On some integral inequalities with modified argument and applications

Olaru Ion-Marian

Dedicated to Professor Emil C. Popa on his 60th anniversary

Abstract

In this paper we study the following inequalities $$
x(t) \leq A+B \int_{a}^{t} x(g(s)) d s, t \in[a, b], A, B \in \mathbb{R}_{+}
$$ and hears applications to study of data dependence for functional differential equations.

2000 Mathematics Subject Classification: 65R20

1 Introduction

A study about integral- inequalities with modified argument was made in [1]. We will study below the integral-inequalities:

$$
\begin{equation*}
x(t) \leq A+B \int_{a}^{t} x(g(s)) d s, t \in[a, b], A, B \in \mathbb{R}_{+} \tag{1}
\end{equation*}
$$

where:
(H1) $g:[a, b] \rightarrow\left[a_{1}, b\right], g \in C^{1}([a, b])$ with the derivate that satisfies the following condition:

$$
-1 \leq g^{\prime}(t) \leq m<0, \text { for all } t \in[a, b]
$$

An example of that function is the follows:

Example 1.1.

$g:[a, b] \longrightarrow\left[a_{1}, b\right], a_{1}<a, g(t)=-\frac{a}{b} t-\frac{c}{b}$ with:
(i) $a<0, b<0,-1 \leq-\frac{a}{b} \leq m<0$.
(ii) $c=-a^{2}-b^{2}$.

Next we consider the following set:

$$
\begin{gathered}
S_{g}=\left\{x \in C\left([a, b], \mathbb{R}_{+}\right) \mid x(s)+g^{\prime}(s) x(g(s)) \geq 0 \text { for all } s \in[a, b],\right. \\
C[a, b], \mathbb{R}_{+}=\left\{x:[a, b] \rightarrow \mathbb{R}_{+}, x \text { continuous }\right\}
\end{gathered}
$$

Remark 1.1. We observe that S_{g} is the closed set with respect to the topology generated by the uniform norm and $0 \in S_{g}$.

Remark 1.2. From the condition

$$
x(s)+g^{\prime}(s) x(g(s)) \geq 0, \text { for all } s \in[a, b]
$$

by integrating on $[a, t]$ we obtain

$$
-\int_{a}^{t} g^{\prime}(s) x(g(s)) d s \leq \int_{a}^{t} x(s) d s
$$

which implies

$$
\int_{g(t)}^{g(a)} x(u) d u \leq \int_{a}^{t} x(s) d s
$$

On some integral inequalities with modified argument and applications 101

Next , we define the Picard operator and weakly Picard operator notions on a metric space X by (see [5]):

Definition 1.1. (i)An operator $A: X \rightarrow X$ is weakly Picard operator (WPO) if the sequence

$$
\left(A^{n}(x)\right)_{n \in N}
$$

converges, for all $x \in X$, and the limit (which may depend on x) is a fixed point of A.
(ii)If the operator A is WPO and $F_{A}=\left\{x^{*}\right\}$ then by definition A is a Picard operator (PO).

Here F_{A} is the fixed points set of A and A^{n} is the n order iteration of the operator A.

Next we use the following theorem see [5]:

Theorem 1.1. Let (X, d) and (Y, ρ) be two metric space and

$$
A: X \times Y \rightarrow X \times Y, A(x, y)=(B(x), C(x, y))
$$

We suppose that
(i) (Y, ρ) is a complete metric space .
(ii) The operator $B: X \rightarrow X$ is weakly Picard operator.
(iii) There exists $a \in[0,1)$ such that $C(x, \cdot)$ is an a-contraction,for all $x \in X$.
(iv)If $\left(x^{*}, y^{*}\right) \in F_{A}$ then $C\left(\cdot, y^{*}\right)$ is continuous in x^{*}.

Then A is weakly Picard operator.If B is Picard operator then A is a Picard operator.

Data dependence with respect to initial conditions was study in [2],[3],[4]

2 Main results

Proposition 2.1.If $x_{0} \in S_{g}$ is an solution of inequalities (1) then:

$$
x_{0}(t) \leq A e^{\frac{B}{-m}(t-a)} .
$$

Proof. Because g is strictly decreasing wel make the variable change $g(s)=u$ and we obtain:

$$
\begin{gathered}
x_{0}(t) \leq A+B \int_{g(a)}^{g(t)} x_{0}(u)\left(g^{-1}(u)\right)^{\prime} d u \leq A+\frac{B}{-m} \int_{g(t)}^{g(a)} x_{0}(u) d u \leq \\
\leq A+\frac{B}{-m} \int_{a}^{t} x_{0}(s) d s
\end{gathered}
$$

From Gronwall Lema we have:

$$
x_{0}(t) \leq A e^{\frac{B}{-m}(t-a)}
$$

Next we consider the following Cauchy problem:

$$
\begin{align*}
& x^{\prime}(t)=f(t, x(g(t))), t \in[a, b] \tag{2}\\
& x(t)=\varphi(t) \quad, t \in\left[a_{1}, a\right] . \tag{3}
\end{align*}
$$

where:
$\left(H_{2}\right) f \in C^{1}\left([a, b] \times \mathbb{R}^{n}\right), f(t, 0)=0$, for all $t \in[a, b], \varphi \in C\left(\left[a_{1}, a\right],[-b, b]^{n}\right)$. $\left(H_{3}\right)$ There exists $L_{f} \leq \frac{-m}{\left(b-a_{1}\right) e}$ such that $\left\|\frac{\partial f}{\partial u_{i}}(t, u)\right\|_{\mathbb{R}^{n}} \leq L_{f}$ for all $t \in[a, b], u \in \mathbb{R}^{n}, i=\overline{1, n}$.

On some integral inequalities with modified argument and applications 103

The problem (2)+(3)is equivalent with

$$
x(t)= \begin{cases}\varphi(a)+\int_{a}^{t} f(s, x(g(s))) d s, & t \in[a, b] \tag{4}\\ \varphi(t) & , t \in\left[a_{1}, a\right]\end{cases}
$$

Further wel apply the Banach principle to the restriction of operator L at closed ball from $C\left(\left[a_{1}, b\right]\right)$ conveniently chosen, where $L: C\left(\left[a_{1}, b\right]\right) \rightarrow$ $C\left(\left[a_{1}, b\right]\right)$ is defined by :

$$
L x(t)= \begin{cases}\varphi(a)+\int_{a}^{t} f(s, x(g(s))) d s, & t \in[a, b] \tag{5}\\ \varphi(t) & , t \in\left[a_{1}, a\right]\end{cases}
$$

On $C\left(\left[a_{1}, b\right]\right)$ we define the Bielecki norm :

$$
\|x\|_{B}=\max _{t \in\left[a_{1}, b\right]}\|x(t)\|_{R^{n}} e^{-\tau\left(t-a_{1}\right)} .
$$

Because $\frac{e^{\tau\left(b-a_{1}\right)}}{\tau} \geq\left(b-a_{1}\right) e$ for all $\tau \geq 0$ and using that $\frac{-m}{L_{f}} \geq\left(b-a_{1}\right) e$ we choose $\tau_{0}>0$ such that $\frac{e^{\tau_{0}\left(b-a_{1}\right)}}{\tau_{0}}<\frac{-m}{L_{f}}$.

Next, we choose in the definition of Bieleski norm this τ_{0}.
For g which satisfied the hypothesis $\left(H_{1}\right)$, we define the following set:
$S_{g n}=\left\{x \in C\left([a, b], \mathbb{R}^{n}\right) \mid\|x(s)\|_{R^{n}}+g^{\prime}(s)\|x(g(s))\|_{\mathbb{R}^{n}} \geq 0\right.$, for all $\left.s \in[a, b]\right\}$
$\left(H_{4}\right)$ We suppose that there exists a set $A \subseteq S_{g n}$ such that for all $x, y \in A$ we have $x+y \in A$.

Remark 2.1. For g having the property $\left(H_{1}\right)$ the set $A=\left\{c e^{\alpha t} \mid c, \alpha \in\right.$ $\left.\mathbb{R}_{+}\right\} \subset S_{g 1}$ verifies $\left(H_{4}\right)$.

Proposition 2.2. We suppose that:
(a) The hypothesis $\left(H_{1}\right)-\left(H_{4}\right)$ are satisfied.
(b)There exists $R>\frac{b}{1-\frac{L_{f}}{-m \tau_{0}} e^{\left.\tau_{0}\left(b-a_{1}\right)\right)}}$ such that $\bar{B}(0, R) \subset A$

Then :
(i)The problem (2) + (3) are a unique solutions $x(\cdot, \varphi)$.
(ii) The solution $x(t, \varphi)$ is continuous with respect the φ.

Proof. First we show that $\bar{B}(0, R)$ is a invariant set for the operator L . Let be $x \in \bar{B}(0, R)$.Then

$$
\begin{gathered}
\|L x(t)\|_{\mathbb{R}^{n}} \leq b+\int_{a}^{t} L_{f}\|x(g(s))\|_{\mathbb{R}^{n}} d s \leq b+L_{f} R \int_{a}^{t} e^{\tau_{0}\left(g(s)-a_{1}\right)} d s \leq \\
\leq b+\frac{L_{f} R}{-m} \int_{g(t)}^{g(a)} e^{\tau_{0}\left(u-a_{1}\right)} d u e^{\tau_{0}(t-a)} \in S_{g 1} b+\frac{L_{f} R}{-m} \int_{a}^{t} e^{\tau_{0}\left(s-a_{1}\right)} d s \leq \\
\leq b+\frac{L_{f} R}{-m \tau} e^{\tau_{0}\left(b-a_{1}\right)} .
\end{gathered}
$$

It follow that $\|A x\|_{B} \leq\|A x\|_{C} \leq b+\frac{L_{f} R}{-m \tau} e^{\tau\left(b-a_{1}\right)}$. Here $\|\cdot\|_{C}$ is Chebyshev norm.

We obtain that $L(\bar{B}(0, R)) \subseteq \bar{B}(0, R)$.
Let be $x, y \in \bar{B}(0, R)$.Then

$$
\begin{gathered}
\|A x(t)-A y(t)\|_{\mathbb{R}^{n}} \leq L_{f} \int_{a}^{t}\|x(g(s))-y(g(s))\|_{\mathbb{R}^{n}} d s \leq \\
\left.\left.\leq \frac{L_{f}}{-m} \int_{g(t)}^{g(a)} \| x(u)\right)-y(u)\right)\left\|_{\mathbb{R}^{n}} d u \leq \frac{L_{f}}{-m}\right\| x-y \|_{B} \int_{g(t)}^{g(a)} e^{\tau_{0}\left(u-a_{1}\right)} d u \leq \\
\leq \frac{L_{f}}{-m}\|x-y\|_{B} \int_{a}^{t} e^{\tau_{0}\left(s-a_{1}\right)} d s \leq \frac{L_{f}}{-m \tau_{0}} e^{\tau_{0}\left(b-a_{1}\right)}\|x-y\|_{B} .
\end{gathered}
$$

On some integral inequalities with modified argument and applications 105

We obtain that L is a contraction map on $\bar{B}(0, R)$. In consequence there exists a unique solution $x(\cdot, \varphi)$ in $\bar{B}(0, R)$ of $(2)+(3)$
(ii)We suppose that there exists $\eta>0$ such that $\left\|\varphi_{1}(t)-\varphi_{2}(t)\right\|_{R^{n}} \leq \eta$ for all $t \in\left[a_{1}, a\right]$.Let be $x\left(\cdot, \varphi_{1}\right), x\left(\cdot, \varphi_{2}\right)$ the solutions for the Cauchy problem $(2)+(3)$ with initial conditions φ_{1}, φ_{2}. Then

$$
\left\|x\left(t, \varphi_{1}\right)-x\left(t, \varphi_{2}\right)\right\|_{\mathbb{R}^{n}} \leq \eta+\int_{a}^{t}\left\|x\left(g(s), \varphi_{1}\right)-x\left(g(s), \varphi_{2}\right)\right\|_{\mathbb{R}^{n}} d s \leq
$$

$\leq \eta+\frac{L_{f}}{-m} \int_{g(t)}^{g(a)}\left\|x\left(u, \varphi_{1}\right)-x\left(u, \varphi_{2}\right)\right\|_{\mathbb{R}^{n}} d u \leq \eta+\frac{L_{f}}{-m} \int_{a}^{t}\left\|x\left(s, \varphi_{1}\right)-x\left(s, \varphi_{2}\right)\right\|_{\mathbb{R}^{n}} d s$
Result that $\left\|x\left(t, \varphi_{1}\right)-x\left(t, \varphi_{2}\right)\right\|_{\mathbb{R}^{n}} \leq \eta e^{\frac{L_{f}}{-m}(b-a)}$.
Next we consider the following Cauchy problem:

$$
\begin{array}{cl}
x^{\prime}(t)=f(t, x(g(t), \lambda)) & , t \in[a, b], \lambda \in J \\
x(t)=\varphi(t) & , t \in\left[a_{1}, a\right] \tag{7}
\end{array}
$$

where $J \subset R$ a compact interval, and
$\left(H_{5}\right) f \in C^{1}\left([a, b] \times \mathbb{R}^{n} \times J\right), f(t, 0)=0$, for all $t \in[a, b]$, $\varphi \in C\left(\left[a_{1}, a\right],[-b, b]^{n}\right)$.
$\left(H_{6}\right)$ There exists $L_{f}, M \in \mathbb{R}_{+}, L_{f} \leq \frac{-m}{\left(b-a_{1}\right) e}$ such that $\left\|\frac{\partial f}{\partial u_{i}}(t, u, \lambda)\right\|_{R^{n}} \leq$ $L_{f}, \frac{\partial f}{\partial \lambda}(t, u, \lambda) \leq M$,for all $t \in[a, b], u \in \mathbb{R}^{n}, \lambda \in J$.

The problem $(6)+(7)$ is equivalent with:

$$
x(t)= \begin{cases}\varphi(a)+\int_{a}^{t} f(s, x(g(s), \lambda) d s & , t \in[a, b], \lambda \in J \subset \mathbb{R} \tag{8}\\ \varphi(t) & , t \in\left[a_{1}, a\right]\end{cases}
$$

Proposition 2.3. We suppose that:
(a)The hypothesis $\left(H_{1}\right),\left(H_{4}\right),\left(H_{5}\right),\left(H_{6}\right)$ are satisfied.
(b)There exists $R>\max \left\{\frac{M(b-a}{1-\frac{L_{f}}{-m \tau_{0}} e^{\left.\tau_{0}\left(b-a_{1}\right)\right)}}, \frac{b}{1-\frac{L_{f}}{-m \tau_{0}} e^{\left.\tau_{0}\left(b-a_{1}\right)\right)}}\right\}$ such that $\bar{B}(0, R) \subset A$

Then :
(i) The problem (6)+(7) are a unique solutions $x(\cdot, \varphi, \lambda) \in \bar{B}(0, R)$.
(ii)The solution $x(t, \varphi, \lambda)$ is derivable with respect the λ.

Proof. Using the Proposition 2.2 , we have that there exists a unique solutions $\bar{x}(t, \varphi, \lambda)$ which verify

$$
\bar{x}(t, \varphi, \lambda)= \begin{cases}\varphi(a)+\int_{a}^{t} f(s, \bar{x}((g(s), \varphi, \lambda), \lambda) d s, & t \in[a, b] \tag{9}\\ \varphi(t) & , t \in\left[a_{1}, a\right]\end{cases}
$$

We consider C defined on $\bar{B}(0, R) \times \bar{B}(0, R)$,by

$$
\begin{equation*}
C(x, y)(t)= \tag{10}
\end{equation*}
$$

$=\left\{\begin{array}{lr}\int_{a}^{t} \frac{\partial f}{\partial u}(s, x(g(s), \lambda)) y(g(s), \lambda) d s+\int_{a}^{t} \frac{\partial f}{\partial \lambda}(s, x(g(s), \lambda), \lambda), t \in[a, b] \\ 0 & , t \in\left[a_{1}, a\right]\end{array}\right.$
From

$$
\begin{gathered}
\|C(x, y)(t)\|_{\mathbb{R}^{n}} \leq \int_{a}^{t} \mathrm{£}_{f}\|y(g(s))\|_{\mathbb{R}^{n}} d s+M(b-a) \leq \int_{g(t)}^{g(a)}\|y(u)\|_{\mathbb{R}^{n}} d u+M(b-a) \\
\leq \frac{L_{f}}{-m} \frac{e^{\tau_{0}}\left(b-a_{1}\right)}{\tau_{0}} R+M(b-a) \leq R
\end{gathered}
$$

we have $C(\bar{B}(0, R) \times \bar{B}(0, R)) \subseteq \bar{B}(0, R)$ Let be $x \in \bar{B}(0, R)$ From

$$
\begin{gathered}
\|C(x, y)(t)-C(x, z)(t)\|_{\mathbb{R}^{n}} \leq L_{f} \int_{a}^{t}\|y(g(s)-z(g(s)))\|_{\mathbb{R}^{n}} d s \leq \\
\leq \frac{L_{f}}{-m} \frac{e^{\tau_{0}}\left(b-a_{1}\right)}{\tau_{0}}\|y-z\|_{B}
\end{gathered}
$$

we have that $C(x, \cdot)$ is a contraction map.It follow that

$$
\begin{gathered}
x_{n+1}=L\left(x_{n}\right), n \geq 0 \\
y_{n+1}=C\left(x_{n}, y_{n}\right), n \geq 0
\end{gathered}
$$

converges uniformly (with respect to $t \in[a, b]$) to $(\bar{x}, \bar{y}) \in F_{A}$, for all $x_{0}, y_{0} \in C\left(\left[a_{1}, b\right]\right)$.

If we take $x_{0}=0, y_{0}=0$, then $y_{1}=\frac{\partial x_{1}}{\partial \varphi}$.
By induction we prove that

$$
y_{n}=\frac{\partial x_{n}}{\partial \varphi}, n \in N
$$

Thus

$$
\begin{gathered}
x_{n} \longrightarrow \bar{x} \text { as } n \rightarrow \infty \\
\frac{\partial x_{n}}{\partial \lambda} \longrightarrow \bar{y} \text { as } n \rightarrow \infty .
\end{gathered}
$$

These imply that there exists $\frac{\partial \bar{x}}{\partial \lambda}$ and $\frac{\partial \bar{x}}{\partial \lambda}=\bar{y}$.

References

[1] Drumi Bainov,Pavel Simeonov, Integral inequalities and applications,Kluwer Academic Publishers,1992,Mathematics and its Applications(East European Series)
[2] J. K. Hale, L. Ladeira, Differentiability with respect to delays, J. Differential equations, 92, 1991.
[3] I. A. Rus, Functional-Differential equation of mixed point, via weakly Picard operator Seminar on mixed point theory Cluj-Napoca, vol. 3, 2002.
[4] I. A. Rus, Weakly Picard operators and applications, Seminar on fixed point theory Cluj-Napoca, vol. 2, 2004.
[5] I.A.Rus, Weakly Picard operators and applications, Seminar on fixed point theory Cluj-Napoca, vol. 2, 2001.
"Lucian Blaga" University of Sibiu
Department of Mathematics
Str. Dr. I. Raṭiu, No. 5-7
550012 - Sibiu, Romania
E-mail address: olaruim@yahoo.com

