1/q

(∫ t

0

xβ+1V

(
1

x

)
dx

)1/p−1/q

≥
(

tα−β U(1
t
)

V (1
t
)

)1/q
(∫ ∞

1
t

V (s)
ds

sβ+3

)1/p−1/q

.

Since t > 0 was arbitrarily chosen, the above inequality implies the upper

bound for the constant and this completes the proof.

Remark. Let

A2 := sup
a,b>0

(∫ a

0

∫ b

0
u(x, y)dxdy

)1/q

(∫ a

0

∫ b

0
v(x, y)dxdy

)1/p
.

it is clear from (4), with h(x) ≡ b and changing variables that we obtain

A2 = sup
t,b>0

(∫ t

0
xα+1U

(
b
x

)
dx

)1/q

(∫ t

0
xβ+1V

(
b
x

)
dx

)1/p
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and A2 ≥ Ã where

Ã = sup
t>0

(∫ t

0
xα+1U

(
1
x

)
dx

)1/q

(∫ t

0
xβ+1V

(
1
x

)
dx

)1/p
.

Obviously, Theorem 3 yields

Ã ≤ A2 ≤ C2 ≤ A.

Applying the Lospital test we note that

lim
t→0

(∫ t

0
xα+1U

(
1
x

)
dx

)

(∫ t

0
xβ+1V

(
1
x

)
dx

)q/p
=

p

q
lim
t→∞

tβ−α U(t)

V (t)

(∫ ∞

t

V (s)
ds

sβ+3

)1−q/p

and

lim
t→∞

(∫ t

0
xα+1U

(
1
x

)
dx

)

(∫ t

0
xβ+1V

(
1
x

)
dx

)q/p
=

p

q
lim
t→0

tβ−α U(t)

V (t)

(∫ ∞

t

V (s)
ds

sβ+3

)1−q/p

.

Since the functions involved are continuous we conclude that A and Ã are

comparable in the sense that if A < ∞ then Ã < ∞ and the other way

round. The same is true for A and A2. This does not give an answer to the

question if the two quantities are comparable or not in the general case.

4 Conclusions

By (8) and Theorem 3 one could prove results for power weights which

generalize some of the results proved in [1]. For further details see [2]. Also

for the case n = 2 the same results can be derived from Theorem 3 since

the power weights are also homogeneous functions. Observe that if p = q

the constant does not depend on the degree of homogeneity. Also we get

the same constant if the weights are u(x, y) = xy
x2+y2 and v(x, y) = x2

y2+xy
as

if they are u(x, y) = x3y
x2+y2 and v(x, y) = x4

y2+xy
For other related results as

well as for the results for increasing functions see also [6].
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