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Abstract

In this article is given a simple method to describe the structure

of irrotational vector fields defined on some domains in the Euclidean

3-space and which appear often in both pure or applied mathematics.
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1 Introduction

Let us consider a domain Ω ⊆ R3 and F := (Fx, Fy, Fz) : Ω −→ R3 a vector

field of class C1 on Ω.

The curl of F or rotor of F is denoted as curl(F) or rot(F) and it is defined

as the formal cross product of ∇ with F:
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The last formal determinant is useful to keep in mind the definition of the

vector field rot(F) and to compute it.

It is well known that if the vector field F is conservative and if the scalar

field G : Ω −→ R is a potential for F then the equality F = grad(G) implies

rot(F) = 0 i.e. the vector field F is irrotational.

The converse of this property is true if and only if the domain Ω is

simply connected i.e. its fundamental group is the trivial group. For

multiple connected domains the class of irrotational vector fields is strictly

larger as the class of conservative ones.

In this paper we shall give a canonical method to evaluate the deviation

of an irrotational vector field from being conservative, for a large class of

multiple connected domains Ω of the Euclidean 3-space R3.

The content of the paper is the natural completion of the content of [1].

2 Elementary Irrotational Vector Fields

Let us consider the line L ⊂ R3 given by the following Cartesian equations:

L :





f1 := a1x + b1y + c1z + d1 = 0

f2 := a2x + b2y + c2z + d2 = 0
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where the vectors (a1, b1, c1), (a2, b2, c2) ∈ R3 are linearly independent.

A nice property of the function arctan permits the construction of an

irrotational vector field

E : Ω := R3 \ L −→ R3

arriving in the description of the deviation from being conservative of any

other irrotational vector field on Ω.

We shall denote by Pk, k = 1, 2, the planes in R3 given by the equations

fk = 0 and by Ωk the two components (half-planes) open sets R3 \ Pk.

Let us consider the scalar fields Gk : Ωk −→ R defined by:

G1(x, y, z) := arctan
f2

f1

and G2(x, y, z) := − arctan
f1

f2

.

One check at once that the partial derivatives of order 1 of G1 and G2

are given by the same analytical expressions ( but they have different

domains of definition !).

Let us define the vector field E by:

E(x, y, z) =
1

f 2
1 + f 2

2

[
f2

∂f1

∂x
− f1

∂f2

∂x
; f2

∂f1

∂y
− f1

∂f2

∂y
; f2

∂f1

∂z
− f1

∂f2

∂z

]
.(1)

We see that E : R3 \ (P1

⋂
P2) −→ R3 i.e. E : R3 \ L −→ R3 and for every

(x, y, z) ∈ R3 \ L one has:




E(x, y, z) = grad G1(x, y, z) for (x, y, z) ∈ R3 \ P1

E(x, y, z) = grad G2(x, y, z) for (x, y, z) ∈ R3 \ P2.

(2)

E(x, y, z) = grad G1(x, y, z) = grad G2(x, y, z)

for every (x, y, z) ∈ R3 \ P1

⋃
P2.
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The equations (2) assures that the vector field E is irrotational.

If we consider a circle C in a plane perpendicular on L, with radius equal

to 1 (for example),with the center on L and which surrounds L once, one

sees that

∫

C

E · dr = ±2π.

Thus the vector field E is not conservative.

A vector field E of the previous type will be called an elementary irrota-

tional vector field of the second type.

We formulate now the precise definitions.

Let f1, f2 : R3 −→ R be two scalar fields which are supposed, for simplicity,

to be of class C∞. Moreover suppose that for every (x, y, z) ∈ R3 for which

[f1(x, y, z)]2 + [f2(x, y, z)]2 > 0 the Jacobi matrix

J =




∂f1

∂x

∂f1

∂y

∂f1

∂z

∂f2

∂x

∂f2

∂y

∂f2

∂z




(3)

in the point (x, y, z) has the rank 2. Particularly the gradients of f1 and f2

are different from zero in these points and the implicit-function theorem is

applicable around every point satisfying the previous restrictions.

Suppose that the sets Sk := {(x, y, z) ∈ R3| fk(x, y, z) = 0}, k = 1, 2 are

non-empty. Then the implicit-function theorem assures that each Sk is a

surface with one or several connected component(s).

Suppose that C := S1

⋂
S2 is non-empty, consists of precisely one con-

nected component and the fundamental group of R3 \C is a free group with

one generator (i.e. it is isomorphic to the additive group of rational integers
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(Z, +)). (The implicit-function theorem assures that C is a curve of class

C∞).

It is well known from topology that the curve C is either compact and dif-

feomorphic with a circle or non-compact and diffeomorphic with a straight

line.

Let us consider the scalar fields Gk : R3 \ Sk −→ R defined by:

G1(x, y, z) := arctan
f2(x, y, z)

f1(x, y, z)
and G2(x, y, z) := − arctan

f1(x, y, z)

f2(x, y, z)
.(4)

To simplify the text in the future we shall write Gk, fk etc. for Gk(x, y, z),

fk(x, y, z) any time when this abbreviation does not produce ambiguities.

One check at once that gradG1 and gradG2 are given by

1

f 2
1 + f 2

2

[
f1

∂f2

∂x
− f2

∂f1

∂x
, f1

∂f2

∂y
− f2

∂f1

∂y
, f1

∂f2

∂z
− f2

∂f1

∂z

]
(5)

in their domains of definition which are those of G1 respectively G2.

We see that the expression (5) is defined on R3 \ C i.e. on a domain which

is strictly larger as R3 \ Sk, k = 1, 2.

We define the vector field E : R3 \ C −→ R3 by the expression (5).

Since the restrictions of E to R3 \ Sk, k = 1, 2 coincide with the gradients

of Gk, the vector field E is irrotational. If one takes a small circle γ with

the center on C and lying in the normal plane to C in that point, such that

the homotopy class of γ is a generator of the fundamental group of R3 \ C

one can check that

∫

C

E · dr = ±2π.

Thus the vector field E is irrotational but not conservative.

Now we can formulate the following definition:
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Definition 1.In the previous context, the irrotational vector field E is called

elementary irrotational vector field of the first type if C is diffeomorphic with

a circle and elementary vector field of the second type if it is diffeomorphic

with a straight line.

Examples.

1. The circle C : z = 0; x2 +y2 = 1 generates the elementary irrotational

vector field of the first type E : R3 \ C −→ R3 given by:

E(x, y, z) =
1

z2 + [x2 + y2 − 1]2
[2xz, 2yz, 1− x2 − y2].

2. The graph of the function sin : R −→ R viewed as a curve C in R3

with the equations z = 0 and y = sin x generates the elementary

irrotational vector field of the second type E given by:

E(x, y, z) =
1

z2 + (y − sin x)2
[−z cos x, z,−y + sin x].

Remark. For a given curve C correspond an infinity of elementary irrota-

tional vector fields. For example, the curve C from the second example can

be written by means of the equations z = 0 and ay = a sin x where a 6= 0

is an arbitrary constant. With these equations the elementary irrotational

vector field generated by C is given by:

E(x, y, z) =
1

z2 + a2(y − sin x)2
[−az cos x, az, a(−y + sin x)].

Now we can formulate the main result of this paper.
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3 The Main Result

Let C1, C2, . . . , Cn be n curves of the type considered before, such that they

are pairwise disjoint: Ci

⋂
Cj = ∅ for every i 6= j. We recall that each

domain R3 \ Ci has its fundamental group generated by one generator.

Suppose that Ci is given by the equations fi1(x, y, z) = 0 ; fi2(x, y, z) = 0.

Let Ei be the elementary vector field corresponding to Ci and defined by

the previous equations of Ci according to (5). We shall denote also by Ei

the restrictions of Ei to the domain Ω := R3 \
n⋃

i=1

Ci.

In this context we can formulate:

Theorem 1.If E : Ω −→ R3 is an arbitrary irrotational vector field on Ω,

there exist constants α1, α2, . . . , αn ∈ R uniquely determined by E1,E2, . . . ,En

and E such that the vector field F := E− Σn
i=1αiEi is conservative.

Proof. For every curve Ci we choose a circle γi such that its homotopy

class [γi] is a generator of the fundamental group Π1(R3 \ Ci); γi can be a

small circle with the center in a point of Ci and which lies in the normal

plane to Ci at that point.

We identify the constants αi ∈ R by imposing to F to satisfy the conditions:

∫

γi

F · dr = 0 for all i, 1 ≤ i ≤ n.(6)

The equalities (6) give:

αi =

∫

γi

E · dr
∫

γi

Ei · dr
for all i, 1 ≤ i ≤ n.(7)
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From now on we keep for αi the values given by (7).

Remark. By using formulae (4) and (5), the patient reader can see that

∫

γi

Ei · dr = ±2π.(8)

Let (x0, y0, z0) ∈ Ω be a point which will be kept fixed in all that follows.

Let (x, y, z) be a variable point in Ω and Γ an arbitrary piecewise smooth

curve in Ω having the start point in (x0, y0, z0) and the end point in (x, y, z).

Since the set of homotopy classes {[γ1], [γ2, . . . , [γn]]} generates the funda-

mental group Π1(Ω) the equations (6) implies that

∫

γ

F · dr = 0 for every

piecewise smooth closed curve in Ω(See [2],Ch.15). This last property of F

implies that

∫

Γ

F · dr does not depend on Γ but only on (x, y, z). Thus one

can define unambiguously the scalar field G : Ω −→ R by

G(x, y, z) :=

∫

Γ

F · dr.(9)

Now it is well-known from calculus in several variables that the scalar field

G is a potential to F. Since Ω is connected, G is the single potential to F

satisfying the condition G(x0, y0, z0) = 0.

Finally, we get the following formula concerning the structure of the

irrotational vector fields on Ω:

E = Σn
i=1αiEi + grad(G).(10)

In formula (10) the vector fields Ei are given by (5) applied to the functions

fi1 and fi2, the scalars αi are given by (7) and the scalar field G is given by

(9).
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Example. Let us consider the sphere S1 and the cylinder S2 given by the

equations:




S1 : f1(x, y, z) = x2 + y2 + z2 − 25 = 0

S2 : f2(x, y, z) = x2 + y2 − 9 = 0

(11)

The functions G1 := arctan
f2

f1

and G2 := − arctan
f1

f2

generate via formula

(5) the vector field E given by

E(x, y, z) =
[2x(z2 − 16); 2y(z2 − 16);−2z(x2 + y2 − 9)]

[x2 + y2 + z2 − 25]2 + [x2 + y2 − 9]2
.(12)

This vector field is irrotational but it is not an elementary irrotational

vector field since S1

⋂
S2 is not connected. This set consists of the two

circles C1 and C2 given by:

C1 :





x2 + y2 − 9 = 0

z − 4 = 0

and C2 :





x2 + y2 − 9 = 0

z + 4 = 0

.(13)

The functions appearing in the equations of these two circles define via the

functions Gij, 1 ≤ i, j ≤ 2, given by





G11(x, y, z) = arctan
x2 + y2 − 9

z − 4
and

G21(x, y, z) = − arctan
z − 4

x2 + y2 − 9
respectively,

G12(x, y, z) = arctan
x2 + y2 − 9

z + 4
and

G22(x, y, z) = − arctan
z + 4

x2 + y2 − 9

(14)
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the elementary irrotational vector fields E1 and E2 given by:



E1(x, y, z) =
[2x(z − 4); 2y(z − 4); 9− x2 − y2]

(z − 4)2 + [x2 + y2 − 9]2

E2(x, y, z) =
[2x(z + 4); 2y(z + 4); 9− x2 − y2]

(z + 4)2 + [x2 + y2 − 9]2

.(15)

Let us consider the circles γ1 and γ2 in the plane y = 0 having the cen-

ters (3, 0, 4) respectively (3, 0,−4) and the same radius 1. We take the

parametric representations r1, r2 : [0, 2π] −→ R3 given by:




r1(t) = [3 + cos t, 0, 4 + sin t]

r2(t) = [3 + cos t, 0,−4 + sin t]

(16)

The homotopy classes of γ1 and γ2 generate the fundamental group Π1(Ω)

where Ω = R3 \ (S1

⋂
S2) = R3 \ (C1

⋃
C2).

We shall compute now the integrals appearing in formula (7). We shall

give details for the computation of

∫

γ1

E1 · dr.
We shall use essentially the information that E1(x, y, z) = gradG11(x, y, z)

in any point (x, y, z) outside the plane z = 4 and E1(x, y, z) = gradG21(x, y, z)

in any point (x, y, z) outside the cylindrical surface x2 + y2 − 9 = 0.

Let us consider the square ABCD in the plane y = 0, where its vertexes

A,B,C,D are the points with the coordinates:

A(4, 0, 5); B(2, 0, 5); C(2, 0, 3); D(4, 0, 3).

This square endowed with the orientation A → B → C → D → A is a

piecewise smooth path δ homotopic with γ1. Since the vector field E1 is

irrotational, ∫

γ1

E1 · dr =

∫

δ

E1 · dr.(17)
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∫

δ

E1 · dr =

∫

AB

E1 · dr +

∫

BC

E1 · dr +

∫

CD

E1 · dr +

∫

DA

E1 · dr.(18)

The integrals appearing in (18) are computed according to Leibniz-Newton

formula, as follows:

∫

AB

E1 · dr = G11(B)−G11(A) = −[arctan 5 + arctan 7];
∫

BC

E1 · dr = G21(C)−G21(B) = −2 arctan
1

5
;

∫

CD

E1 · dr = G11(D)−G11(C) = −[arctan 5 + arctan 7];
∫

DA

E1 · dr = G21(A)−G21(D) = −2 arctan
1

7
.

These equalities together with (17) and (18) give:
∫

γ1

E1 · dr = −2[arctan 5 + arctan
1

5
+ arctan 7 + arctan

1

7
] = −2π.(19)

(See formula (8)).

In the same way one gets:
∫

γ2

E2 · dr = −2π;

∫

γ1

E · dr = −2π and

∫

γ2

E · dr = 2π.

Thus, the numbers αi from (7) are:

α1 = 1 and α2 = −1.

According to formula (10), there exists a scalar field G : R3\(C1

⋃
C2) −→ R

such that:

E = E1 − E2 + grad (G).(20)

Remark. The computation of the potential G of E − E1 + E2 which

accomplishes (20) and for which G(0, 0, 0) = 0 (for example), is a com-

pletely elementary task and the computation is omitted. One uses only
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the information that the local potentials of this vector field are constants

added to linear combinations of restrictions of the (local) potentials Gi and

Gij, 1 ≤ i, j ≤ 2, of the vector fields E, E1 and E2.
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