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On higher order Cauchy-Pompeiu formula in
Clifford analysis and its applications

Heinrich Begehr, Du Jinyuan, Zhang Zhongxiang

Abstract

In this paper, we firstly construct the kernel functions which are

necessary for us to study universal Clifford analysis. Then we obtain

the higher order Cauchy-Pompeiu formulas for functions with values

in a universal Clifford algebra, which are different from those in [2].

As applications we give the mean value theorem and as special case

the higher order Cauchy’s integral formula.
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1 Introduction

As is well-known the Cauchy integral formula plays a very important role

in the classical theory of functions of one complex variable. R. Delanghe,
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F. Brackx, F. Sommen, V. Iftimie and many other authors have studied the

theory of functions with values in a Clifford algebra. In Clifford analysis,

the Cauchy integral formula has been set up and it leads to many impor-

tant theorems, which are similar to classical results in classical complex

analysis. Some examples are the residue theorem, the maximum modulus

theorem, the Morera theorem and so on (see, e.g., [5–9, 11–14, 16–17]). In

[9], R.Delanghe, F.Brackx have studied the k-regular functions and have

given the corresponding Cauchy integral formula. In [10], Du and Zhang

have obtained the Cauchy integral formula with respect to the distinguished

boundary for functions with values in a universal Clifford algebra and some

of its applications.

Let D be a bounded domain with the smooth boundary ∂D in the com-

plex plane C, and ω ∈ C1(D, C)
⋂

C(D, C). The following generalized form

of the Cauchy integral formula for functions of one complex variable is

known as the Cauchy-Pompeiu formula [15].





w(z) =
1

2πi

∫

∂D

w(ζ)

ζ − z
dζ − 1

π

∫∫

D

wζ(ζ)

ζ − z
dξdη,

w(z) = − 1

2πi

∫

∂D

w(ζ)

ζ − z
dζ − 1

π

∫∫

D

wζ(ζ)

ζ − z
dξdη,

ζ = ξ + iη, z ∈ D,

with the Kolossov-Wirtinger operators

wζ =
∂w

∂ζ
=

1

2

(
∂w

∂ξ
− i

∂w

∂η

)
, wζ =

∂w

∂ζ
=

1

2

(
∂w

∂ξ
+ i

∂w

∂η

)
.

The Cauchy-Pompeiu formulae and the Pompeiu operators were recently

extended to the situation of Clifford analysis in many papers (see, e.g., [1–

3]). In [4], the Cauchy-Pompeiu formulae for functions with values in a

universal Clifford algebra were obtained. In order to study higher order
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Cauchy-Pompeiu formulae for functions with values in a universal Clifford

algebra, in this paper, the Cauchy-Pompeiu formulae for functions with

values in a universal Clifford algebra will be considered only in the case of

s = n. The other cases will be discussed in a forthcoming paper.

2 Preliminaries and notations

Let Vn,s(0 ≤ s ≤ n) be an n–dimensional (n ≥ 1) real linear space with

basis {e1, e2, · · · , en}, C(Vn,s) be the 2n–dimensional real linear space with

basis

{eA, A = (h1, · · · , hr)∈PN, 1 ≤ h1 < · · · < hr ≤ n} ,

where N stands for the set {1, · · · , n} and PN denotes for the family of all

order-preserving subsets of N in the above way. Sometimes, e∅ is written

as e0 and eA as eh1···hr for A = {h1, · · · , hr} ∈ PN . The product on C(Vn,s)

is defined by





eAeB = (−1)#((A∩B)\S)(−1)P (A,B)eA4B, if A,B ∈ PN,

λµ =
∑

A∈PN
∑

B∈PN
λAµBeAeB, if λ=

∑
A∈PN

λAeA, µ=
∑

A∈PN
µAeA.

(2.1)

where S stands for the set {1, · · · , s}, #(A) is the cardinal number of the

set A, the number P (A,B) =
∑
j∈B

P (A, j), P (A, j) = #{i, i ∈ A, i > j}, the

symmetric difference set A4B is also order-preserving in the above way,

and λA ∈ R is the coefficient of the eA–component of the Clifford number

λ. It follows at once from the multiplication rule (2.1) that e0 is the identity
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element written now as 1 and in particular,





e2
i = 1, if i = 1, · · · , s,

e2
j = −1, if j = s + 1, · · · , n,

eiej = −ejei, if 1 ≤ i < j ≤ n,

eh1eh2 · · · ehr = eh1h2···hr , if 1 ≤ h1 < h2 · · · , < hr ≤ n.

(2.2)

Thus C(Vn,s) is a real linear, associative, but non-commutative algebra

and it is called the universal Clifford algebra over Vn,s.

In the sequel, we constantly use the following conjugate:





eA = (−1)σ(A)+#(A∩S)eA, if A ∈ PN,

λ =
∑

A∈PN
λAeA, if λ =

∑
A∈PN

λAeA,

(2.3)

where σ(A) = #(A)(#(A) + 1)/2. Sometimes λA is also written as [λ]A,

in particular, the coefficient λ∅ is denoted by λ0 or [λ]0, which is called the

scalar part of the Clifford number λ.

From (2.3), it is easy to check:





ei = ei, if i = 0, 1, · · · , s,

ej = −ej, if j = s + 1, · · · , n,

λµ = µ λ, for any λ, µ ∈ C(Vn,s).

(2.4)

We introduce the norm on C (Vn,s)

|λ| =
√

(λ, λ) =

( ∑

A∈PN
λ2

A

) 1
2

.(2.5)
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Let Ω be an open non empty subset of Rn. Functions f defined in Ω

and with values in C (Vn,s) will be considered, i.e.,

f : Ω −→ C(Vn,s) .

They are of the form

f(x) =
∑

A

fA(x)eA, x = (x1, x2, · · · , xn) ∈ Ω,

where the symbol
∑
A

is abbreviated from
∑

A∈PN
and fA(x) is the eA–component

of f(x). Obviously, fA are real–valued functions in Ω, which are called the

eA–component functions of f . Whenever a property such as continuity, dif-

ferentiability, etc. is ascribed to f , it is clear that in fact all the component

functions fA possess the cited property. So f ∈ C(r)(Ω, C (Vn,s)) is very

clear.

The conjugate of the function f is the function f given by

f(x) =
∑

A

fA(x)eA, x ∈ Ω.

The following is an obvious fact.

Remark 2.1.f ∈ C(r)(Ω, C (Vn,s)) if and only if f ∈ C(r)(Ω, C (Vn,s)) .

Introduce the following operators

D1 =
s∑

k=1

ek
∂

∂xk

: C(r)(Ω, C (Vn,s)) −→ C(r−1)(Ω, C (Vn,s)) ,

D2 =
n∑

k=s+1

ek
∂

∂xk

: C(r)(Ω, C (Vn,s)) −→ C(r−1)(Ω, C (Vn,s)) .
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Let f be a function with value in C(Vn,s) defined in Ω, the operators D1 and

D2 act on function f from the left and right being governed by the rules

D1[f ] =
s∑

k=1

∑
A

ekeA
∂fA

∂xk

, [f ]D1 =
s∑

k=1

∑
A

eAek
∂fA

∂xk

,

D2[f ] =
n∑

k=s+1

∑
A

ekeA
∂fA

∂xk

, [f ]D2 =
n∑

k=s+1

∑
A

eAek
∂fA

∂xk

.

Definition 2.1.A function f ∈ C(r)(Ω, C (Vn,s)) (r ≥ 1) is called (D1) left

(right) regular in Ω if D1[f ] = 0 ([f ]D1 = 0).

A function f ∈C(r)(Ω, C (Vn,s)) (r ≥ 1) is called (D2) left (right) regular

in Ω if D2[f ] = 0 ([f ]D2 = 0). f is said to be (D1) ((D2)) biregular if and

only if it is both (D1) ((D2)) left and (D1) ((D2)) right regular.

Definition 2.2.A function f ∈ C(r)(Ω, C (Vn,s)) (r ≥ 1) is said to be LR

regular in Ω if and only if it is both (D1) left regular and (D2) right regular,

i.e., D1[f ] = 0 and [f ]D2 = 0 in Ω.

Frequent use will be made of the notation Rn
z where z ∈ Rn, which

means to remove z from Rn. In particular Rn
0 = Rn \ {0}.

Example 2.1. Suppose

H(x) =
1

ρs
1(x)

s∑

k=1

xkek, x = (x1, x2, · · · , xn) ∈ Rs
0 ×Rn−s

where

ρ1(x) =

(
s∑

k=1

x2
k

)1
2

,

and

E(x) =
1

ρn−s
2 (x)

n∑

k=s+1

xkek, x = (x1, x2, · · · , xn) ∈ Rs ×Rn−s
0
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where

ρ2(x) =

(
n∑

k=s+1

x2
k

)1
2

,

then H, E, HE, and EH are both (D1) and (D2) biregular, respectively, in

Rs
0 ×Rn−s, Rs ×Rn−s

0 and Rs
0 ×Rn−s

0 (see [10]).

Example 2.2.Suppose that H(x) and E(x) are as above, then by (2.3) and

(2.4), H = H, E = −E, HE = −EH and EH = −HE, so H, E, HE, EH

are both (D1) biregular and (D2) biregular, respectively, in Rs
0 × Rn−s,

Rs ×Rn−s
0 and Rs

0 ×Rn−s
0 .

As can be seen from the above Example 2.1–2.2, we often need to con-

sider the especial case Ω = Ω1 × Ω2 where Ω1 is an open non empty set in

Rs and Ω2 is an open non empty set in Rn−s. In this case, the points in

Ω1 × Ω2 are denoted alternatively by

x = (x1, x2, · · · , xn) = (xS, xN\S)

where xS = (x1, x2, · · · , xs) ∈ Ω1 and xN\S = (xs+1, xs+2, · · · , xn) ∈ Ω2.

Correspondingly, the functions defined in Ω are denoted alternatively by

f(x) = f(xS, xN\S).

It is also seen that H in Example 2.1 may be really treated as the function

from Ω1 ⊂ Rs to C (Vn,s). In this manner, thereinafter we would rather

write f ∈ C(r) (Ω1, C (Vn,s)) than f ∈ C(r) (Ω, C (Vn,s)). The meaning of the

symbol C(r) (Ω2, C (Vn,s)) is similar and obvious.

Example 2.3. For fixed z=(zS, zN\S)∈Rn, H(x−z), H(x−z), E(x−z),

E(x−z), (HE)(x−z), (EH)(x−z), HE(x−z), EH(x−z) are both (D1)
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biregular and (D2) biregular, respectively, in Rs
zS ×Rn−s, Rs ×Rn−s

zN\S and

Rs
zS ×Rn−s

zN\S (see [10]).

Since we shall only consider the case of s = n in this paper, we shall

denote the operator D1 as D.

Definition 2.3.A function f ∈ C(r)(Ω, C (Vn,n)) (r ≥ 1) is called left

(right) regular in Ω if D[f ] = 0 ([f ]D = 0) in Ω;

A function f ∈ C(r)(Ω, C (Vn,n)) (r ≥ k) is called left (right) k-regular

in Ω if Dk[f ] = 0 ([f ]Dk = 0) in Ω.

Let M be an n–dimensional differentiable oriented manifold with bound-

ary contained in some open non empty set Ω⊂Rn. The differential space

with basis {dx1, dx2,· · · , dxn} is denoted by Vn. Let G (Vn) be the Grass-

mann algebra over Vn with basis
{
dxA, A ∈ PN}

. The exterior product on

G (Vn) also may be defined by





dxA ∧ dxB = (−1)P (A,B)dxA∪B, if A,B ∈ PN,A
⋂

B = ∅,

dxA ∧ dxB = 0, if A,B ∈ PN,A
⋂

B 6= ∅,

η ∧ υ =
∑
A

∑
B

ηAυBdxA ∧ dxB, if η=
∑
A

ηAdxA, υ=
∑
A

υAdxA,

(2.6)

where ηA and υA are real and
∑
A

is the same as before. Obviously, as a rule,





dx∅ = dx0 = 1,

dxh1 ∧ dxh2 · · · ∧ dxhr = dxh1h2···hr , if 1 ≤ h1 < h2 · · · , < hr ≤ n,

dxA ∧ dxB = (−1)#(A)#(B)dxB ∧ dxA, if A,B ∈ PN.

(2.7)
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If moreover we construct the direct product algebra W = (C (Vn,s) , G (Vn)),

then we may consider a function Υ : M −→W of the form

Υ(x) =
∑

A

∑

#(B)=p

ΥA,B(x)eAdxB,

where all ΥA,B are of the class C(r) (r ≥ 1) in Ω and p is fixed, 0 ≤ p ≤ n.

Υ is called a C (Vn.s)–valued p–differential form.

Let furthermore C be a p–chain on M , then we define

∫

C

Υ(x) =
∑

A

∑

#(B)=p

eA

∫

C

ΥA,B(x)dxB.

In the sequel, since we shall only consider the case of s = n, we shall use

the following C (Vn.n)–valued (n − 1)–differential form, which is exact and

written as

dθ =
n∑

k=1

(−1)k−1ekdx̂N

k ,

where

dx̂N

k = dx1 ∧ · · · ∧ dxk−1 ∧ dxk+1 · · · ∧ dxn.

3 Kernel functions

In this section, we shall construct the kernel functions which play a

crucial role to obtain the Cauchy-Pompeiu formula in universal Clifford
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analysis, and we will give some of its properties. Suppose

H∗
j (x)=





1

2i−1(i− 1)!
i∏

r=1

(2r − n)

1

ωn

x2i

ρn(x)
,

j = 2i, j < n, i = 1, 2, · · · ,

1

2ii!
i∏

r=1

(2r − n)

1

ωn

x2i+1

ρn(x)
,

j = 2i + 1, j < n, i = 0, 1, · · · ,

(3.1)

where x =
n∑

k=1

xkek, ρ(x) =

(
n∑

k=1

x2
k

)1
2

, and ωn denotes the area of the unit

sphere in Rn. We denote

Aj =





1

2i−1(i− 1)!
i∏

r=1

(2r − n)

j = 2i, j < n, i = 1, 2, · · · ,

1

2ii!
i∏

r=1

(2r − n)

j = 2i + 1, j < n, i = 0, 1, · · · ,
(3.2)

then

H∗
j (x) =

Aj

ωn

xj

ρn(x)
, j < n.

From (3.1), it is easy to check that,





H∗
1 (x) =

1

ωn

x

ρn(x)
,

H∗
2i+1(x) =

1

2i
H∗

2i(x)x,

H∗
2i(x) =

1

2i− n
H∗

2i−1(x)x.

(3.3)
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Lemma 3.1.Let H∗
j (x) be as above, then we have,





D [H∗
1 (x)] = [H∗

1 (x)] D = 0, x ∈ Rn
0 ,

D
[
H∗

j+1(x)
]

=
[
H∗

j+1(x)
]
D = H∗

j (x), x ∈ Rn
0 ,

for any 1 ≤ j < n− 1.

(3.4)

Proof. First we know that the following equality is just the special case of

s = n of example 2.1:

D [H∗
1 (x)] = [H∗

1 (x)] D = 0, x ∈ Rn
0 .

In the following, we will prove that the second equality in (3.4) holds by

induction, and in the sequel, we suppose x ∈ Rn
0 .

Step 1. For j = 1, we rewrite H∗
1 (x) as H∗

1 (x) =
n∑

j=1

H∗
1j(x)ej, then from

(3.3) we have

D [H∗
2 (x)] =

1

2− n
D [H∗

1 (x)x]

=
1

2− n

n∑
i=1

D [H∗
1 (x)xiei]

=
1

2− n

n∑
i=1

n∑
j=1

ejH
∗
1 (x)δijei (sinceD [H∗

1 (x)] = 0)

=
1

2− n

n∑
i=1

n∑
j=1

(−H∗
1 (x)ej + 2H∗

1j(x)ejej

)
δijei

=
1

2− n

n∑
i=1

(−H∗
1 (x)ei + 2H∗

1i(x)) ei

=
1

2− n

n∑
i=1

(−H∗
1 (x) + 2H∗

1i(x)ei)

=
1

2− n
(−nH∗

1 (x) + 2H∗
1 (x))

= H∗
1 (x)
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In view of H∗
2 (x) being a scalar function, and so

[H∗
2 (x)] D = D [H∗

2 (x)] = H∗
1 (x).

For j = 2, from (3.3), and in view of H∗
2 (x) being a scalar function, we

have,

D [H∗
3 (x)] =

n∑
k=1

D

[
1

2
H∗

2 (x)xkek

]

=
1

2

n∑

k=1

(D [H∗
2 (x)] xkek + H∗

2 (x))

=
1

2

n∑

k=1

(H∗
1 (x)xkek + H∗

2 (x))

=
1

2
(H∗

1 (x)x + nH∗
2 (x))

=
1

2
((2− n)H∗

2 (x) + nH∗
2 (x))

= H∗
2 (x).

Similarly, by (3.3) again, and in view of xH∗
1 (x) = H∗

1 (x)x = (2−n)H∗
2 (x),

we have,

[H∗
3 (x)] D =

[
1

2
H∗

2 (x)
n∑

k=1

xkek

]
D

=
1

2

n∑

k=1

[H∗
2 (x)xkek] D

=
1

2

n∑

k=1

(H∗
2 (x) + xkek [H∗

2 (x)] D)

=
1

2
(nH∗

2 (x) + xH∗
1 (x))

= H∗
2 (x).

Step 2. Suppose (3.4) holds for j ≤ 2k − 1, or clearly,

D
[
H∗

j+1(x)
]

=
[
H∗

j+1(x)
]
D = H∗

j (x), j ≤ 2k − 1.
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Now we will prove that the following equality holds for j = 2k:

D
[
H∗

2k+1(x)
]

=
[
H∗

2k+1(x)
]
D = H∗

2k(x).

From (3.3) and the induction hypothesis, in view of H∗
2k(x) being a scalar

function, we have,

D
[
H∗

2k+1(x)
]

=
n∑

i=1

D

[
1

2k
H∗

2k(x)xiei

]

=
1

2k

n∑
i=1

(D [H∗
2k(x)] xiei + H∗

2k(x))

=
1

2k

n∑
i=1

(
H∗

2k−1(x)xiei + H∗
2k(x)

)

=
1

2k

(
H∗

2k−1(x)x + nH∗
2k(x)

)

=
1

2k
((2k − n)H∗

2k(x) + nH∗
2k(x))

= H∗
2k(x).

Meanwhile, by (3.3) and the induction hypothesis again, in view of

xH∗
2k−1(x) = H∗

2k−1(x)x = (2k − n)H∗
2k(x), in a similar way one can check

[
H∗

2k+1(x)
]
D = H∗

2k(x).

Step 3. Suppose (3.4) holds for j ≤ 2k, or clearly,

D
[
H∗

j+1(x)
]

=
[
H∗

j+1(x)
]
D = H∗

j (x), j ≤ 2k.

Now we will prove that the following equality holds for j = 2k + 1:

D
[
H∗

2k+2(x)
]

=
[
H∗

2k+2(x)
]
D = H∗

2k+1(x).
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From (3.3) and the induction hypothesis, we have,

D
[
H∗

2k+2(x)
]

=
1

2k + 2− n
D

[
H∗

2k+1(x)x
]

=
1

2k + 2− n

n∑
i=1

D
[
H∗

2k+1(x)xiei

]

=
1

2k + 2− n

n∑
i=1

(
D

[
H∗

2k+1(x)
]
xiei + eiH

∗
2k+1(x)ei

)

=
1

2k + 2− n

(
(2k − n)H∗

2k+1(x) + 2H∗
2k+1(x)

)

= H∗
2k+1(x).

In view of H∗
2k+2(x) being a scalar function, and so

[
H∗

2k+2(x)
]
D = D

[
H∗

2k+2(x)
]

= H∗
2k+1(x).

So, from the above three steps, the result follows.

Lemma 3.2.Let H∗
k(x)(k < n) be as above, then we have,





Dk [H∗
k(x)] = [H∗

k(x)] Dk = 0, x ∈ Rn
0 ,

Dj [H∗
k(x)] = [H∗

k(x)] Dj = H∗
k−j(x), x ∈ Rn

0 , j < k.

(3.5)

Proof. It may be directly proved by Lemma 3.1.

Similarly, we have:

Lemma 3.3.Let H∗
j (x) be as above, then we have,





D [H∗
1 (x− z)] = [H∗

1 (x− z)] D = 0, x ∈ Rn
z ,

D
[
H∗

j+1(x− z)
]

=
[
H∗

j+1(x− z)
]
D = H∗

j (x− z), x ∈ Rn
z ,

for any 1 ≤ j < n− 1.

(3.6)
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Lemma 3.4. Let H∗
k(x)(k < n) be as above, then we have,





Dk [H∗
k(x− z)] = [H∗

k(x− z)] Dk = 0, x ∈ Rn
z ,

Dj [H∗
k(x− z)] = [H∗

k(x− z)] Dj = H∗
k−j(x− z), x ∈ Rn

z , j < k.

(3.7)

Remark 3.1. From Lemma 3.2 and Lemma 3.4, H∗
k(x)(k < n) are left

(right) k-regular functions with values in the universal Clifford algebra

C(Vn,n) in Rn
0 ; H∗

k(x − z)(k < n) are left (right) k-regular functions with

values in the universal Clifford algebra C(Vn,n) in Rn
z .

4 Higher order Cauchy-Pompeiu formula

Lemma 4.1. Let M be an n–dimensional differentiable compact oriented

manifold contained in some open non empty subset Ω ⊂ Rn,

f ∈ C(r) (Ω, C (Vn,n)), g ∈ C(r) (Ω, C (Vn,n)), r ≥ 1, and moreover ∂M

is given the induced orientation. Then

∫

∂M

f(x)dθg(x) =

∫

M

(([f(x)] D) g(x) + f(x) (D [g(x)])) dxN .

Proof. It has been proved in [5,7].

Theorem 4.1.(Higher order Cauchy-Pompeiu formula) Suppose that

M is an n–dimensional differentiable compact oriented manifold contained

in some open non empty subset Ω ⊂ Rn, f ∈ C(r) (Ω, C (Vn,n)), r ≥ k,

k < n, moreover ∂M is given the induced orientation, H∗
j (x) is as above.

Then, for z ∈ ◦
M
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f(z) =
k−1∑
j=0

(−1)j

∫

∂M

H∗
j+1(x− z)dθDjf(x)+(4.1)

+(−1)k

∫

M

H∗
k(x− z)Dkf(x)dxN .

Proof. Assume z ∈ ◦
M . Take δ > 0 such that B(z, δ) ⊂ ◦

M , denoting

Θ(δ)=
k−1∑
j=0

(−1)j

∫

∂(M\B(z,δ))

H∗
j+1(x− z)dθDjf(x),

∆(δ)=(−1)k−1

∫

M\B(z,δ)

H∗
k(x− z)Dkf(x)dxN .

by Lemma 3.1, Lemma 3.2 and Lemma 4.1, we have

Θ(δ) = ∆(δ).(4.2)

In view of the weak singularity of the kernel H∗
k , the existence of the integral

over the manifold M in (4.1) follows, and so we have,

lim
δ→0

∆(δ)=(−1)k−1

∫

M

H∗
k(x− z)Dkf(x)dxN .(4.3)

Thus we have,

Θ(δ)=
k−1∑
j=0

(−1)j

∫

∂M

H∗
j+1(x− z)dθDjf(x)−Θ1(δ),(4.4)

where

Θ1(δ)=
k−1∑
j=0

(−1)j

∫

∂B(z,δ)

H∗
j+1(x− z)dθDjf(x),(4.5)

where ∂B(z, δ) is given the induced orientation.
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By Stoke’s formula, it is easy to check that

lim
δ→0

Θ1(δ) = f(z).(4.6)

Taking limit δ → 0 in (4.2) and combining (4.3), (4.4), (4.5) with (4.6),

(4.1) follows.

Remark 4.1.Introducing the operators

(Tkf) (z) = (−1)k

∫

M

H∗
k(x− z)f(x)dxN , 1 ≤ k < n,(4.7)

then (4.1) may be rewritten as

f(z) =
k−1∑
j=0

(−1)j

∫

∂M

H∗
j+1(x− z)dθDjf(x) +

(
TkD

kf
)
(z).(4.8)

For k = 1, the operator T1 is just the Pompeiu operator T , and we call (4.1)

the higher order Cauchy-Pompeiu formula in the universal Clifford algebra

C(Vn,n).

5 Some applications

In this section, we will give some applications of the Cauchy-Pompeiu

formula and for example, the Cauchy integral formula and the mean value

theorem.

Theorem 5.1.(Cauchy integral formula) Suppose that M is an n–di-

mensional differentiable compact oriented manifold contained in some open

non empty subset Ω ⊂ Rn, and let f be a left k-regular function in M ,
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moreover ∂M is given the induced orientation, H∗
j (x) is as above. Then

k−1∑
j=0

(−1)j

∫

∂M

H∗
j+1(x− z)dθDjf(x) =





0, if z 6∈ M,

f(z), if z ∈ ◦
M .

(5.1)

Proof. By Theorem 4.1 and Stoke’s formula, in view of function f being

a left k-regular function in M , the result follows.

Theorem 5.2.(Mean Value Theorem) Let Ω be an open non empty set

in Rn, and let f be a left k-regular function in Ω, t is chosen in such a way

that B(a, t) ⊂ Ω, then

f(a) =
1

tnωn

�
k − 1

2

�
∑
j=0

t2jA2j+1

∫

B(a,t)

(
(x− a)D2j+1f(x) + (n− 2j)D2jf(x)

)
dxN ,

(5.2)

where ωn =
2πn/2

Γ(n/2)
denotes the area of the unit sphere in Rn,

A2j+1 =
1

2jj!
j∏

r=1

(2r − n)

.

Proof. By Theorem 5.1 and Lemma 4.1, combining (3.1) with (3.2), we

have

f(a) =
k−1∑
j=0

(−1)j

∫

∂B(a,t)

H∗
j+1(x− a)dθDjf(x)

=
1

tnωn

k−1∑
j=0

(−1)jAj+1

∫

∂B(a,t)

(x− a)j+1 dθDjf(x)

=
1

tnωn

k−1∑
j=1

(−1)jAj+1

∫

∂B(a,t)

(x− a)j+1 dθDjf(x)+

+
1

tnωn

∫

B(a,t)

(nf(x) + (x− a)Df(x)) dxN .
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Denote

∆j =
(−1)jAj+1

tnωn

∫

∂B(a,t)

(x− a)j+1 dθDjf(x), j = 1, · · · , k − 1,(5.3)

then by Lemma 4.1, for m = 1, · · · ,
[
k − 1

2

]
, we have

∆2m−1 + ∆2m =
(−1)2m−1A2m

tnωn

∫

∂B(a,t)

(x− a)2m dθD2m−1f(x)+(5.4)

+
(−1)2mA2m+1

tnωn

∫

∂B(a,t)

(x− a)2m+1 dθD2mf(x) =

=
t2m

tnωn

∫

B(a,t)

(
A2m+1(x− a)D2m+1f(x) + (nA2m+1 − A2m) D2mf(x)

)
dxN =

=
A2m+1t

2m

tnωn

∫

B(a,t)

(
(x− a)D2m+1f(x) + (n− 2m)D2mf(x)

)
dxN .

Obviously, if k − 1 is an even number, then

f(a) =

k − 1

2∑
m=1

(∆2m−1 + ∆2m) +
1

tnωn

∫

B(a,t)

(nf(x) + (x− a)Df(x)) dxN =

=

k − 1

2∑
m=0

A2m+1t
2m

tnωn

∫

B(a,t)

(
(x− a)D2m+1f(x) + (n− 2m)D2mf(x)

)
dxN .

(5.5)

If k− 1 is an odd number, since f is a left k-regular function in Ω, then by

Lemma 4.1, we have

∆k−1 =
(−1)k−1Ak

tnωn

∫

∂B(a,t)

(x− a)k dθDk−1f(x) = 0,(5.6)



24 Heinrich Begehr, Du Jinyuan, Zhang Zhongxiang

and so,

f(a) = ∆k−1 +

�
k − 1

2

�
∑
m=1

(∆2m−1 + ∆2m)+

+
1

tnωn

∫

B(a,t)

(nf(x) + (x− a)Df(x)) dxN =(5.7)

=

�
k − 1

2

�
∑
m=0

A2m+1t
2m

tnωn

∫

B(a,t)

(
(x− a)D2m+1f(x) + (n− 2m)D2mf(x)

)
dxN .

From (5.6) and (5.7), the result follows.
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