On the diophantine equations of type $a^{x}+b^{y}=c^{z}$

Dumitru Acu

Dedicated to Professor Emil C. Popa on his 60th birthday

Abstract

In this paper we study some diophantine equations of type $a^{x}+b^{y}=c^{z}$.

2000 Mathematics Subject Classification: 11D61
Keywords and phrases: diophantine equations.

The diophantine equations of type $a^{x}+b^{y}=c^{z}$ have been extensively studied in certian particular cases (see [1] - [6]). For example, for $b>a$ and $\max (a, b, c)>13, \mathrm{Z}$. Cao in [2] and [3] proved that this equation can have at most one solution with $z>1$.

Another result (see [6]) says that if a, b, c are not powers of two, then the diophantine equations $a^{x}+b^{y}=c^{z}$ can have at most a finite number of solutions.

The aim of this paper is to find elementary solutions for some diophantine equations of this type.

1 The equation of type $p^{x}+p^{y}=p^{z}$, where p is prime number.

If $p=2$ and $x=y<z$, then the diophantine equation becomes $2^{x+1}=2^{z}$, where we get $z=x+1, x \in \mathbb{N}$. Therefore, in this case we have the solutions $(k, k, k+1), k$ natural number.

For $x<y<z$ we have $2^{x}\left(1+2^{y-x}\right)=2^{z}$, that is $1+2^{y-x}=2^{z-x}$, contradiction, since the left side is $\equiv 1(\bmod 2)$ and the right side is $\equiv 0$ $(\bmod 2)$.

If $p \geq 3$, then $p^{x}+p^{y}$ is even number and p^{z} is odd number, hence the diophantine equation has no solutions.

In conclusion, we have:
Theorem 1. If $p=2$ the diophantine equation $2^{x}+2^{y}=2^{z}$ has the solutions $(x, y, z)=(k, k, k+1), k \in \mathbb{N}$.

If $p \geq 3$ the diophantine equation

$$
\begin{equation*}
p^{x}+p^{y}=p^{z} \tag{1}
\end{equation*}
$$

has no solutions.

2 The equation of type (1) $p^{x}+p^{y}=(2 p)^{z}$, where p is prime number

We consider nine cases
2.1 $x=y$. The diophantine equation becomes

$$
\begin{equation*}
2 p^{x}=2^{z} \cdot p^{z} \tag{2}
\end{equation*}
$$

If $p \neq 2$, then we obtain $z=1$ and $x=z$, that is we have the solution $(x, y, z)=(1,1,1)$.

If $p=2$, then the equation (2) takes the form $2^{x}=2^{2 z-1}$, where $x=$ $2 z-1$. Then, we find the solutions $(x, y, z)=,(2 k-1,2 k-1, k), k \in \mathbb{N} /\{0\}$. $2.2 x=z$. The diophantine equation (1) takes the form

$$
\begin{equation*}
p^{y}=p^{x}\left(2^{x}-1\right) \tag{3}
\end{equation*}
$$

If $p=2$ and $x>1$, then the equation (3) is impossible because p^{y} is even number and $2^{x}-1$ is an odd number. For $p=2$ and $x=1$ we obtain the solution $(x, y, z)=(1,1,1)$. If $p \geq 3$, then from (3) it results $2^{x}-1=p^{t}$, $t \in \mathbb{N}-\{0\}$. This equation has the solution only for $t=1$ ([6]) and p is prime Mersenne number. For $p=2^{a}-1=M_{a}, a \in \mathbb{N}-\{0\}$, where M_{a} is prime Mersenne number, the diophantine equation (3) has the solution $(x, y, z)=(a, a+1, a)$.
Examples 2.2.1. For $p=3$ we have $p=2^{2}-1=M_{2}$, hence the diophantine equation $3^{x}+3^{y}=6^{z}$ has the solution $(x, y, z)=(2,3,2) \quad$ ([4]). 2.2.2 $p=7$. For $p=7$ we have $p=2^{3}-1=M_{3}$, hence the diophantine equation $7^{x}+7^{y}=14^{z}$ has the solution $(x, y, z)=(3,4,3)$.
2.2.3. $p=31=2^{5}-1=M_{5}$. For $p=31=2^{5}-1=M_{5}$, we find the solution $(x, y, z)=(5,6,5)$ for the diophantine equation $31^{x}+31^{y}=62^{z}$.
2.3. $y=z$. Using the symmetry of the equation in x and y, it follows that this case is similar to the case 2.2 .
2.4. $x<y<z$. The diophantine equation (1) is equivalent to

$$
p^{x}\left(1+p^{y-x}\right)=2^{z} \cdot p^{z}
$$

or

$$
1+p^{y-x}=2^{z} \cdot p^{z-x}
$$

Hence $1+p^{y-x} \equiv 1(\bmod p)$ and $2^{z} \cdot p^{z-x} \equiv 0(\bmod p)$, it results the equation has no solutions in this case.
2.5. $y<x<z$. This case is analogous with 2.4.
2.6. $y<z<x$. The equation (1) is equivalent to

$$
p^{y}\left(p^{x-y}+1\right)=2^{z} \cdot p^{z}
$$

or

$$
p^{x-y}+1=2^{z} \cdot p^{z-y}
$$

which is impossible.
2.7. $x<z<y$. This case is similar to 2.6.
2.8. $z<x<y$. The equation (1) is equivalent to $p^{x-z}+p^{y-z}=2^{z}$ or

$$
\begin{equation*}
p^{x-z}\left(1+p^{y-z}\right)=2^{z} . \tag{4}
\end{equation*}
$$

For $p \geq 3$ we have $p^{x-z}\left(1+p^{y-x}\right) \equiv 0(\bmod \mathrm{p})$ and $2^{z} \not \equiv 0(\bmod \mathrm{p})$, thus the equation (4) is impossible.

For $p=2$ we have $2^{x-z}\left(1+2^{y-x}\right)=2^{z}$ which is impossible hence $1+2^{y-x}$ is on odd number and 2^{z} is an even number.
2.9. $z<y<x$. This is analogous with 2.8.

In fine we proved:
Theorem 2. i) For every p prime, the diophantine equation (1) has the solution $(x, y, z)=(1,1,1)$
ii) For $p=2$ the diophantine equation (1) has the solutions $(x, y, z)=$ $(2 k-1,2 k-1, k), k \in \mathbb{N}-\{0\}$.
iii) For $p=2^{a}-1=M_{a}$, a integer positive, $a \geq 2$, and M_{a} prime Mersenne's number, the equation has the solutions $(x, y, z)=(a, a+1, a)$ and $(x, y, z)=(a+1, a, a)$.

3 The diophantine equation (5) $p^{x}+q^{y}=(p q)^{z}$, with p and q two given primes.

We distinguish five cases.

On the diophantine equations of type $a^{x}+b^{y}=c^{z}$
3.1. $x=0$. The given equation becames

$$
\begin{equation*}
1+q^{y}=(p q)^{z} . \tag{6}
\end{equation*}
$$

If $y \geq 1$ and $z \geq 1$, then (6) is impossible because $1+q^{y} \equiv 1(\bmod q)$ and $(p q)^{z} \equiv 0(\bmod q)$.

If $y=0$, then (6) is equivalent to $2=(p q)^{z}$, which is impossible.
If $z=0$, then from (6) we obtain $q^{y}=0$, which is impossible.
3.2. $y=0$. This case is similar with the case 3.1.
3.3. $z=0$. The diophantine equation $p^{x}+q^{y}=1$ has no solutions in natural numbers.

Now, we consider $x \geq 1, y \geq 1, z \geq 1$.
3.4. $1 \leq x \leq z$. The equation (5) is equivalent to

$$
\begin{equation*}
q^{y}=p^{x}\left(p^{z-x} \cdot q^{z}-1\right) \tag{7}
\end{equation*}
$$

If $p \neq q$, then (7) is impossible.
If $p=q$ and $x \neq y$, then (7) is also impossible.
If $p=q$ and $x=y$, the equation (7) takes the form $p^{2 z-x}=2$, which it is possible only if $p=2$ and $2 z-x=1$.

It follows that for $p=q=2$ the equation (5) has the solutions $(x, y, z)=(2 k-1,2 k-1, k), k$ arbitrary positive integer.
3.5. $x>z \geq 1$. We write the equation (5) under the form

$$
\begin{equation*}
q^{y}=p^{z}\left(q^{z}-p^{x-z}\right) \tag{8}
\end{equation*}
$$

For $p \neq q$ the equation (8) is impossible.
If $p=q$, then from (8) it results

$$
\begin{equation*}
p^{y}=p^{z}\left(p^{z}-p^{x-z}\right) \tag{9}
\end{equation*}
$$

The diophantine equation (9) is possible only if $z>x-z$, that is $x<2 z$. Then the equation (9) is equivalent to

$$
p^{y}=p^{2 z}\left(1-p^{x-2 z}\right),
$$

which is impossible.
As a conclusion we obtained:

Theorem 3. The diophantine equation (5) has solutions only if $p=q=2$. These are $(x, y, z)=(2 k-1,2 k-1, k), k$ arbitrary positive integer.

References

[1] Z. Cao, On the Diophantine equation $a^{x}+b^{y}=c^{z}$, I, Chinesse Sc. Bull. 32, 1987, 1519-1521, (in Chinese).
[2] Z. Cao, On the Diophantine equation $a^{x}+b^{y}=c^{z}$, II, Chinesse Sc. Bull. 32, 1988, p. 237.
[3] Z. Cao, A note on the Diophantine equation $a^{x}+b^{y}=c^{z}$, Acta Arithmetica, XCI, 1999, no. 1, 85-89.
[4] J. Sandor, On the diophantine equation $3^{x}+3^{y}=6^{z}$, Geometric theorems, diophantine equations, and arithmetic functions, American Research Press Rehobot 4, 2002, 89-90.
[5] J. Sandor, On the diophantine equation $4^{x}+18^{y}=22^{z}$, Geometric theorems, diophantine equations, and arithmetic functions, American Research Press, Rehobot 4, 2002, 91-92.
[6] W. Sierpinski, A selection of problems in the theory of number, Pergamon Press, Oxford.London.New York.Paris, 1964.
"Lucian Blaga" University of Sibiu
Department of Mathematics
Str. Dr. I. Raṭiu, No. 5-7
550012 - Sibiu, Romania
E-mail address: acu_dumitru@yahoo.com

