On the Structure of Some Irrotational Vector Fields

Ilie Bârză

Dedicated to Associate Professor Emil C. Popa on his 60th anniversary

Abstract

In this article is given a simple method to describe the structure of irrotational vector fields defined on some domains in the Euclidean 3 -space and which appear often in both pure or applied mathematics.

2000 Mathematics Subject Classification: 57R25, 30F50, 37F50
Key words and phrases: irrotational vector field, conservative vector field

1 Introduction

Let us consider a domain $\Omega \subseteq \mathbb{R}^{3}$ and $\mathbf{F}:=\left(F_{x}, F_{y}, F_{z}\right): \Omega \longrightarrow \mathbb{R}^{3}$ a vector field of class C^{1} on Ω.

The curl of \mathbf{F} or rotor of \mathbf{F} is denoted as $\operatorname{curl}(\mathbf{F})$ or $\operatorname{rot}(\mathbf{F})$ and it is defined as the formal cross product of ∇ with \mathbf{F} :

$$
\begin{gathered}
\operatorname{curl}(\mathbf{F})=\operatorname{rot}(\mathbf{F})=\nabla \times \mathbf{F}=\left(\imath \frac{\partial}{\partial x}+\jmath \frac{\partial}{\partial y}+\mathbf{k} \frac{\partial}{\partial z}\right) \times\left(F_{x}, F_{y}, F_{z}\right):= \\
:=\imath\left(\frac{\partial F_{z}}{\partial y}-\frac{\partial F_{y}}{\partial z}\right)+\jmath\left(\frac{\partial F_{x}}{\partial z}-\frac{\partial F_{z}}{\partial x}\right)+\mathbf{k}\left(\frac{\partial F_{y}}{\partial x}-\frac{\partial F_{x}}{\partial y}\right):=\left|\begin{array}{ccc}
\imath & \jmath & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
F_{x} & F_{y} & F_{z}
\end{array}\right| .
\end{gathered}
$$

The last formal determinant is useful to keep in mind the definition of the vector field $\operatorname{rot}(\mathbf{F})$ and to compute it.

It is well known that if the vector field \mathbf{F} is conservative and if the scalar field $G: \Omega \longrightarrow \mathbb{R}$ is a potential for \mathbf{F} then the equality $\mathbf{F}=\operatorname{grad}(G)$ implies $\operatorname{rot}(\mathbf{F})=\mathbf{0}$ i.e. the vector field \mathbf{F} is irrotational.

The converse of this property is true if and only if the domain Ω is simply connected i.e. its fundamental group is the trivial group. For multiple connected domains the class of irrotational vector fields is strictly larger as the class of conservative ones.

In this paper we shall give a canonical method to evaluate the deviation of an irrotational vector field from being conservative, for a large class of multiple connected domains Ω of the Euclidean 3 -space \mathbb{R}^{3}.

The content of the paper is the natural completion of the content of [1].

2 Elementary Irrotational Vector Fields

Let us consider the line $L \subset \mathbb{R}^{3}$ given by the following Cartesian equations:

$$
L:\left\{\begin{array}{l}
f_{1}:=a_{1} x+b_{1} y+c_{1} z+d_{1}=0 \\
f_{2}:=a_{2} x+b_{2} y+c_{2} z+d_{2}=0
\end{array}\right.
$$

where the vectors $\left(a_{1}, b_{1}, c_{1}\right),\left(a_{2}, b_{2}, c_{2}\right) \in \mathbb{R}^{3}$ are linearly independent.
A nice property of the function arctan permits the construction of an irrotational vector field

$$
\mathbf{E}: \Omega:=\mathbb{R}^{3} \backslash L \longrightarrow \mathbb{R}^{3}
$$

arriving in the description of the deviation from being conservative of any other irrotational vector field on Ω.
We shall denote by $P_{k}, k=1,2$, the planes in \mathbb{R}^{3} given by the equations $f_{k}=0$ and by Ω_{k} the two components (half-planes) open sets $\mathbb{R}^{3} \backslash P_{k}$.
Let us consider the scalar fields $G_{k}: \Omega_{k} \longrightarrow \mathbb{R}$ defined by:

$$
G_{1}(x, y, z):=\arctan \frac{f_{2}}{f_{1}} \text { and } G_{2}(x, y, z):=-\arctan \frac{f_{1}}{f_{2}}
$$

One check at once that the partial derivatives of order 1 of G_{1} and G_{2} are given by the same analytical expressions (but they have different domains of definition!).

Let us define the vector field \mathbf{E} by:
(1) $\mathbf{E}(x, y, z)=\frac{1}{f_{1}^{2}+f_{2}^{2}}\left[f_{2} \frac{\partial f_{1}}{\partial x}-f_{1} \frac{\partial f_{2}}{\partial x} ; f_{2} \frac{\partial f_{1}}{\partial y}-f_{1} \frac{\partial f_{2}}{\partial y} ; f_{2} \frac{\partial f_{1}}{\partial z}-f_{1} \frac{\partial f_{2}}{\partial z}\right]$.

We see that $\mathbf{E}: \mathbb{R}^{3} \backslash\left(P_{1} \bigcap P_{2}\right) \longrightarrow \mathbb{R}^{3}$ i.e. $\mathbf{E}: \mathbb{R}^{3} \backslash L \longrightarrow \mathbb{R}^{3}$ and for every $(x, y, z) \in \mathbb{R}^{3} \backslash L$ one has:

$$
\left\{\begin{array}{c}
\mathbf{E}(x, y, z)=\operatorname{grad} G_{1}(x, y, z) \text { for }(x, y, z) \in \mathbb{R}^{3} \backslash P_{1} \tag{2}\\
\mathbf{E}(x, y, z)=\operatorname{grad} G_{2}(x, y, z) \text { for }(x, y, z) \in \mathbb{R}^{3} \backslash P_{2} \\
\mathbf{E}(x, y, z)=\operatorname{grad} G_{1}(x, y, z)=\operatorname{grad} G_{2}(x, y, z)
\end{array}\right.
$$

for every $(x, y, z) \in \mathbb{R}^{3} \backslash P_{1} \bigcup P_{2}$.

The equations (2) assures that the vector field \mathbf{E} is irrotational.
If we consider a circle C in a plane perpendicular on L , with radius equal to 1 (for example), with the center on L and which surrounds L once, one sees that $\int_{C} \mathbf{E} \cdot d \mathbf{r}= \pm 2 \pi$.
Thus the vector field \mathbf{E} is not conservative.
A vector field \mathbf{E} of the previous type will be called an elementary irrotational vector field of the second type.

We formulate now the precise definitions.
Let $f_{1}, f_{2}: \mathbb{R}^{3} \longrightarrow \mathbb{R}$ be two scalar fields which are supposed, for simplicity, to be of class C^{∞}. Moreover suppose that for every $(x, y, z) \in \mathbb{R}^{3}$ for which $\left[f_{1}(x, y, z)\right]^{2}+\left[f_{2}(x, y, z)\right]^{2}>0$ the Jacobi matrix

$$
\mathbf{J}=\left[\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x} & \frac{\partial f_{1}}{\partial y} & \frac{\partial f_{1}}{\partial z} \tag{3}\\
\frac{\partial f_{2}}{\partial x} & \frac{\partial f_{2}}{\partial y} & \frac{\partial f_{2}}{\partial z}
\end{array}\right]
$$

in the point (x, y, z) has the rank 2. Particularly the gradients of f_{1} and f_{2} are different from zero in these points and the implicit-function theorem is applicable around every point satisfying the previous restrictions.

Suppose that the sets $S_{k}:=\left\{(x, y, z) \in \mathbb{R}^{3} \mid f_{k}(x, y, z)=0\right\}, k=1,2$ are non-empty. Then the implicit-function theorem assures that each S_{k} is a surface with one or several connected component(s).

Suppose that $C:=S_{1} \bigcap S_{2}$ is non-empty, consists of precisely one connected component and the fundamental group of $\mathbb{R}^{3} \backslash C$ is a free group with one generator (i.e. it is isomorphic to the additive group of rational integers
$(\mathbb{Z},+)$). (The implicit-function theorem assures that C is a curve of class $\left.C^{\infty}\right)$.

It is well known from topology that the curve C is either compact and diffeomorphic with a circle or non-compact and diffeomorphic with a straight line.

Let us consider the scalar fields $G_{k}: \mathbb{R}^{3} \backslash S_{k} \longrightarrow \mathbb{R}$ defined by:

$$
\begin{equation*}
G_{1}(x, y, z):=\arctan \frac{f_{2}(x, y, z)}{f_{1}(x, y, z)} \text { and } G_{2}(x, y, z):=-\arctan \frac{f_{1}(x, y, z)}{f_{2}(x, y, z)} \tag{4}
\end{equation*}
$$

To simplify the text in the future we shall write G_{k}, f_{k} etc. for $G_{k}(x, y, z)$, $f_{k}(x, y, z)$ any time when this abbreviation does not produce ambiguities.

One check at once that $\operatorname{grad} G_{1}$ and $\operatorname{grad} G_{2}$ are given by

$$
\begin{equation*}
\frac{1}{f_{1}^{2}+f_{2}^{2}}\left[f_{1} \frac{\partial f_{2}}{\partial x}-f_{2} \frac{\partial f_{1}}{\partial x}, f_{1} \frac{\partial f_{2}}{\partial y}-f_{2} \frac{\partial f_{1}}{\partial y}, f_{1} \frac{\partial f_{2}}{\partial z}-f_{2} \frac{\partial f_{1}}{\partial z}\right] \tag{5}
\end{equation*}
$$

in their domains of definition which are those of G_{1} respectively G_{2}.
We see that the expression (5) is defined on $\mathbb{R}^{3} \backslash C$ i.e. on a domain which is strictly larger as $\mathbb{R}^{3} \backslash S_{k}, k=1,2$.
We define the vector field $\mathbf{E}: \mathbb{R}^{3} \backslash C \longrightarrow \mathbb{R}^{3}$ by the expression (5).
Since the restrictions of \mathbf{E} to $\mathbb{R}^{3} \backslash S_{k}, k=1,2$ coincide with the gradients of G_{k}, the vector field \mathbf{E} is irrotational. If one takes a small circle γ with the center on C and lying in the normal plane to C in that point, such that the homotopy class of γ is a generator of the fundamental group of $\mathbb{R}^{3} \backslash C$ one can check that $\int_{C} \mathbf{E} \cdot d \mathbf{r}= \pm 2 \pi$.

Thus the vector field \mathbf{E} is irrotational but not conservative.
Now we can formulate the following definition:

Definition 1.In the previous context, the irrotational vector field \mathbf{E} is called elementary irrotational vector field of the first type if C is diffeomorphic with a circle and elementary vector field of the second type if it is diffeomorphic with a straight line.

Examples.

1. The circle $C: z=0 ; x^{2}+y^{2}=1$ generates the elementary irrotational vector field of the first type $\mathbf{E}: \mathbb{R}^{3} \backslash C \longrightarrow \mathbb{R}^{3}$ given by:

$$
\mathbf{E}(x, y, z)=\frac{1}{z^{2}+\left[x^{2}+y^{2}-1\right]^{2}}\left[2 x z, 2 y z, 1-x^{2}-y^{2}\right] .
$$

2. The graph of the function $\sin : \mathbb{R} \longrightarrow \mathbb{R}$ viewed as a curve C in \mathbb{R}^{3} with the equations $z=0$ and $y=\sin x$ generates the elementary irrotational vector field of the second type \mathbf{E} given by:

$$
\mathbf{E}(x, y, z)=\frac{1}{z^{2}+(y-\sin x)^{2}}[-z \cos x, z,-y+\sin x] .
$$

Remark. For a given curve C correspond an infinity of elementary irrotational vector fields. For example, the curve C from the second example can be written by means of the equations $z=0$ and $a y=a \sin x$ where $a \neq 0$ is an arbitrary constant. With these equations the elementary irrotational vector field generated by C is given by:

$$
\mathbf{E}(x, y, z)=\frac{1}{z^{2}+a^{2}(y-\sin x)^{2}}[-a z \cos x, a z, a(-y+\sin x)]
$$

Now we can formulate the main result of this paper.

3 The Main Result

Let $C_{1}, C_{2}, \ldots, C_{n}$ be n curves of the type considered before, such that they are pairwise disjoint: $C_{i} \bigcap C_{j}=\emptyset$ for every $i \neq j$. We recall that each domain $\mathbb{R}^{3} \backslash C_{i}$ has its fundamental group generated by one generator.
Suppose that C_{i} is given by the equations $f_{i 1}(x, y, z)=0 ; f_{i 2}(x, y, z)=0$. Let \mathbf{E}_{i} be the elementary vector field corresponding to C_{i} and defined by the previous equations of C_{i} according to (5). We shall denote also by \mathbf{E}_{i} the restrictions of \mathbf{E}_{i} to the domain $\Omega:=\mathbb{R}^{3} \backslash \bigcup_{i=1}^{n} C_{i}$.
In this context we can formulate:

Theorem 1. If $\mathbf{E}: \Omega \longrightarrow \mathbb{R}^{3}$ is an arbitrary irrotational vector field on Ω, there exist constants $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n} \in \mathbb{R}$ uniquely determined by $\mathbf{E}_{1}, \mathbf{E}_{2}, \ldots, \mathbf{E}_{n}$ and \mathbf{E} such that the vector field $\mathbf{F}:=\mathbf{E}-\sum_{i=1}^{n} \alpha_{i} \mathbf{E}_{i}$ is conservative.

Proof. For every curve C_{i} we choose a circle γ_{i} such that its homotopy class $\left[\gamma_{i}\right]$ is a generator of the fundamental group $\Pi^{1}\left(\mathbb{R}^{3} \backslash C_{i}\right) ; \gamma_{i}$ can be a small circle with the center in a point of C_{i} and which lies in the normal plane to C_{i} at that point.
We identify the constants $\alpha_{i} \in \mathbb{R}$ by imposing to \mathbf{F} to satisfy the conditions:

$$
\begin{equation*}
\int_{\gamma_{i}} \mathbf{F} \cdot d \mathbf{r}=0 \text { for all } i, 1 \leq i \leq n \tag{6}
\end{equation*}
$$

The equalities (6) give:

$$
\begin{equation*}
\alpha_{i}=\frac{\int_{\gamma_{i}} \mathbf{E} \cdot d \mathbf{r}}{\int_{\gamma_{i}} \mathbf{E}_{i} \cdot d \mathbf{r}} \text { for all } i, 1 \leq i \leq n \tag{7}
\end{equation*}
$$

From now on we keep for α_{i} the values given by (7).
Remark. By using formulae (4) and (5), the patient reader can see that

$$
\begin{equation*}
\int_{\gamma_{i}} \mathbf{E}_{i} \cdot d \mathbf{r}= \pm 2 \pi \tag{8}
\end{equation*}
$$

Let $\left(x_{0}, y_{0}, z_{0}\right) \in \Omega$ be a point which will be kept fixed in all that follows. Let (x, y, z) be a variable point in Ω and Γ an arbitrary piecewise smooth curve in Ω having the start point in $\left(x_{0}, y_{0}, z_{0}\right)$ and the end point in (x, y, z). Since the set of homotopy classes $\left\{\left[\gamma_{1}\right],\left[\gamma_{2}, \ldots,\left[\gamma_{n}\right]\right]\right\}$ generates the fundamental group $\Pi^{1}(\Omega)$ the equations (6) implies that $\int_{\gamma} \mathbf{F} \cdot d \mathbf{r}=0$ for every piecewise smooth closed curve in Ω (See [2],Ch.15). This last property of \mathbf{F} implies that $\int_{\Gamma} \mathbf{F} \cdot d \mathbf{r}$ does not depend on Γ but only on (x, y, z). Thus one can define unambiguously the scalar field $G: \Omega \longrightarrow \mathbb{R}$ by

$$
\begin{equation*}
G(x, y, z):=\int_{\Gamma} \mathbf{F} \cdot d \mathbf{r} . \tag{9}
\end{equation*}
$$

Now it is well-known from calculus in several variables that the scalar field G is a potential to \mathbf{F}. Since Ω is connected, G is the single potential to \mathbf{F} satisfying the condition $G\left(x_{0}, y_{0}, z_{0}\right)=0$.

Finally, we get the following formula concerning the structure of the irrotational vector fields on Ω :

$$
\begin{equation*}
\mathbf{E}=\sum_{i=1}^{n} \alpha_{i} \mathbf{E}_{i}+\operatorname{grad}(G) . \tag{10}
\end{equation*}
$$

In formula (10) the vector fields \mathbf{E}_{i} are given by (5) applied to the functions $f_{i 1}$ and $f_{i 2}$, the scalars α_{i} are given by (7) and the scalar field G is given by (9).

Example. Let us consider the sphere S_{1} and the cylinder S_{2} given by the equations:

$$
\left\{\begin{array}{c}
S_{1}: f_{1}(x, y, z)=x^{2}+y^{2}+z^{2}-25=0 \tag{11}\\
S_{2}: f_{2}(x, y, z)=x^{2}+y^{2}-9=0
\end{array}\right.
$$

The functions $G_{1}:=\arctan \frac{f_{2}}{f_{1}}$ and $G_{2}:=-\arctan \frac{f_{1}}{f_{2}}$ generate via formula (5) the vector field \mathbf{E} given by

$$
\begin{equation*}
\mathbf{E}(x, y, z)=\frac{\left[2 x\left(z^{2}-16\right) ; 2 y\left(z^{2}-16\right) ;-2 z\left(x^{2}+y^{2}-9\right)\right]}{\left[x^{2}+y^{2}+z^{2}-25\right]^{2}+\left[x^{2}+y^{2}-9\right]^{2}} \tag{12}
\end{equation*}
$$

This vector field is irrotational but it is not an elementary irrotational vector field since $S_{1} \bigcap S_{2}$ is not connected. This set consists of the two circles C_{1} and C_{2} given by:

$$
C_{1}:\left\{\begin{array}{c}
x^{2}+y^{2}-9=0 \tag{13}\\
z-4=0
\end{array} \quad \text { and } C_{2}:\left\{\begin{array}{c}
x^{2}+y^{2}-9=0 \\
z+4=0
\end{array} .\right.\right.
$$

The functions appearing in the equations of these two circles define via the functions $G_{i j}, 1 \leq i, j \leq 2$, given by

$$
\left\{\begin{array}{l}
G_{11}(x, y, z)=\arctan \frac{x^{2}+y^{2}-9}{z-4} \text { and } \tag{14}\\
G_{21}(x, y, z)=-\arctan \frac{z-4}{x^{2}+y^{2}-9} \text { respectively, } \\
G_{12}(x, y, z)=\arctan \frac{x^{2}+y^{2}-9}{z+4} \text { and } \\
G_{22}(x, y, z)=-\arctan \frac{z+4}{x^{2}+y^{2}-9}
\end{array}\right.
$$

the elementary irrotational vector fields \mathbf{E}_{1} and \mathbf{E}_{2} given by:

$$
\left\{\begin{array}{l}
\mathbf{E}_{1}(x, y, z)=\frac{\left[2 x(z-4) ; 2 y(z-4) ; 9-x^{2}-y^{2}\right]}{(z-4)^{2}+\left[x^{2}+y^{2}-9\right]^{2}} \tag{15}\\
\mathbf{E}_{2}(x, y, z)=\frac{\left[2 x(z+4) ; 2 y(z+4) ; 9-x^{2}-y^{2}\right]}{(z+4)^{2}+\left[x^{2}+y^{2}-9\right]^{2}}
\end{array}\right.
$$

Let us consider the circles γ_{1} and γ_{2} in the plane $y=0$ having the centers $(3,0,4)$ respectively $(3,0,-4)$ and the same radius 1 . We take the parametric representations $\mathbf{r}_{1}, \mathbf{r}_{2}:[0,2 \pi] \longrightarrow \mathbb{R}^{3}$ given by:

$$
\left\{\begin{array}{c}
\mathbf{r}_{1}(t)=[3+\cos t, 0,4+\sin t] \tag{16}\\
\mathbf{r}_{2}(t)=[3+\cos t, 0,-4+\sin t]
\end{array}\right.
$$

The homotopy classes of γ_{1} and γ_{2} generate the fundamental group $\Pi^{1}(\Omega)$ where $\Omega=\mathbb{R}^{3} \backslash\left(S_{1} \bigcap S_{2}\right)=\mathbb{R}^{3} \backslash\left(C_{1} \bigcup C_{2}\right)$.

We shall compute now the integrals appearing in formula (7). We shall give details for the computation of $\int_{\gamma_{1}} \mathbf{E}_{1} \cdot d \mathbf{r}$.
We shall use essentially the information that $\mathbf{E}_{1}(x, y, z)=\operatorname{grad} G_{11}(x, y, z)$ in any point (x, y, z) outside the plane $z=4$ and $\mathbf{E}_{1}(x, y, z)=\operatorname{grad} G_{21}(x, y, z)$ in any point (x, y, z) outside the cylindrical surface $x^{2}+y^{2}-9=0$.
Let us consider the square $A B C D$ in the plane $y=0$, where its vertexes A, B, C, D are the points with the coordinates:

$$
A(4,0,5) ; B(2,0,5) ; C(2,0,3) ; D(4,0,3)
$$

This square endowed with the orientation $A \rightarrow B \rightarrow C \rightarrow D \rightarrow A$ is a piecewise smooth path δ homotopic with γ_{1}. Since the vector field \mathbf{E}_{1} is irrotational,

$$
\begin{equation*}
\int_{\gamma_{1}} \mathbf{E}_{1} \cdot d \mathbf{r}=\int_{\delta} \mathbf{E}_{1} \cdot d \mathbf{r} \tag{17}
\end{equation*}
$$

(18) $\int_{\delta} \mathbf{E}_{1} \cdot d \mathbf{r}=\int_{A B} \mathbf{E}_{1} \cdot d \mathbf{r}+\int_{B C} \mathbf{E}_{1} \cdot d \mathbf{r}+\int_{C D} \mathbf{E}_{1} \cdot d \mathbf{r}+\int_{D A} \mathbf{E}_{1} \cdot d \mathbf{r}$.

The integrals appearing in (18) are computed according to Leibniz-Newton formula, as follows:

$$
\begin{gathered}
\int_{A B} \mathbf{E}_{1} \cdot d \mathbf{r}=G_{11}(B)-G_{11}(A)=-[\arctan 5+\arctan 7] ; \\
\int_{B C} \mathbf{E}_{1} \cdot d \mathbf{r}=G_{21}(C)-G_{21}(B)=-2 \arctan \frac{1}{5} \\
\int_{C D} \mathbf{E}_{1} \cdot d \mathbf{r}=G_{11}(D)-G_{11}(C)=-[\arctan 5+\arctan 7] ; \\
\int_{D A} \mathbf{E}_{1} \cdot d \mathbf{r}=G_{21}(A)-G_{21}(D)=-2 \arctan \frac{1}{7}
\end{gathered}
$$

These equalities together with (17) and (18) give:
(19) $\int_{\gamma_{1}} \mathbf{E}_{1} \cdot d \mathbf{r}=-2\left[\arctan 5+\arctan \frac{1}{5}+\arctan 7+\arctan \frac{1}{7}\right]=-2 \pi$.
(See formula (8)).

In the same way one gets:

$$
\int_{\gamma_{2}} \mathbf{E}_{2} \cdot d \mathbf{r}=-2 \pi ; \int_{\gamma_{1}} \mathbf{E} \cdot d \mathbf{r}=-2 \pi \text { and } \int_{\gamma_{2}} \mathbf{E} \cdot d \mathbf{r}=2 \pi .
$$

Thus, the numbers α_{i} from (7) are:

$$
\alpha_{1}=1 \text { and } \alpha_{2}=-1 .
$$

According to formula (10), there exists a scalar field $G: \mathbb{R}^{3} \backslash\left(C_{1} \cup C_{2}\right) \longrightarrow \mathbb{R}$ such that:

$$
\begin{equation*}
\mathbf{E}=\mathbf{E}_{1}-\mathbf{E}_{2}+\operatorname{grad}(G) \tag{20}
\end{equation*}
$$

Remark. The computation of the potential G of $\mathbf{E}-\mathbf{E}_{1}+\mathbf{E}_{2}$ which accomplishes (20) and for which $G(0,0,0)=0$ (for example), is a completely elementary task and the computation is omitted. One uses only
the information that the local potentials of this vector field are constants added to linear combinations of restrictions of the (local) potentials G_{i} and $G_{i j}, 1 \leq i, j \leq 2$, of the vector fields $\mathbf{E}, \mathbf{E}_{1}$ and \mathbf{E}_{2}.

References

[1] I. Bârză, A.Fernandez Arias, Bases for some de Rham Cohomology Spaces, Mathematical Reports, MR03:2004,Karlstad University, Sweden
[2] V.A.Zorich, Mathematical Analysis II, Springer-Verlag, BerlinHeidelberg,2004.

Karlstad University,
Department of Engineering Sciences, Physics and Mathematics, S-651 88-Karlstad, SWEDEN
E-mail address: ilie.barza@kau.se

