Weighted Markov inequalities for curved majorants

Ioan Popa

Abstract

We give exact estimations of certain weighted L^{2}-norms of the derivative of polynomial, which have a curved majorant. They are all obtained as applications of special quadrature formulae.

2000 Mathematical Subject Classification: 41A17, 41A05, 41A55, 65D30

Keywords: Bouzitat quadrature, Chebyshev polynomials, inequalities

1 Introduction

The following problem was raised by P.Turán.
Let $\varphi(x) \geq 0$ for $-1 \leq x \leq 1$ and consider the class $P_{n, \varphi}$ of all polynomials of degree n such that
$\left|p_{n}(x)\right| \leq \varphi(x)$ for $-1 \leq x \leq 1$.
How large can $\max _{[-1,1]}\left|p_{n}^{(k)}(x)\right|$ be if p_{n} is arbitrary in $P_{n, \varphi}$?

The aim of this paper is to consider the solution in the weighted L^{2}-norm for the majorants $\varphi(x)=\sqrt{\frac{1+x}{1-x}}$ and $\Omega_{n}(x)=\frac{n+1-n x}{(1-x) \sqrt{1-x^{2}}}$.
Let as denote by
(1) $\quad x_{i}=\cos \frac{(2 i-1) \pi}{2 n}, i=1,2, \ldots, n$, the zeros of $T_{n}(x)=\cos n \theta$,
$x=\cos \theta$ the Chebyshev polynomial of the first kind,

$$
\begin{equation*}
y_{i} \text { the zeros of } U_{n-1}(x), U_{n-1}(x)=\sin n \theta / \sin \theta \tag{2}
\end{equation*}
$$

$x=\cos \theta$, the Chebyshev polynomial of the second kind and

$$
\begin{equation*}
W_{n}(x)=\frac{\sin [(2 n+1) \theta / 2]}{\sin (\theta / 2)}, x=\cos \theta . \tag{3}
\end{equation*}
$$

Let H_{1} be the class of real polynomials p_{n-1}, of degree $\leq n-1$ such that

$$
\begin{equation*}
\left|p_{n-1}\left(x_{i}\right)\right| \leq \sqrt{\frac{1+x_{i}}{1-x_{i}}}, i=1,2, \ldots, n \tag{4}
\end{equation*}
$$

where the x_{i} 's are given by (1).
Let H_{2} be the class of real polynomials p_{n-1}, of degree $\leq n-1$ such that

$$
\begin{equation*}
\left|p_{n-1}\left(x_{i}\right)\right| \leq \frac{n+1-n x_{i}}{\left(1-x_{i}\right) \sqrt{1-x_{i}^{2}}}, i=1,2, \ldots, n \tag{5}
\end{equation*}
$$

where the x_{i} 's are given by (1). Note that $P_{n-1, \varphi} \subset H_{1}, P_{n-1, \Omega_{n}} \subset H_{2}$, $W_{n-1} \in H_{1}, W_{n-1} \notin P_{n-1, \varphi}, W_{n}^{\prime} \in H_{2}, W_{n .}^{\prime} \notin P_{n-1, \Omega_{n}}$.

2 Results

Theorem 1. If $p_{n-1} \in H_{1}$ then we have
(6)

$$
\int_{-1}^{1} \sqrt{\frac{1-x}{1+x}}\left[p_{n-1}^{\prime}(x)\right]^{2} d x \leq \frac{2 \pi n(n-1)(2 n-1)}{3}
$$

with equality for $p_{n-1}=W_{n-1}$.

Theorem 2. If $p_{n-1} \in H_{2}$ and
$r(x)=b(b-2 a) x^{2}+2 c(b-a) x+a^{2}+c^{2}$
with $0<a<b,|c|<b-a, b \neq 2 a$, then we have

$$
\begin{equation*}
\int_{-1}^{1} r(x) \sqrt{\frac{1-x}{1+x}}\left[p_{n-1}^{\prime}(x)\right]^{2} d x \tag{7}
\end{equation*}
$$

$\leq \frac{\pi n\left(n^{2}-1\right)(n+2)(2 n+1)\left[\left[7(a-b+c)^{2}+(a-b-c)^{2}\right]\left(n^{2}+n-2\right)-4(a-b-c)^{2}+28\left(a^{2}+c^{2}\right)\right]}{105}$
with equality for $p_{n-1}=W_{n}^{\prime}$.
Corollary 1. If $p_{n-1} \in H_{2}$ then we have
(8) $\int_{-1}^{1} \sqrt{\frac{1-x}{1+x}}\left[p_{n-1}^{\prime}(x)\right]^{2} d x \leq \frac{8 \pi n\left(n^{2}-1\right)(n+2)(2 n+1)\left(n^{2}+n+1\right)}{105}$ with equality for $p_{n-1}=W_{n}^{\prime}$.

3 Lemmas

Here we state some lemmas which help us in proving the theorems.

Lemma 1. Let p_{n-1} be such that $\left|p_{n-1}\left(x_{i}\right)\right| \leq \sqrt{\frac{1+x_{i}}{1-x_{i}}}, i=1,2, \ldots, n$, where the x_{i} 's are given by (1). Then we have

$$
\begin{equation*}
\left|p_{n-1}^{\prime}\left(y_{j}\right)\right| \leq\left|W_{n-1}^{\prime}\left(y_{j}\right)\right|, j=1, \ldots, n-1, \text { and } \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
\left|p_{n-1}^{\prime}(1)\right| \leq\left|W_{n-1}^{\prime}(1)\right|,\left|p_{n-1}^{\prime}(-1)\right| \leq\left|W_{n-1}^{\prime}(-1)\right| \tag{10}
\end{equation*}
$$

Proof. By the Lagrange interpolation formula based on the zeros of T_{n} and using $T_{n}^{\prime}\left(x_{i}\right)=\frac{(-1)^{i+1} n}{\left(1-x_{i}^{2}\right)^{1 / 2}}$, we can represent any polynomial p_{n-1} by $p_{n-1}(x)=\frac{1}{n} \sum_{i=1}^{n} \frac{T_{n}(x)}{x-x_{i}}(-1)^{i+1}\left(1-x_{i}^{2}\right)^{1 / 2} p_{n-1}\left(x_{i}\right)$.

From $W_{n-1}\left(x_{i}\right)=(-1)^{i+1} \sqrt{\frac{1+x_{i}}{1-x_{i}}}$ we have $W_{n-1}(x)=\frac{1}{n} \sum_{i=1}^{n} \frac{T_{n}(x)}{x-x_{i}}\left(1+x_{i}\right)$.
Differentiating with respect to x we obtain

$$
p_{n-1}^{\prime}(x)=\frac{1}{n} \sum_{i=1}^{n} \frac{T_{n}^{\prime}(x)\left(x-x_{i}\right)-T_{n}(x)}{\left(x-x_{i}\right)^{2}}(-1)^{i+1}\left(1-x_{i}^{2}\right)^{1 / 2} p_{n-1}\left(x_{i}\right) .
$$

On the roots of $T_{n}^{\prime}(x)=n U_{n-1}(x)$ and using (4) we find $\left|p_{n-1}^{\prime}\left(y_{j}\right)\right| \leq \frac{1}{n} \sum_{i=1}^{n} \frac{\left|T_{n}\left(y_{j}\right)\right|}{\left(y_{j}-x_{i}\right)^{2}}\left(1+x_{i}\right)=\frac{\left|T_{n}\left(y_{j}\right)\right|}{n} \sum_{i=1}^{n} \frac{1+x_{i}}{\left(y_{j}-x_{i}\right)^{2}}=\left|W_{n-1}^{\prime}\left(y_{j}\right)\right|$.
For $l_{i}(x)=\frac{T_{n}(x)}{x-x_{i}}$ taking into account that $l_{i}^{\prime}(1)>0$ (see [5]) it folows

$$
\left|p_{n-1}^{\prime}(1)\right| \leq \frac{1}{n} \sum_{i=1}^{n} l_{i}^{\prime}(1)\left(1+x_{i}\right)=\left|W_{n-1}^{\prime}(1)\right| .
$$

Similarly $\left|p_{n-1}^{\prime}(-1)\right| \leq\left|W_{n-1}^{\prime}(-1)\right|$.
Lemma 2. Let p_{n-1} be such that $\left|p_{n-1}\left(x_{i}\right)\right| \leq \frac{n+1-n x_{i}}{\left(1-x_{i}\right) \sqrt{1-x_{i}^{2}}}, i=1,2, \ldots, n$, where the x_{i} 's are given by (1). Then we have

$$
\begin{equation*}
\left|p_{n-1}^{\prime}\left(y_{j}\right)\right| \leq\left|W_{n}^{\prime \prime}\left(y_{j}\right)\right|, j=1, \ldots, n-1, \text { and } \tag{11}
\end{equation*}
$$

$$
\begin{equation*}
\left|p_{n-1}^{\prime}(1)\right| \leq\left|W_{n}^{\prime \prime}(1)\right|, \quad\left|p_{n-1}^{\prime}(-1)\right| \leq\left|W_{n}^{\prime \prime}(-1)\right| \tag{12}
\end{equation*}
$$

Proof. Using $W_{n}^{\prime}\left(x_{i}\right)=(-1)^{i+1} \frac{n+1-n x_{i}}{\left(1-x_{i}\right) \sqrt{1-x_{i}^{2}}}$ the proof is along the same lines as in previous Lemma.

The following proposition was proved in [2]
Lemma 3. A real polynomial r of exact degree 2 satisfies $r(x)>0$
for $-1 \leq x \leq 1$ if and only if
$r(x)=b(b-2 a) x^{2}+2 c(b-a) x+a^{2}+c^{2}$
with $0<a<b,|c|<b-a, \quad b \neq 2 a$.
We need the following quadrature formulae:
Lemma 4. For any given n we have the following formulae:

$$
\begin{equation*}
\int_{-1}^{1} \sqrt{\frac{1-x}{1+x}} f(x) d x=\frac{\pi}{n} f(-1)+\sum_{i=1}^{n-1} C_{i} f\left(y_{i}\right) \text { of degree } 2 n-2, \tag{13}
\end{equation*}
$$

where the nodes are the roots of $T_{n}^{\prime}=n U_{n-1}$ and $C_{i}>0$,

$$
\begin{equation*}
\int_{-1}^{1} r(x) \sqrt{\frac{1-x}{1+x}} f(x) d x=\frac{\pi(a-b+c)^{2}}{n} f(-1)+\sum_{i=1}^{n-1} C_{i} r\left(y_{i}\right) f\left(y_{i}\right) \tag{14}
\end{equation*}
$$

of degree 2n-4,

$$
\begin{align*}
& \int_{-1}^{1} \sqrt{\frac{1-x}{1+x}} f(x) d x=\frac{\pi(2 n-1)}{2 n(n-1)} f(-1)+\frac{3 \pi}{2 n(n-1)(2 n-1)} f(1) \tag{15}\\
& +\sum_{i=1}^{n-2} C_{i} f\left(x_{i}^{\left(\frac{3}{2}, \frac{1}{2}\right)}\right)
\end{align*}
$$

of degree 2n-3, $x_{i}^{\left(\frac{3}{2}, \frac{1}{2}\right)}$ the roots of $W_{n-1}^{\prime}(x)=c \cdot P_{n-2}^{\left(\frac{3}{2}, \frac{1}{2}\right)}(x)$,

$$
\begin{equation*}
\int_{-1}^{1} \sqrt{\frac{1-x}{1+x}} f(x) d x=\frac{M(2 n+1)\left(6 n^{2}+6 n-11\right)}{5} f(-1) \tag{16}
\end{equation*}
$$

$+\frac{5 M\left(10 n^{2}+10 n-11\right)}{7(2 n+1)} f(1)+M(2 n+1) f^{\prime}(-1)-\frac{15 M}{2 n+1} f^{\prime}(1)+\sum_{i=1}^{n-2} c_{i} f\left(x_{i}^{\left(\frac{5}{2}, \frac{3}{2}\right)}\right)$, of degree $2 n-1, M=\frac{3 \pi}{4\left(n^{3}-n\right)(n+2)}$ and the nodes are the roots of $W_{n}^{\prime \prime}(x)=c \cdot P_{n-2}^{\left(\frac{5}{2}, \frac{3}{2}\right)}(x)$,

$$
\begin{align*}
& \text { 7) } \quad \int_{-1}^{1} r(x) \sqrt{\frac{1-x}{1+x}} f(x) d x=A f(-1)+B f(1)+C f^{\prime}(-1)-D f^{\prime}(1) \tag{17}\\
& +\sum_{i=1}^{n-2} c_{i} r\left(x_{i}^{\left(\frac{5}{2}, \frac{3}{2}\right)}\right) f\left(x_{i}^{\left(\frac{5}{2}, \frac{3}{2}\right)}\right) \text { of degree } 2 n-3 \text {, where } \\
& A=\frac{M(2 n+1)\left(\left(6 n^{2}+6 n-11\right)(a-b+c)^{2}+10 d\right)}{5}, B=\frac{M\left(5\left(10 n^{2}+10 n-11\right)(a-b-c)^{2}-210 e\right)}{7(2 n+1)} \\
& C=M(2 n+1)(a-b+c)^{2}, D=\frac{-15 M(a-b-c)^{2}}{2 n+1}, \\
& d=2 a b+b c-a c-b^{2}, e=b^{2}-2 a b+b c-a c .
\end{align*}
$$

Proof. (13) is the Bouzitat formula of the first kind [3, formula (4.7.1)] on the zeroes of $U_{n-1}=c \cdot P_{n-1}^{\left(\frac{1}{2}, \frac{1}{2}\right)}$. If in formula (13) we replace $f(x)$ with $r(x) f(x)$ we get (14). (15) is the Bouzitat formula of the second kind [3, formula (4.8.1)] on the zeroes of $W_{n-1}^{\prime}(x)=c \cdot P_{n-2}^{\left(\frac{3}{2}, \frac{1}{2}\right)}(x)$.

We will write the formula (16) in the following way

$$
\int_{-1}^{1} \sqrt{\frac{1-x}{1+x}} f(x) d x=A f(-1)+B f(1)+C f^{\prime}(-1)+D f^{\prime}(1)+\sum_{i=1}^{n-2} c_{i} f\left(x_{i}^{\left(\frac{5}{2}, \frac{3}{2}\right)}\right) .
$$

If in above formula we put $f(x)=(1-x)(1+x)^{2} P_{n-2}^{\left(\frac{5}{2}, \frac{3}{2}\right)}(x)$ we obtain D, for $f(x)=(1-x)^{2}(1+x) P_{n-2}^{\left(\frac{5}{2}, \frac{3}{2}\right)}(x)$ we get C, for $f(x)=(1+x)^{2} P_{n-2}^{\left(\frac{5}{2}, \frac{3}{2}\right)}(x)$ we find B and for $f(x)=(1-x)^{2} P_{n-2}^{\left(\frac{5}{2}, \frac{3}{2}\right)}(x)$ we find A.
If in formula (16) we replace $f(x)$ with $r(x) f(x)$ we get (17).

4 Proofs of the theorems

Since $W_{n}(x)=\frac{(2 n)!!}{(2 n-1)!!} P_{n}^{\left(\frac{1}{2}, \frac{-1}{2}\right)}(x)$ we recall the formulae:

$$
\begin{gather*}
\frac{d}{d x} P_{m}^{(\alpha, \beta)}(x)=\frac{\alpha+\beta+m+1}{2} P_{m-1}^{(\alpha+1, \beta+1)}(x) \tag{18}\\
P_{m}^{(\alpha, \beta)}(1)=\frac{\Gamma(m+\alpha+1)}{\Gamma(\alpha+1) \Gamma(m+1)}, P_{m}^{(\alpha, \beta)}(-1)=\frac{(-1)^{m} \Gamma(m+\beta+1)}{\Gamma(\beta+1) \Gamma(m+1)}
\end{gather*}
$$

4.1 Proof of Theorem 1

Proof. According to quadrature formula (13), $C_{i}>0$ and using (9) and (10) we have

$$
\begin{aligned}
& \int_{-1}^{1} \sqrt{\frac{1-x}{1+x}}\left[p_{n-1}^{\prime}(x)\right]^{2} d x=\frac{\pi}{n}\left(p_{n-1}^{\prime}(-1)\right)^{2}+\sum_{i=1}^{n-1} C_{i}\left(p_{n-1}^{\prime}\left(y_{i}\right)\right)^{2} \\
& \leq \frac{\pi}{n}\left(W_{n-1}^{\prime}(-1)\right)^{2}+\sum_{i=1}^{n-1} C_{i}\left(W_{n-1}^{\prime}\left(y_{i}\right)\right)^{2}=\int_{-1}^{1} \sqrt{\frac{1-x}{1+x}}\left[W_{n-1}^{\prime}(x)\right]^{2} d x .
\end{aligned}
$$

In order to complete the proof we apply formula (15) to $f=\left[W_{n-1}^{\prime}(x)\right]^{2}$.
Using (18) we get $W_{n-1}^{\prime}(-1)=(-1)^{n-2} n(n-1)$ and $W_{n-1}^{\prime}(1)=\frac{n(n-1)(2 n-1)}{3}$.

From (15) and having in mind that $W_{n-1}^{\prime}\left(x_{i}^{\left(\frac{3}{2}, \frac{1}{2}\right)}\right)=0$, we find
$\int_{-1}^{1} \sqrt{\frac{1-x}{1+x}}\left[W_{n-1}^{\prime}(x)\right]^{2} d x=\frac{\pi(2 n-1)}{2 n(n-1)}\left[W_{n-1}^{\prime}(-1)\right]^{2}$
$+\frac{3 \pi}{2 n(n-1)(2 n-1)}\left[W_{n-1}^{\prime}(1)\right]^{2}=\frac{2 \pi n(n-1)(2 n-1)}{3}$

4.2 Proof of Theorem 2

Proof. According to quadrature formula (14), $C_{i}>0$ and using (11) and (12) we have
$\int_{-1}^{1} r(x) \sqrt{\frac{1-x}{1+x}}\left[p_{n-1}^{\prime}(x)\right]^{2} d x \leq \int_{-1}^{1} r(x) \sqrt{\frac{1-x}{1+x}}\left[W_{n}^{\prime \prime}(x)\right]^{2} d x$.
To complete the proof we apply formula (17) to $f=\left[W_{n}^{\prime \prime}(x)\right]^{2}$.
From (18), $W_{n}^{\prime \prime}(-1)=\frac{(-1)^{n-2}\left(n^{3}-n\right)(n+2)}{3}, W_{n}^{\prime \prime}(1)=\frac{\left(n^{3}-n\right)(n+2)(2 n+1)}{15}$,

$$
W_{n}^{(3)}(-1)=\frac{-(n-2)(n+3)}{5} W_{n}^{\prime \prime}(-1), W_{n}^{(3)}(1)=\frac{(n-2)(n+3)}{7} W_{n}^{\prime \prime}(1) .
$$

Having in mind $W_{n}^{\prime \prime}\left(x_{i}^{\left(\frac{5}{2}, \frac{3}{2}\right)}\right)=0$ and using (17) we find

$$
\begin{aligned}
& \int_{-1}^{1} r(x) \sqrt{\frac{1-x}{1+x}}\left[W_{n}^{\prime \prime}(x)\right]^{2} d x=A\left(W_{n}^{\prime \prime}(-1)\right)^{2}+B\left(W_{n}^{\prime \prime}(1)\right)^{2}+ \\
& +2 C W_{n}^{\prime \prime}(-1) W_{n}^{(3)}(-1)+2 D W_{n}^{\prime \prime}(1) W_{n}^{(3)}(1) \\
& =\frac{\left.\pi n\left(n^{2}-1\right)(n+2)(2 n+1)\left[7(a-b+c)^{2}+(a-b-c)^{2}\right]\left(n^{2}+n-2\right)-4(a-b-c)^{2}+28\left(a^{2}+c^{2}\right)\right]}{105} .
\end{aligned}
$$

References

[1] D. K. Dimitrov:Markov Inequalities for Weight Functions of Chebyshev Type. J.Approx.Theory 83 (1995), 175-181.
[2] W. Gautschi and S. E. Notaris: Gauss-Kronrod quadrature formulae for weight function of Bernstein-Szegö type. J.Comput.Appl.Math. 25 (2)(1989), 199-224.
[3] A. Ghizzetti and A. Ossicini: Quadrature formulae, Akademie-Verlag, Berlin, 1970.
[4] A. Lupaş: Numerical Methods, Constant Verlag, Sibiu, 2001.
[5] R. Pierre and Q. I. Rahman: On polynomials with curved majorants. in Studies in Pure Mathematics,Budapest,(1983), 543-549.

Str. Ciortea 9/43
3400 Cluj-Napoca, Romania
E-mail address: ioanpopa.cluj@personal.ro

