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New results in extremal problems with

polynomials

Ana Maria Acu

Abstract

In this paper we give some new results in extremal problems with

polynomials which are generalization of some results of F. Locher.
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In [6] F. Locher studies some extremal problems for semidefinition poly-

nomials (nenegative or nepositive) with the dominant coefficient equal to

1. For this he uses the quadrature formulae with high algebraical degree of

exactness.

Thus, using Gauss - Jacobi,s quadrature formula, he proves:

Proposition 1. For any polynomial p2m(x) ≥ 0, x ∈ [−1, 1], with the

dominant coefficient equal to 1, the inequality

1
∫

−1

(1 − x)α(1 + x)βp2m(x)dx ≥
2α+β+2m+1 · m!Γ(α + m + 1)

(α + β + 2m + 1)
·
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·
Γ(β + m + 1) · Γ(α + β + m + 1)

(Γ(α + β + 2m + 1))2

is true, in which the equal sign is reached only if

p2m(x) =
2mm!Γ(α + β + m + 1)

(Γ(α + β + 2m + 1))2 ·
(

p(α,β)
m (x)

)2
.

Proposition 2. For any polynomial p2m+1(x) ≥ 0, x ∈ [−1, 1], of the degree

2m + 1 and with the dominant coefficient equal to 1, the inequality

1
∫

−1

(1 − x)α(1 + x)βp2m+1(x)dx ≥

≥
2α+β+2m+2m!Γ(α + m + 1)Γ(β + m + 2)Γ(α + β + m + 2)

(α + β + 2m + 2)(Γ(α + β + 2m + 2))2

is valid, with the equal sign reached for

p2m+1(x) =

(

2mm!Γ(α + β + m + 2)

Γ(α + β + 2m + 2)

)2

(x + 1)
(

p(α,β+1)
m (x)

)2
.

Proposition 3. For any polynomial p2m+1(x) ≤ 0, x ∈ [−1, 1] of the degree

2m + 1 and with the dominant coefficient equal to 1, the inequality

1
∫

−1

(1 − x)α(1 + x)βp2m+1(x)dx ≤

≤ −
2α+β+2m+2m!Γ(α + m + 2)Γ(β + m + 1)Γ(α + β + m + 2)

(α + β + 2m + 2)(Γ(α + β + 2m + 2))2

is true, with the equal sign reached for

p2m+1(x) =

(

2mm!Γ(α + β + m + 2)

Γ(α + β + 2m + 2)

)2

(x − 1)
(

p(α+1,β)
m (x)

)2
.
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Proposition 4. For any polynomial p2m(x) ≤ 0, x ∈ [−1, 1], of the degree

2m and with the dominant coefficient equal to 1, we have the inequality

1
∫

−1

(1 − x)α(1 + x)βp2m(x)dx ≤

≤ −
2α+β+2m+1(m − 1)!Γ(α + m + 1)Γ(β + m + 1)Γ(α + β + m + 2)

(α + β + 2m + 1)(Γ(α + β + 2m + 1))2

with equality only if

p2m(x) =

(

2m−1(m − 1)!Γ(α + β + m + 2)

Γ(α + β + 2m + 1)

)2

(x2 − 1)
(

p
(α+1,β+1)
m−1 (x)

)2

.

In [2] D. Acu proves:

Proposition 5. For each polynomial p2m(x) ≥ 0, x ≥ 0 of degree 2m and

with the dominant coefficient equal with 1 the inequality

∞
∫

0

xαe−xp2m(x)dx ≥ m!Γ(α + m + 1), α > −1

is valid, with equality only if

p2m(x) = (m!)2
(

P (α)
m (x)

)2
,

where P
(α)
m (x) is the Legendre polynomial.

Proposition 6. For each polynomial p2m+1(x) ≥ 0, x ≥ 0, with the domi-

nant coefficient equal with 1, the inequality

∞
∫

0

xαe−xp2m+1(x)dx ≥ m!Γ(α + m + 2)
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is valid, with equality only if

p2m+1(x) = (m!)2x(P (α+1)
m (x))2,

where P
(α+1)
m (x) is the polynomial of degree m from the system of orthogonal

polynomials on the interval [0,∞) referring to the weight xα+1e−x.

Let w a positive integrable weight function, x ∈ [−1, 1].

In [3] a part of above results are generalized thus:

Proposition 7. For each polynomial p2m(x) ≥ 0, x ∈ [−1, 1], degree 2m

and with the dominant coefficient equal 1, the inequality

1
∫

−1

w(x)p2m(x)dx ≥
1

a2
m

1
∫

−1

w(x)Q2
m(x)dx

is valid, with equality only if

p2m(x) =
1

a2
m

Q2
m(x)

where Qm(x) is the polynomial of degree m with dominant coefficient am,

from the system of orthogonal polynomials on the interval [−1, 1] referring

to the weight w(x).

In this paper we shall give some new generalizations for the above results.

Proposition 8. For each polynomial p2m+1(x) ≥ 0, x ∈ [−1, 1], of the

degree 2m + 1 and with the dominant coefficient equal to 1, the inequality

1
∫

−1

w(x)p2m+1(x)dx ≥
1

a2
m

||Qm(x)||2
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is valid, with equality only if

p2m+1(x) =
1

a2
m

(x + 1)Q2
m(x)

where Qm(x) is the polynomial of degree m, with the dominant coefficient

am, from the system of orthogonal polynomials on the interval [−1, 1] refer-

ring to the weight w(x)(x + 1).

Proof. The proof of this proposition results of the Gauss - Radau quadra-

ture formula ([4]):

1
∫

−1

f(x)w(x)dx = Bf(−1) +
m

∑

i=1

Aif(xi) + R2m+1(f),

where B > 0, Ai > 0, i = 1,m and

R2m+1(x) =
f (2m+1)(ξ)

(2m + 1)!a2
m

∫ 1

−1

w(x)(x + 1)Q2
m(x)dx > 0, ξ ∈ (−1, 1).

Remark 1. For w(x) = (1 − x)α(1 + x)β, x ∈ (−1, 1), ξ ∈ (−1, 1),

α > −1, β > −1, from the Proposition 8 it results the inequality from

the Proposition 2.

Proposition 9. For each polynomial p2m+1(x) ≤ 0, x ∈ [−1, 1], of the

degree 2m + 1 and with the dominant coefficient equal 1, the inequality

1
∫

−1

w(x)p2m+1(x)dx ≤ −
1

a2
m

||Qm(x)||2,

is valid, with equality only if

p2m+1(x) = −
1

a2
m

(1 − x)Q2
m(x),
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where Qm(x) is the polynomial of degree m, with the dominant coefficient

am, from the system of orthogonal polynomials on the interval [−1, 1] refer-

ring to the weight (1 − x)w(x).

Proof. Using the results from [4], we construct the Gauss - Radau quadra-

ture formula

1
∫

−1

f(x)w(x)dx = Bf(1) +
m

∑

i=1

Aif(xi) + R2m+1(f)

with B > 0, Ai > 0, i = 1,m and

R2m+1(f) = −
f (2m+1)(ξ)

(2m + 1)!a2
m

1
∫

−1

w(x)(1 − x)Q2
m(x)dx, ξ ∈ (−1, 1).

Remark 2. For w(x) = (1 − x)α(1 + x)β, α > −1, β > −1, x ∈ (−1, 1)

from the Proposition 9 we obtain the Proposition 3.

Proposition 10. For each polynomial p2m+2(x) ≤ 0, x ∈ [−1, 1], of the

degree 2m + 2 and with the dominant coefficient equal 1, the inequality

1
∫

−1

w(x)p2m+2(x)dx ≤ −
1

a2
m

||Qm(x)||2

is valid, with equality only if

p2m+2(x) =
(x2 − 1)

a2
m

Q2
m(x)

where Qm(x) is the polynomial of degree m with the dominant coefficient am,

from the system of orthogonal polynomial on the interval [−1, 1] referring

to the weight (x + 1)(1 − x)w(x).
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Proof. For the proof, using the results from [4], we construct the Gauss -

Lobatto quadrature formula ([4])

1
∫

−1

f(x)w(x)dx = Bf(−1) + Df(1) +
m

∑

i=1

Aif(xi) + R2m+2(f)

with B > 0, D > 0, Ai > 0, i = 1,m and

R2m+2(f) = −
f (2m+2)(ξ)

(2m + 2)!a2
m

1
∫

−1

w(x)(1 − x2)Q2
m(x)dx, ξ ∈ (−1, 1).

Remark 3. For w(x) = (1 − x)α(1 + x)β, x ∈ (−1, 1), α > −1, β > −1,

from the Proposition 10 we obtain Proposition 4.
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