General Mathematics Vol. 13, No. 1 (2005), 67-72

On the diophantine equations of type $a^x + b^y = c^z$

Dumitru Acu

Dedicated to Professor Emil C. Popa on his 60th birthday

Abstract

In this paper we study some diophantine equations of type $a^x + b^y = c^z$.

2000 Mathematics Subject Classification: 11D61 Keywords and phrases: diophantine equations.

The diophantine equations of type $a^x + b^y = c^z$ have been extensively studied in certian particular cases (see [1] - [6]). For example, for b > a and $\max(a, b, c) > 13$, Z. Cao in [2] and [3] proved that this equation can have at most one solution with z > 1.

Another result (see [6]) says that if a, b, c are not powers of two, then the diophantine equations $a^x + b^y = c^z$ can have at most a finite number of solutions.

The aim of this paper is to find elementary solutions for some diophantine equations of this type.

1 The equation of type $p^x + p^y = p^z$, where p is prime number.

If p = 2 and x = y < z, then the diophantine equation becomes $2^{x+1} = 2^z$, where we get z = x+1, $x \in \mathbb{N}$. Therefore, in this case we have the solutions (k, k, k+1), k natural number.

For x < y < z we have $2^{x}(1 + 2^{y-x}) = 2^{z}$, that is $1 + 2^{y-x} = 2^{z-x}$, contradiction, since the left side is $\equiv 1 \pmod{2}$ and the right side is $\equiv 0 \pmod{2}$.

If $p \ge 3$, then $p^x + p^y$ is even number and p^z is odd number, hence the diophantine equation has no solutions.

In conclusion, we have:

Theorem 1. If p = 2 the diophantine equation $2^x + 2^y = 2^z$ has the solutions $(x, y, z) = (k, k, k + 1), k \in \mathbb{N}$.

If $p \geq 3$ the diophantine equation

$$(1) p^x + p^y = p^z$$

has no solutions.

2 The equation of type (1) $p^x + p^y = (2p)^z$, where p is prime number

We consider nine cases

2.1 x = y. The diophantine equation becomes

(2)
$$2p^x = 2^z \cdot p^z.$$

If $p \neq 2$, then we obtain z = 1 and x = z, that is we have the solution (x, y, z) = (1, 1, 1).

If p = 2, then the equation (2) takes the form $2^x = 2^{2z-1}$, where x = 2z-1. Then, we find the solutions $(x, y, z,) = (2k-1, 2k-1, k), k \in \mathbb{N}/\{0\}$. **2.2** x = z. The diophantine equation (1) takes the form

(3)
$$p^y = p^x (2^x - 1).$$

If p = 2 and x > 1, then the equation (3) is impossible because p^y is even number and $2^x - 1$ is an odd number. For p = 2 and x = 1 we obtain the solution (x, y, z) = (1, 1, 1). If $p \ge 3$, then from (3) it results $2^x - 1 = p^t$, $t \in \mathbb{N} - \{0\}$. This equation has the solution only for t = 1 ([6]) and p is prime Mersenne number. For $p = 2^a - 1 = M_a$, $a \in \mathbb{N} - \{0\}$, where M_a is prime Mersenne number, the diophantine equation (3) has the solution (x, y, z) = (a, a + 1, a).

Examples 2.2.1. For p = 3 we have $p = 2^2 - 1 = M_2$, hence the diophantine equation $3^x + 3^y = 6^z$ has the solution (x, y, z) = (2, 3, 2) ([4]). **2.2.2** p = 7. For p = 7 we have $p = 2^3 - 1 = M_3$, hence the diophantine equation $7^x + 7^y = 14^z$ has the solution (x, y, z) = (3, 4, 3).

2.2.3. $p = 31 = 2^5 - 1 = M_5$. For $p = 31 = 2^5 - 1 = M_5$, we find the solution (x, y, z) = (5, 6, 5) for the diophantine equation $31^x + 31^y = 62^z$.

2.3. y = z. Using the symmetry of the equation in x and y, it follows that this case is similar to the case 2.2.

2.4. x < y < z. The diophantine equation (1) is equivalent to

$$p^x(1+p^{y-x}) = 2^z \cdot p^z$$

or

$$1 + p^{y-x} = 2^z \cdot p^{z-x}$$

Hence $1 + p^{y-x} \equiv 1 \pmod{p}$ and $2^z \cdot p^{z-x} \equiv 0 \pmod{p}$, it results the equation has no solutions in this case.

2.5. y < x < z. This case is analogous with 2.4.

2.6. y < z < x. The equation (1) is equivalent to

$$p^y(p^{x-y}+1) = 2^z \cdot p^z$$

or

$$p^{x-y} + 1 = 2^z \cdot p^{z-y}$$

which is impossible.

2.7. x < z < y. This case is similar to 2.6.

2.8. z < x < y. The equation (1) is equivalent to $p^{x-z} + p^{y-z} = 2^z$ or

(4)
$$p^{x-z}(1+p^{y-z}) = 2^z$$

For $p \ge 3$ we have $p^{x-z}(1+p^{y-x}) \equiv 0 \pmod{p}$ and $2^z \not\equiv 0 \pmod{p}$, thus the equation (4) is impossible.

For p = 2 we have $2^{x-z}(1+2^{y-x}) = 2^z$ which is impossible hence $1+2^{y-x}$ is on odd number and 2^z is an even number.

2.9. z < y < x. This is analogous with 2.8.

In fine we proved:

Theorem 2. i) For every p prime, the diophantine equation (1) has the solution (x, y, z) = (1, 1, 1)

ii) For p = 2 the diophantine equation (1) has the solutions $(x, y, z) = (2k - 1, 2k - 1, k), k \in \mathbb{N} - \{0\}.$

iii) For $p = 2^a - 1 = M_a$, a integer positive, $a \ge 2$, and M_a prime Mersenne's number, the equation has the solutions (x, y, z) = (a, a + 1, a)and (x, y, z) = (a + 1, a, a).

3 The diophantine equation (5) $p^x+q^y = (pq)^z$, with p and q two given primes.

We distinguish five cases.

On the diophantine equations of type $a^x + b^y = c^z$

3.1. x = 0. The given equation becames

$$(6) 1+q^y = (pq)^z.$$

If $y \ge 1$ and $z \ge 1$, then (6) is impossible because $1 + q^y \equiv 1 \pmod{q}$ and $(pq)^z \equiv 0 \pmod{q}$.

If y = 0, then (6) is equivalent to $2 = (pq)^z$, which is impossible.

If z = 0, then from (6) we obtain $q^y = 0$, which is impossible.

3.2. y = 0. This case is similar with the case 3.1.

3.3. z = 0. The diophantine equation $p^x + q^y = 1$ has no solutions in natural numbers.

Now, we consider $x \ge 1, y \ge 1, z \ge 1$.

3.4. $1 \le x \le z$. The equation (5) is equivalent to

(7)
$$q^y = p^x (p^{z-x} \cdot q^z - 1)$$

If $p \neq q$, then (7) is impossible.

If p = q and $x \neq y$, then (7) is also impossible.

If p = q and x = y, the equation (7) takes the form $p^{2z-x} = 2$, which it is possible only if p = 2 and 2z - x = 1.

It follows that for p = q = 2 the equation (5) has the solutions (x, y, z) = (2k - 1, 2k - 1, k), k arbitrary positive integer.

3.5. $x > z \ge 1$. We write the equation (5) under the form

(8) $q^y = p^z (q^z - p^{x-z}).$

For $p \neq q$ the equation (8) is impossible.

If p = q, then from (8) it results

(9)
$$p^y = p^z (p^z - p^{x-z}).$$

The diophantine equation (9) is possible only if z > x - z, that is x < 2z. Then the equation (9) is equivalent to

$$p^y = p^{2z}(1 - p^{x-2z}),$$

which is impossible.

As a conclusion we obtained:

Theorem 3. The diophantine equation (5) has solutions only if p = q = 2. These are (x, y, z) = (2k - 1, 2k - 1, k), k arbitrary positive integer.

References

- [1] Z. Cao, On the Diophantine equation $a^x + b^y = c^z$, I, Chinesse Sc. Bull. 32, 1987, 1519 - 1521, (in Chinese).
- [2] Z. Cao, On the Diophantine equation $a^x + b^y = c^z$, II, Chinesse Sc. Bull. 32, 1988, p. 237.
- [3] Z. Cao, A note on the Diophantine equation $a^x + b^y = c^z$, Acta Arithmetica, XCI, 1999, no. 1, 85-89.
- [4] J. Sandor, On the diophantine equation $3^x + 3^y = 6^z$, Geometric theorems, diophantine equations, and arithmetic functions, American Research Press Rehobot 4, 2002, 89-90.
- [5] J. Sandor, On the diophantine equation $4^x + 18^y = 22^z$, Geometric theorems, diophantine equations, and arithmetic functions, American Research Press, Rehobot 4, 2002, 91-92.
- [6] W. Sierpinski, A selection of problems in the theory of number, Pergamon Press, Oxford.London.New York.Paris, 1964.

"Lucian Blaga" University of Sibiu Department of Mathematics Str. Dr. I. Rațiu, No. 5-7 550012 - Sibiu, Romania E-mail address: acu_dumitru@yahoo.com