On a subclass of n-starlike functions associated with some hyperbola

Mugur Acu
Dedicated to Professor Emil C. Popa on his 60th birthday

Abstract

In this paper we define a subclass of n-starlike functions associated with some hyperbola and we obtain some properties regarding this class.

2000 Mathematics Subject Classification: 30C45
Key words and phrases: n-starlike functions, Libera-Pascu integral operator, Briot-Bouquet differential subordination

1 Introduction

Let $\mathcal{H}(U)$ be the set of functions which are regular in the unit disc $U=\{z \in \mathbb{C}:|z|<1\}, A=\left\{f \in \mathcal{H}(U): f(0)=f^{\prime}(0)-1=0\right\}$ and $S=\{f \in A: f$ is univalent in $U\}$.

We recall here the definition of the well - known class of starlike functions:

$$
S^{*}=\left\{f \in A: R e \frac{z f^{\prime}(z)}{f(z)}>0, z \in U\right\}
$$

Let consider the Libera-Pascu integral operator $L_{a}: A \rightarrow A$ defined as:

$$
\begin{equation*}
f(z)=L_{a} F(z)=\frac{1+a}{z^{a}} \int_{0}^{z} F(t) \cdot t^{a-1} d t, \quad a \in \mathbb{C}, \quad \text { Re } a \geq 0 . \tag{1}
\end{equation*}
$$

For $a=1$ we obtain the Libera integral operator, for $a=0$ we obtain the Alexander integral operator and in the case $a=1,2,3, \ldots$ we obtain the Bernardi integral operator.

Let D^{n} be the Sălăgean differential operator (see [5]) $D^{n}: A \rightarrow A$, $n \in \mathbb{N}$, defined as:

$$
\begin{gathered}
D^{0} f(z)=f(z) \\
D^{1} f(z)=D f(z)=z f^{\prime}(z) \\
D^{n} f(z)=D\left(D^{n-1} f(z)\right)
\end{gathered}
$$

We observe that if $f \in S, f(z)=z+\sum_{j=2}^{\infty} a_{j} z^{j}, z \in U$ then $D^{n} f(z)=z+\sum_{j=2}^{\infty} j^{n} a_{j} z^{j}$.

The purpose of this note is to define a subclass of n-starlike functions functions associated with some hyperbola and to obtain some estimations for the coefficients of the series expansion and some other properties regarding this class.

On a subclass of n-starlike functions associated with some hyperbola

2 Preliminary results

Definition 2.1. [6] A function $f \in S$ is said to be in the class $S H(\alpha)$ if it satisfies

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-2 \alpha(\sqrt{2}-1)\right|<\operatorname{Re}\left\{\sqrt{2} \frac{z f^{\prime}(z)}{f(z)}\right\}+2 \alpha(\sqrt{2}-1)
$$

for some $\alpha(\alpha>0)$ and for all $z \in U$.

Remark 2.1. Geometric interpretation. Let

$$
\Omega(\alpha)=\left\{\frac{z f^{\prime}(z)}{f(z)}: z \in U, f \in S H(\alpha)\right\} .
$$

Then $\Omega(\alpha)=\left\{w=u+i \cdot v: v^{2}<4 \alpha u+u^{2}, u>0\right\}$. Note that $\Omega(\alpha)$ is the interior of a hyperbola in the right half-plane which is symmetric about the real axis and has vertex at the origin.

Theorem 2.1. [6] Let $f \in S H(\alpha)$ and $f(z)=z+b_{2} z^{2}+b_{3} z^{3}+\ldots$. Then

$$
\left|b_{2}\right| \leq \frac{1+4 \alpha}{1+2 \alpha},\left|b_{3}\right| \leq \frac{(1+4 \alpha)\left(3+16 \alpha+24 \alpha^{2}\right)}{4(1+2 \alpha)^{3}}
$$

The next theorem is result of the so called "admissible functions method" due to P.T. Mocanu and S.S. Miller (see [1], [2], [3]).

Theorem 2.2. Let h convex in U and $\operatorname{Re}[\beta h(z)+\gamma]>0, z \in U$. If $p \in H(U)$ with $p(0)=h(0)$ and p satisfied the Briot-Bouquet differential subordination

$$
p(z)+\frac{z p^{\prime}(z)}{\beta p(z)+\gamma} \prec h(z), \quad \text { then } p(z) \prec h(z) .
$$

3 Main results

Definition 3.1. Let $f \in S$ and $\alpha>0$. We say that the function f is in the class $S H_{n}(\alpha), n \in \mathbb{N}$, if
$\left|\frac{D^{n+1} f(z)}{D^{n} f(z)}-2 \alpha(\sqrt{2}-1)\right|<\operatorname{Re}\left\{\sqrt{2} \frac{D^{n+1} f(z)}{D^{n} f(z)}\right\}+2 \alpha(\sqrt{2}-1), z \in U$.
Remark 3.1. Geometric interpretation: If we denote with p_{α} the analytic and univalent functions with the properties $p_{\alpha}(0)=1, p_{\alpha}^{\prime}(0)>0$ and $p_{\alpha}(U)=\Omega(\alpha)$ (see Remark 2.1), then $f \in S H_{n}(\alpha)$ if and only if $\frac{D^{n+1} f(z)}{D^{n} f(z)} \prec p_{\alpha}(z)$, where the symbol " \prec " denotes the subordination in U. We have $p_{\alpha}(z)=(1+2 \alpha) \sqrt{\frac{1+b z}{1-z}}-2 \alpha, b=b(\alpha)=\frac{1+4 \alpha-4 \alpha^{2}}{(1+2 \alpha)^{2}}$ and the branch of the square root \sqrt{w} is chosen so that $\operatorname{Im} \sqrt{w} \geq 0$. If we consider $p_{\alpha}(z)=1+C_{1} z+\ldots$, we have $C_{1}=\frac{1+4 \alpha}{1+2 \alpha}$.

Theorem 3.1. Let $f \in S H_{n}(\alpha), \alpha>0$, and $f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\ldots$, then

$$
\left|a_{2}\right| \leq \frac{1}{2^{n}} \cdot \frac{1+4 \alpha}{1+2 \alpha},\left|a_{3}\right| \leq \frac{1}{3^{n}} \cdot \frac{(1+4 \alpha)\left(3+16 \alpha+24 \alpha^{2}\right)}{4(1+2 \alpha)^{3}}
$$

Proof. If we denote by $D^{n} f(z)=g(z), g(z)=\sum_{j=2}^{\infty} b_{j} z^{j}$, we have: $f \in S H_{n}(\alpha)$ if and only if $g \in S H(\alpha)$.
From the above series expansions we obtain $\left|a_{j}\right| \leq \frac{1}{j^{n}} \cdot\left|b_{j}\right|, j \geq 2$. Using the estimations from the Theorem 2.1 we obtain the needed results.

Theorem 3.2. If $F(z) \in S H_{n}(\alpha), \alpha>0, n \in \mathbb{N}$, and $f(z)=L_{a} F(z)$, where L_{a} is the integral operator defined by (1), then $f(z) \in S H_{n}(\alpha), \alpha>0$, $n \in \mathbb{N}$.

Proof. By differentiating (1) we obtain $(1+a) F(z)=a f(z)+z f^{\prime}(z)$.
By means of the application of the linear operator D^{n+1} we obtain

$$
(1+a) D^{n+1} F(z)=a D^{n+1} f(z)+D^{n+1}\left(z f^{\prime}(z)\right)
$$

or

$$
(1+a) D^{n+1} F(z)=a D^{n+1} f(z)+D^{n+2} f(z)
$$

Similarly, by means of the application of the linear operator D^{n} we obtain

$$
(1+a) D^{n} F(z)=a D^{n} f(z)+D^{n+1} f(z)
$$

Thus

$$
\begin{align*}
& \frac{D^{n+1} F(z)}{D^{n} F(z)}=\frac{D^{n+2} f(z)+a D^{n+1} f(z)}{D^{n+1} f(z)+a D^{n} f(z)}= \\
& =\frac{\frac{D^{n+2} f(z)}{D^{n+1} f(z)} \cdot \frac{D^{n+1} f(z)}{D^{n} f(z)}+a \cdot \frac{D^{n+1} f(z)}{D^{n} f(z)}}{\frac{D^{n+1} f(z)}{D^{n} f(z)}+a} \tag{2}
\end{align*}
$$

With notation $\frac{D^{n+1} f(z)}{D^{n} f(z)}=p(z)$, where $p(z)=1+p_{1} z+\ldots$, we have

$$
\begin{gathered}
z p^{\prime}(z)=z \cdot\left(\frac{D^{n+1} f(z)}{D^{n} f(z)}\right)^{\prime}= \\
=\frac{z\left(D^{n+1} f(z)\right)^{\prime} \cdot D^{n} f(z)-D^{n+1} f(z) \cdot z\left(D^{n} f(z)\right)^{\prime}}{\left(D^{n} f(z)\right)^{2}}= \\
=\frac{D^{n+2} f(z) \cdot D^{n} f(z)-\left(D^{n+1} f(z)\right)^{2}}{\left(D^{n} f(z)\right)^{2}}
\end{gathered}
$$

and

$$
\frac{1}{p(z)} \cdot z p^{\prime}(z)=\frac{D^{n+2} f(z)}{D^{n+1} f(z)}-\frac{D^{n+1} f(z)}{D^{n} f(z)}=\frac{D^{n+2} f(z)}{D^{n+1} f(z)}-p(z)
$$

From the above he have

$$
\frac{D^{n+2} f(z)}{D^{n+1} f(z)}=p(z)+\frac{1}{p(z)} \cdot z p^{\prime}(z)
$$

Thus from (2) we obtain

$$
\begin{gather*}
\frac{D^{n+1} F(z)}{D^{n} F(z)}=\frac{p(z) \cdot\left(z p^{\prime}(z) \cdot \frac{1}{p(z)}+p(z)\right)+a \cdot p(z)}{p(z)+a}= \tag{3}\\
=p(z)+\frac{1}{p(z)+a} \cdot z p^{\prime}(z)
\end{gather*}
$$

From Remark 3.1 we have $\frac{D^{n+1} F(z)}{D^{n} F(z)} \prec p_{\alpha}(z)$ and thus, using (3), we obtain

$$
p(z)+\frac{1}{p(z)+a} z p^{\prime}(z) \prec p_{\alpha}(z) .
$$

We have from Remark 3.1 and from the hypothesis $\operatorname{Re}\left(p_{\alpha}(z)+a\right)>0$, $z \in U$. In this conditions from Theorem 2.2 we obtain $p(z) \prec p_{\alpha}(z)$ or $\frac{D^{n+1} f(z)}{D^{n} f(z)} \prec p_{\alpha}(z)$. This means that $f(z)=L_{a} F(z) \in S H(\alpha)$.

Theorem 3.3. Let $a \in \mathbb{C}$, Re $a \geq 0, \alpha>0$, and $n \in \mathbb{N}$. If $F(z) \in S H_{n}(\alpha)$, $F(z)=z+\sum_{j=2}^{\infty} a_{j} z^{j}$, and $f(z)=L_{a} F(z), f(z)=z+\sum_{j=2}^{\infty} b_{j} z^{j}$, where L_{a} is the integral operator defined by (1), then
$\left|b_{2}\right| \leq\left|\frac{a+1}{a+2}\right| \cdot \frac{1}{2^{n}} \cdot \frac{1+4 \alpha}{1+2 \alpha},\left|b_{3}\right| \leq\left|\frac{a+1}{a+3}\right| \cdot \frac{1}{3^{n}} \cdot \frac{(1+4 \alpha)\left(3+16 \alpha+24 \alpha^{2}\right)}{4(1+2 \alpha)^{3}}$.
Proof. From $f(z)=L_{a} F(z)$ we have $(1+a) F(z)=a f(z)+z f^{\prime}(z)$. Using the above series expansions we obtain

$$
(1+a) z+\sum_{j=2}^{\infty}(1+a) a_{j} z^{j}=a z+\sum_{j=2}^{\infty} a b_{j} z^{j}+z+\sum_{j=2}^{\infty} j b_{j} z^{j}
$$

and thus $b_{j}(a+j)=(1+a) a_{j}, j \geq 2$. From the above we have $\left|b_{j}\right| \leq\left|\frac{a+1}{a+j}\right| \cdot\left|a_{j}\right|, j \geq 2$. Using the estimations from Theorem 3.1 we obtain the needed results.

For $a=1$, when the integral operator L_{a} become the Libera integral operator, we obtain from the above theorem:

Corollary 3.1. Let $\alpha>0$ and $n \in \mathbb{N}$. If $F(z) \in S H_{n}(\alpha), F(z)=z+\sum_{j=2}^{\infty} a_{j} z^{j}$, and $f(z)=L(F(z)), f(z)=z+\sum_{j=2}^{\infty} b_{j} z^{j}$, where L is Libera integral operator defined by $L(F(z))=\frac{2}{z} \int_{0}^{z} F(t) d t$, then

$$
\left|b_{2}\right| \leq \frac{1}{2^{n-1}} \cdot \frac{1+4 \alpha}{3+6 \alpha},\left|b_{3}\right| \leq \frac{1}{3^{n}} \cdot \frac{(1+4 \alpha)\left(3+16 \alpha+24 \alpha^{2}\right)}{8(1+2 \alpha)^{3}} .
$$

Theorem 3.4. Let $n \in \mathbb{N}$ and $\alpha>0$. If $f \in S H_{n+1}(\alpha)$ then $f \in S H_{n}(\alpha)$.
Proof. With notation $\frac{D^{n+1} f(z)}{D^{n} f(z)}=p(z)$ we have (see the proof of the Theorem 3.2):

$$
\frac{D^{n+2} f(z)}{D^{n+1} f(z)}=p(z)+\frac{1}{p(z)} \cdot z p^{\prime}(z) .
$$

From $f \in S H_{n+1}(\alpha)$ we obtain (see Remark 3.1) $p(z)+\frac{1}{p(z)} \cdot z p^{\prime}(z) \prec$ $p_{\alpha}(z)$. Using the definition of the function $p_{\alpha}(z)$ we have $\operatorname{Re} p_{\alpha}(z)>0$ and from Theorem 2.2 we obtain $p(z) \prec p_{\alpha}(z)$ or $f \in S H_{n}(\alpha)$.

Remark 3.2. From the above theorem we obtain $S H_{n}(\alpha) \subset S H_{0}(\alpha)=$ $S H(\alpha) \subset S^{*}$ for all $n \in \mathbb{N}$.

References

[1] S. S. Miller and P. T. Mocanu, Differential subordonations and univalent functions, Mich. Math. 28 (1981), 157-171.
[2] S. S. Miller and P. T. Mocanu, Univalent solution of Briot-Bouquet differential equations, J. Differential Equations 56 (1985), 297-308.
[3] S. S. Miller and P. T. Mocanu, On some classes of first-order differential subordinations, Mich. Math. 32(1985), 185-195.
[4] W. Rogosinski, On the coefficients of subordinate functions, Proc. London Math. Soc. 48(1943), 48-82.
[5] Gr. Sălăgean, Subclasses of univalent functions, Complex Analysis. Fifth Roumanian-Finnish Seminar, Lectures Notes in Mathematics, 1013, Springer-Verlag, 1983, 362-372.
[6] J. Stankiewicz, A. Wisniowska, Starlike functions associated with some hyperbola, Folia Scientiarum Universitatis Tehnicae Resoviensis 147, Matematyka 19(1996), 117-126.

University "Lucian Blaga" of Sibiu
Department of Mathematics
Str. Dr. I. Raṭiu, No. 5-7
550012 - Sibiu, Romania
E-mail address: acu_mugur@yahoo.com

