On higher order Cauchy-Pompeiu formula in Clifford analysis and its applications

Heinrich Begehr, Du Jinyuan, Zhang Zhongxiang

Abstract

In this paper, we firstly construct the kernel functions which are necessary for us to study universal Clifford analysis. Then we obtain the higher order Cauchy-Pompeiu formulas for functions with values in a universal Clifford algebra, which are different from those in [2]. As applications we give the mean value theorem and as special case the higher order Cauchy's integral formula.

2000 Mathematical Subject Classification: 35C10, 31B05, 30G35.

Keywords: Universal Clifford algebra, Cauchy-Pompeiu formula.

1 Introduction

As is well-known the Cauchy integral formula plays a very important role in the classical theory of functions of one complex variable. R. Delanghe,
F. Brackx, F. Sommen, V. Iftimie and many other authors have studied the theory of functions with values in a Clifford algebra. In Clifford analysis, the Cauchy integral formula has been set up and it leads to many important theorems, which are similar to classical results in classical complex analysis. Some examples are the residue theorem, the maximum modulus theorem, the Morera theorem and so on (see, e.g., [5-9, 11-14, 16-17]). In [9], R.Delanghe, F.Brackx have studied the k-regular functions and have given the corresponding Cauchy integral formula. In [10], Du and Zhang have obtained the Cauchy integral formula with respect to the distinguished boundary for functions with values in a universal Clifford algebra and some of its applications.

Let D be a bounded domain with the smooth boundary ∂D in the complex plane \mathcal{C}, and $\omega \in C^{1}(D, \mathcal{C}) \bigcap C(\bar{D}, \mathcal{C})$. The following generalized form of the Cauchy integral formula for functions of one complex variable is known as the Cauchy-Pompeiu formula [15].

$$
\left\{\begin{array}{l}
w(z)=\frac{1}{2 \pi i} \int_{\partial D} \frac{w(\zeta)}{\zeta-z} \mathrm{~d} \zeta-\frac{1}{\pi} \iint_{D} \frac{w_{\bar{\zeta}}(\zeta)}{\zeta-z} \mathrm{~d} \xi \mathrm{~d} \eta \\
w(z)=-\frac{1}{2 \pi i} \int_{\partial D} \frac{w(\zeta)}{\bar{\zeta}-\bar{z}} \mathrm{~d} \bar{\zeta}-\frac{1}{\pi} \iint_{D} \frac{w_{\zeta}(\zeta)}{\bar{\zeta}-\bar{z}} \mathrm{~d} \xi \mathrm{~d} \eta
\end{array} \quad \zeta=\xi+i \eta, \quad z \in D\right.
$$

with the Kolossov-Wirtinger operators

$$
w_{\zeta}=\frac{\partial w}{\partial \zeta}=\frac{1}{2}\left(\frac{\partial w}{\partial \xi}-i \frac{\partial w}{\partial \eta}\right), \quad w_{\bar{\zeta}}=\frac{\partial w}{\partial \bar{\zeta}}=\frac{1}{2}\left(\frac{\partial w}{\partial \xi}+i \frac{\partial w}{\partial \eta}\right)
$$

The Cauchy-Pompeiu formulae and the Pompeiu operators were recently extended to the situation of Clifford analysis in many papers (see, e.g., [13]). In [4], the Cauchy-Pompeiu formulae for functions with values in a universal Clifford algebra were obtained. In order to study higher order

Cauchy-Pompeiu formulae for functions with values in a universal Clifford algebra, in this paper, the Cauchy-Pompeiu formulae for functions with values in a universal Clifford algebra will be considered only in the case of $s=n$. The other cases will be discussed in a forthcoming paper.

2 Preliminaries and notations

Let $V_{n, s}(0 \leq s \leq n)$ be an n-dimensional $(n \geq 1)$ real linear space with basis $\left\{e_{1}, e_{2}, \cdots, e_{n}\right\}, C\left(V_{n, s}\right)$ be the 2^{n}-dimensional real linear space with basis

$$
\left\{e_{A}, A=\left(h_{1}, \cdots, h_{r}\right) \in \mathcal{P} N, 1 \leq h_{1}<\cdots<h_{r} \leq n\right\},
$$

where N stands for the set $\{1, \cdots, n\}$ and $\mathcal{P} N$ denotes for the family of all order-preserving subsets of N in the above way. Sometimes, e_{\emptyset} is written as e_{0} and e_{A} as $e_{h_{1} \cdots h_{r}}$ for $A=\left\{h_{1}, \cdots, h_{r}\right\} \in \mathcal{P} N$. The product on $C\left(V_{n, s}\right)$ is defined by

$$
\left\{\begin{array}{l}
e_{A} e_{B}=(-1)^{\#((A \cap B) \backslash S)}(-1)^{P(A, B)} e_{A \triangle B}, \quad \text { if } A, B \in \mathcal{P} N, \tag{2.1}\\
\lambda \mu=\sum_{A \in \mathcal{P} N} \sum_{B \in \mathcal{P} N} \lambda_{A} \mu_{B} e_{A} e_{B}, \quad \text { if } \lambda=\sum_{A \in \mathcal{P} N} \lambda_{A} e_{A}, \mu=\sum_{A \in \mathcal{P} N} \mu_{A} e_{A} .
\end{array}\right.
$$

where S stands for the set $\{1, \cdots, s\}, \#(A)$ is the cardinal number of the set A, the number $P(A, B)=\sum_{j \in B} P(A, j), P(A, j)=\#\{i, i \in A, i>j\}$, the symmetric difference set $A \triangle B$ is also order-preserving in the above way, and $\lambda_{A} \in \mathcal{R}$ is the coefficient of the e_{A}-component of the Clifford number λ. It follows at once from the multiplication rule (2.1) that e_{0} is the identity
element written now as 1 and in particular,

$$
\begin{cases}e_{i}^{2}=1, & \text { if } i=1, \cdots, s, \tag{2.2}\\ e_{j}^{2}=-1, & \text { if } j=s+1, \cdots, n, \\ e_{i} e_{j}=-e_{j} e_{i}, & \text { if } 1 \leq i<j \leq n, \\ e_{h_{1}} e_{h_{2}} \cdots e_{h_{r}}=e_{h_{1} h_{2} \cdots h_{r}}, & \text { if } 1 \leq h_{1}<h_{2} \cdots,<h_{r} \leq n\end{cases}
$$

Thus $C\left(V_{n, s}\right)$ is a real linear, associative, but non-commutative algebra and it is called the universal Clifford algebra over $V_{n, s}$.

In the sequel, we constantly use the following conjugate:

$$
\begin{cases}\overline{e_{A}}=(-1)^{\sigma(A)+\#(A \cap S)} e_{A}, & \text { if } A \in \mathcal{P} N \tag{2.3}\\ \bar{\lambda}=\sum_{A \in \mathcal{P} N} \lambda_{A} \overline{e_{A}}, & \text { if } \lambda=\sum_{A \in \mathcal{P} N} \lambda_{A} e_{A}\end{cases}
$$

where $\sigma(A)=\#(A)(\#(A)+1) / 2$. Sometimes λ_{A} is also written as $[\lambda]_{A}$, in particular, the coefficient λ_{\emptyset} is denoted by λ_{0} or $[\lambda]_{0}$, which is called the scalar part of the Clifford number λ.

From (2.3), it is easy to check:

$$
\begin{cases}\overline{e_{i}}=e_{i}, & \text { if } i=0,1, \cdots, s, \tag{2.4}\\ \overline{e_{j}}=-e_{j}, & \text { if } j=s+1, \cdots, n, \\ \overline{\lambda \mu}=\bar{\mu} \bar{\lambda}, & \text { for any } \lambda, \mu \in C\left(V_{n, s}\right)\end{cases}
$$

We introduce the norm on $C\left(V_{n, s}\right)$

$$
\begin{equation*}
|\lambda|=\sqrt{(\lambda, \lambda)}=\left(\sum_{A \in \mathcal{P} N} \lambda_{A}^{2}\right)^{\frac{1}{2}} . \tag{2.5}
\end{equation*}
$$

Let Ω be an open non empty subset of \mathcal{R}^{n}. Functions f defined in Ω and with values in $C\left(V_{n, s}\right)$ will be considered, i.e.,

$$
f: \Omega \longrightarrow C\left(V_{n, s}\right) .
$$

They are of the form

$$
f(x)=\sum_{A} f_{A}(x) e_{A}, \quad x=\left(x_{1}, x_{2}, \cdots, x_{n}\right) \in \Omega
$$

where the symbol \sum_{A} is abbreviated from $\sum_{A \in \mathcal{P} N}$ and $f_{A}(x)$ is the e_{A}-component of $f(x)$. Obviously, f_{A} are real-valued functions in Ω, which are called the e_{A}-component functions of f. Whenever a property such as continuity, differentiability, etc. is ascribed to f, it is clear that in fact all the component functions f_{A} possess the cited property. So $f \in C^{(r)}\left(\Omega, C\left(V_{n, s}\right)\right)$ is very clear.

The conjugate of the function f is the function \bar{f} given by

$$
\bar{f}(x)=\sum_{A} f_{A}(x) \overline{e_{A}}, \quad x \in \Omega .
$$

The following is an obvious fact.
Remark 2.1. $f \in C^{(r)}\left(\Omega, C\left(V_{n, s}\right)\right)$ if and only if $\bar{f} \in C^{(r)}\left(\Omega, C\left(V_{n, s}\right)\right)$.

Introduce the following operators

$$
\begin{aligned}
D_{1} & =\sum_{k=1}^{s} e_{k} \frac{\partial}{\partial x_{k}}: C^{(r)}\left(\Omega, C\left(V_{n, s}\right)\right) \longrightarrow C^{(r-1)}\left(\Omega, C\left(V_{n, s}\right)\right), \\
D_{2} & =\sum_{k=s+1}^{n} e_{k} \frac{\partial}{\partial x_{k}}: C^{(r)}\left(\Omega, C\left(V_{n, s}\right)\right) \longrightarrow C^{(r-1)}\left(\Omega, C\left(V_{n, s}\right)\right) .
\end{aligned}
$$

Let f be a function with value in $C\left(V_{n, s}\right)$ defined in Ω, the operators D_{1} and D_{2} act on function f from the left and right being governed by the rules

$$
\begin{aligned}
D_{1}[f] & =\sum_{k=1}^{s} \sum_{A} e_{k} e_{A} \frac{\partial f_{A}}{\partial x_{k}}, & {[f] D_{1} } & =\sum_{k=1}^{s} \sum_{A} e_{A} e_{k} \frac{\partial f_{A}}{\partial x_{k}} \\
D_{2}[f] & =\sum_{k=s+1}^{n} \sum_{A} e_{k} e_{A} \frac{\partial f_{A}}{\partial x_{k}}, & {[f] D_{2} } & =\sum_{k=s+1}^{n} \sum_{A} e_{A} e_{k} \frac{\partial f_{A}}{\partial x_{k}}
\end{aligned}
$$

Definition 2.1.A function $f \in C^{(r)}\left(\Omega, C\left(V_{n, s}\right)\right)(r \geq 1)$ is called $\left(D_{1}\right)$ left (right) regular in Ω if $D_{1}[f]=0\left([f] D_{1}=0\right)$.

A function $f \in C^{(r)}\left(\Omega, C\left(V_{n, s}\right)\right)(r \geq 1)$ is called $\left(D_{2}\right)$ left (right) regular in Ω if $D_{2}[f]=0\left([f] D_{2}=0\right)$. f is said to be $\left(D_{1}\right)\left(\left(D_{2}\right)\right)$ biregular if and only if it is both $\left(D_{1}\right)\left(\left(D_{2}\right)\right)$ left and $\left(D_{1}\right)\left(\left(D_{2}\right)\right)$ right regular.

Definition 2.2.A function $f \in C^{(r)}\left(\Omega, C\left(V_{n, s}\right)\right)(r \geq 1)$ is said to be $L R$ regular in Ω if and only if it is both $\left(D_{1}\right)$ left regular and $\left(D_{2}\right)$ right regular, i.e., $D_{1}[f]=0$ and $[f] D_{2}=0$ in Ω.

Frequent use will be made of the notation \mathcal{R}_{z}^{n} where $z \in \mathcal{R}^{n}$, which means to remove z from \mathcal{R}^{n}. In particular $\mathcal{R}_{0}^{n}=\mathcal{R}^{n} \backslash\{0\}$.

Example 2.1. Suppose

$$
H(x)=\frac{1}{\rho_{1}^{s}(x)} \sum_{k=1}^{s} x_{k} e_{k}, x=\left(x_{1}, x_{2}, \cdots, x_{n}\right) \in \mathcal{R}_{0}^{s} \times \mathcal{R}^{n-s}
$$

where

$$
\rho_{1}(x)=\left(\sum_{k=1}^{s} x_{k}^{2}\right)^{\frac{1}{2}}
$$

and

$$
E(x)=\frac{1}{\rho_{2}^{n-s}(x)} \sum_{k=s+1}^{n} x_{k} e_{k}, \quad x=\left(x_{1}, x_{2}, \cdots, x_{n}\right) \in \mathcal{R}^{s} \times \mathcal{R}_{0}^{n-s}
$$

where

$$
\rho_{2}(x)=\left(\sum_{k=s+1}^{n} x_{k}^{2}\right)^{\frac{1}{2}}
$$

then $H, E, H E$, and $E H$ are both $\left(D_{1}\right)$ and $\left(D_{2}\right)$ biregular, respectively, in $\mathcal{R}_{0}^{s} \times \mathcal{R}^{n-s}, \mathcal{R}^{s} \times \mathcal{R}_{0}^{n-s}$ and $\mathcal{R}_{0}^{s} \times \mathcal{R}_{0}^{n-s}($ see [10]).

Example 2.2.Suppose that $H(x)$ and $E(x)$ are as above, then by (2.3) and (2.4), $\bar{H}=H, \bar{E}=-E, \overline{H E}=-E H$ and $\overline{E H}=-H E$, so $\bar{H}, \bar{E}, \overline{H E}, \overline{E H}$ are both $\left(D_{1}\right)$ biregular and $\left(D_{2}\right)$ biregular, respectively, in $\mathcal{R}_{0}^{s} \times \mathcal{R}^{n-s}$, $\mathcal{R}^{s} \times \mathcal{R}_{0}^{n-s}$ and $\mathcal{R}_{0}^{s} \times \mathcal{R}_{0}^{n-s}$.

As can be seen from the above Example 2.1-2.2, we often need to consider the especial case $\Omega=\Omega_{1} \times \Omega_{2}$ where Ω_{1} is an open non empty set in \mathcal{R}^{s} and Ω_{2} is an open non empty set in \mathcal{R}^{n-s}. In this case, the points in $\Omega_{1} \times \Omega_{2}$ are denoted alternatively by

$$
x=\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\left(x^{S}, x^{N \backslash S}\right)
$$

where $x^{S}=\left(x_{1}, x_{2}, \cdots, x_{s}\right) \in \Omega_{1}$ and $x^{N \backslash S}=\left(x_{s+1}, x_{s+2}, \cdots, x_{n}\right) \in \Omega_{2}$. Correspondingly, the functions defined in Ω are denoted alternatively by

$$
f(x)=f\left(x^{S}, x^{N \backslash S}\right)
$$

It is also seen that H in Example 2.1 may be really treated as the function from $\Omega_{1} \subset \mathcal{R}^{s}$ to $C\left(V_{n, s}\right)$. In this manner, thereinafter we would rather write $f \in C^{(r)}\left(\Omega_{1}, C\left(V_{n, s}\right)\right)$ than $f \in C^{(r)}\left(\Omega, C\left(V_{n, s}\right)\right)$. The meaning of the symbol $C^{(r)}\left(\Omega_{2}, C\left(V_{n, s}\right)\right)$ is similar and obvious.

Example 2.3. For fixed $z=\left(z^{S}, z^{N \backslash S}\right) \in \mathcal{R}^{n}, H(x-z), \bar{H}(x-z), E(x-z)$, $\bar{E}(x-z),(H E)(x-z),(E H)(x-z), \overline{H E}(x-z), \overline{E H}(x-z)$ are both $\left(D_{1}\right)$
biregular and $\left(D_{2}\right)$ biregular, respectively, in $\mathcal{R}_{z^{S}}^{s} \times \mathcal{R}^{n-s}, \mathcal{R}^{s} \times \mathcal{R}_{z^{N \backslash S}}^{n-s}$ and $\mathcal{R}_{z^{S}}^{s} \times \mathcal{R}_{z^{N \backslash S}}^{n-s}($ see [10] $)$.

Since we shall only consider the case of $s=n$ in this paper, we shall denote the operator D_{1} as D.

Definition 2.3.A function $f \in C^{(r)}\left(\Omega, C\left(V_{n, n}\right)\right)(r \geq 1)$ is called left (right) regular in Ω if $D[f]=0([f] D=0)$ in Ω;

A function $f \in C^{(r)}\left(\Omega, C\left(V_{n, n}\right)\right)(r \geq k)$ is called left (right) k-regular in Ω if $D^{k}[f]=0\left([f] D^{k}=0\right)$ in Ω.

Let M be an n-dimensional differentiable oriented manifold with boundary contained in some open non empty set $\Omega \subset \mathcal{R}^{n}$. The differential space with basis $\left\{\mathrm{d} x^{1}, \mathrm{~d} x^{2}, \cdots, \mathrm{~d} x^{n}\right\}$ is denoted by V_{n}. Let $G\left(V_{n}\right)$ be the Grassmann algebra over V_{n} with basis $\left\{\mathrm{d} x^{A}, A \in \mathcal{P N}\right\}$. The exterior product on $G\left(V_{n}\right)$ also may be defined by

$$
\begin{cases}\mathrm{d} x^{A} \wedge \mathrm{~d} x^{B}=(-1)^{P(A, B)} \mathrm{d} x^{A \cup B}, & \text { if } A, B \in \mathcal{P} N, A \bigcap B=\emptyset \tag{2.6}\\ \mathrm{d} x^{A} \wedge \mathrm{~d} x^{B}=0, & \text { if } A, B \in \mathcal{P} N, A \bigcap B \neq \emptyset \\ \eta \wedge v=\sum_{A} \sum_{B} \eta^{A} v^{B} \mathrm{~d} x^{A} \wedge \mathrm{~d} x^{B}, & \text { if } \eta=\sum_{A} \eta^{A} \mathrm{~d} x^{A}, v=\sum_{A} v^{A} \mathrm{~d} x^{A}\end{cases}
$$

where η^{A} and v^{A} are real and \sum_{A} is the same as before. Obviously, as a rule,
$(2.7)\left\{\begin{array}{l}\mathrm{d} x^{\emptyset}=\mathrm{d} x^{0}=1, \\ \mathrm{~d} x^{h_{1}} \wedge \mathrm{~d} x^{h_{2}} \cdots \wedge \mathrm{~d} x^{h_{r}}=\mathrm{d} x^{h_{1} h_{2} \cdots h_{r}}, \text { if } 1 \leq h_{1}<h_{2} \cdots,<h_{r} \leq n, \\ \mathrm{~d} x^{A} \wedge \mathrm{~d} x^{B}=(-1)^{\#(A) \#(B)} \mathrm{d} x^{B} \wedge \mathrm{~d} x^{A}, \quad \text { if } A, B \in \mathcal{P} N .\end{array}\right.$

If moreover we construct the direct product algebra $\mathcal{W}=\left(C\left(V_{n, s}\right), G\left(V_{n}\right)\right)$, then we may consider a function $\Upsilon: M \longrightarrow \mathcal{W}$ of the form

$$
\Upsilon(x)=\sum_{A} \sum_{\#(B)=p} \Upsilon_{A, B}(x) e_{A} \mathrm{~d} x^{B}
$$

where all $\Upsilon_{A, B}$ are of the class $C^{(r)}(r \geq 1)$ in Ω and p is fixed, $0 \leq p \leq n$. Υ is called a $C\left(V_{n . s}\right)$-valued p-differential form.

Let furthermore C be a p-chain on M, then we define

$$
\int_{C} \Upsilon(x)=\sum_{A} \sum_{\#(B)=p} e_{A} \int_{C} \Upsilon_{A, B}(x) \mathrm{d} x^{B}
$$

In the sequel, since we shall only consider the case of $s=n$, we shall use the following $C\left(V_{n . n}\right)$-valued $(n-1)$-differential form, which is exact and written as

$$
\mathrm{d} \theta=\sum_{k=1}^{n}(-1)^{k-1} e_{k} \mathrm{~d} \widehat{x}_{k}^{N},
$$

where

$$
\mathrm{d} \widehat{x}_{k}^{N}=\mathrm{d} x^{1} \wedge \cdots \wedge \mathrm{~d} x^{k-1} \wedge \mathrm{~d} x^{k+1} \cdots \wedge \mathrm{~d} x^{n} .
$$

3 Kernel functions

In this section, we shall construct the kernel functions which play a crucial role to obtain the Cauchy-Pompeiu formula in universal Clifford
analysis, and we will give some of its properties. Suppose

$$
H_{j}^{*}(x)=\left\{\begin{array}{c}
\frac{1}{2^{i-1}(i-1)!\prod_{r=1}^{i}(2 r-n)} \frac{1}{\omega_{n}} \frac{\mathbf{x}^{2 i}}{\rho^{n}(x)}, \tag{3.1}\\
j=2 i, j<n, i=1,2, \cdots, \\
\frac{1}{2^{i} i!\prod_{r=1}^{i}(2 r-n)} \frac{1}{\omega_{n}} \frac{\mathbf{x}^{2 i+1}}{\rho^{n}(x)} \\
j=2 i+1, j<n, i=0,1, \cdots,
\end{array}\right.
$$

where $\mathbf{x}=\sum_{k=1}^{n} x_{k} e_{k}, \rho(x)=\left(\sum_{k=1}^{n} x_{k}^{2}\right)^{\frac{1}{2}}$, and ω_{n} denotes the area of the unit sphere in \mathcal{R}^{n}. We denote
(3.2) $A_{j}= \begin{cases}\frac{1}{2^{i-1}(i-1)!\prod_{r=1}^{i}(2 r-n)} & j=2 i, j<n, i=1,2, \cdots, \\ \frac{1}{2^{i} i!\prod_{r=1}^{i}(2 r-n)} & j=2 i+1, j<n, i=0,1, \cdots,\end{cases}$
then

$$
H_{j}^{*}(x)=\frac{A_{j}}{\omega_{n}} \frac{\mathbf{x}^{j}}{\rho^{n}(x)}, \quad j<n
$$

From (3.1), it is easy to check that,

$$
\left\{\begin{align*}
H_{1}^{*}(x) & =\frac{1}{\omega_{n}} \frac{\mathbf{x}}{\rho^{n}(x)} \tag{3.3}\\
H_{2 i+1}^{*}(x) & =\frac{1}{2 i} H_{2 i}^{*}(x) \mathbf{x} \\
H_{2 i}^{*}(x) & =\frac{1}{2 i-n} H_{2 i-1}^{*}(x) \mathbf{x}
\end{align*}\right.
$$

Lemma 3.1. Let $H_{j}^{*}(x)$ be as above, then we have,

$$
\left\{\begin{array}{l}
D\left[H_{1}^{*}(x)\right]=\left[H_{1}^{*}(x)\right] D=0, x \in \mathcal{R}_{0}^{n} \tag{3.4}\\
D\left[H_{j+1}^{*}(x)\right]=\left[H_{j+1}^{*}(x)\right] D=H_{j}^{*}(x), x \in \mathcal{R}_{0}^{n} \\
\quad \text { for any } 1 \leq j<n-1
\end{array}\right.
$$

Proof. First we know that the following equality is just the special case of $s=n$ of example 2.1:

$$
D\left[H_{1}^{*}(x)\right]=\left[H_{1}^{*}(x)\right] D=0, x \in \mathcal{R}_{0}^{n} .
$$

In the following, we will prove that the second equality in (3.4) holds by induction, and in the sequel, we suppose $x \in \mathcal{R}_{0}^{n}$.
Step 1. For $j=1$, we rewrite $H_{1}^{*}(x)$ as $H_{1}^{*}(x)=\sum_{j=1}^{n} H_{1 j}^{*}(x) e_{j}$, then from (3.3) we have

$$
\begin{aligned}
D\left[H_{2}^{*}(x)\right] & =\frac{1}{2-n} D\left[H_{1}^{*}(x) \mathbf{x}\right] \\
& =\frac{1}{2-n} \sum_{i=1}^{n} D\left[H_{1}^{*}(x) x_{i} e_{i}\right] \\
& =\frac{1}{2-n} \sum_{i=1}^{n} \sum_{j=1}^{n} e_{j} H_{1}^{*}(x) \delta_{i j} e_{i}\left(\operatorname{since} D\left[H_{1}^{*}(x)\right]=0\right) \\
& =\frac{1}{2-n} \sum_{i=1}^{n} \sum_{j=1}^{n}\left(-H_{1}^{*}(x) e_{j}+2 H_{1 j}^{*}(x) e_{j} e_{j}\right) \delta_{i j} e_{i} \\
& =\frac{1}{2-n} \sum_{i=1}^{n}\left(-H_{1}^{*}(x) e_{i}+2 H_{1 i}^{*}(x)\right) e_{i} \\
& =\frac{1}{2-n} \sum_{i=1}^{n}\left(-H_{1}^{*}(x)+2 H_{1 i}^{*}(x) e_{i}\right) \\
& =\frac{1}{2-n}\left(-n H_{1}^{*}(x)+2 H_{1}^{*}(x)\right) \\
& =H_{1}^{*}(x)
\end{aligned}
$$

In view of $H_{2}^{*}(x)$ being a scalar function, and so

$$
\left[H_{2}^{*}(x)\right] D=D\left[H_{2}^{*}(x)\right]=H_{1}^{*}(x)
$$

For $j=2$, from (3.3), and in view of $H_{2}^{*}(x)$ being a scalar function, we have,

$$
\begin{aligned}
D\left[H_{3}^{*}(x)\right] & =\sum_{k=1}^{n} D\left[\frac{1}{2} H_{2}^{*}(x) x_{k} e_{k}\right] \\
& =\frac{1}{2} \sum_{k=1}^{n}\left(D\left[H_{2}^{*}(x)\right] x_{k} e_{k}+H_{2}^{*}(x)\right) \\
& =\frac{1}{2} \sum_{k=1}^{n}\left(H_{1}^{*}(x) x_{k} e_{k}+H_{2}^{*}(x)\right) \\
& =\frac{1}{2}\left(H_{1}^{*}(x) \mathbf{x}+n H_{2}^{*}(x)\right) \\
& =\frac{1}{2}\left((2-n) H_{2}^{*}(x)+n H_{2}^{*}(x)\right) \\
& =H_{2}^{*}(x)
\end{aligned}
$$

Similarly, by (3.3) again, and in view of $\mathbf{x} H_{1}^{*}(x)=H_{1}^{*}(x) \mathbf{x}=(2-n) H_{2}^{*}(x)$, we have,

$$
\begin{aligned}
{\left[H_{3}^{*}(x)\right] D } & =\left[\frac{1}{2} H_{2}^{*}(x) \sum_{k=1}^{n} x_{k} e_{k}\right] D \\
& =\frac{1}{2} \sum_{k=1}^{n}\left[H_{2}^{*}(x) x_{k} e_{k}\right] D \\
& =\frac{1}{2} \sum_{k=1}^{n}\left(H_{2}^{*}(x)+x_{k} e_{k}\left[H_{2}^{*}(x)\right] D\right) \\
& =\frac{1}{2}\left(n H_{2}^{*}(x)+\mathbf{x} H_{1}^{*}(x)\right) \\
& =H_{2}^{*}(x) .
\end{aligned}
$$

Step 2. Suppose (3.4) holds for $j \leq 2 k-1$, or clearly,

$$
D\left[H_{j+1}^{*}(x)\right]=\left[H_{j+1}^{*}(x)\right] D=H_{j}^{*}(x), j \leq 2 k-1
$$

Now we will prove that the following equality holds for $j=2 k$:

$$
D\left[H_{2 k+1}^{*}(x)\right]=\left[H_{2 k+1}^{*}(x)\right] D=H_{2 k}^{*}(x) .
$$

From (3.3) and the induction hypothesis, in view of $H_{2 k}^{*}(x)$ being a scalar function, we have,

$$
\begin{aligned}
D\left[H_{2 k+1}^{*}(x)\right] & =\sum_{i=1}^{n} D\left[\frac{1}{2 k} H_{2 k}^{*}(x) x_{i} e_{i}\right] \\
& =\frac{1}{2 k} \sum_{i=1}^{n}\left(D\left[H_{2 k}^{*}(x)\right] x_{i} e_{i}+H_{2 k}^{*}(x)\right) \\
& =\frac{1}{2 k} \sum_{i=1}^{n}\left(H_{2 k-1}^{*}(x) x_{i} e_{i}+H_{2 k}^{*}(x)\right) \\
& =\frac{1}{2 k}\left(H_{2 k-1}^{*}(x) \mathbf{x}+n H_{2 k}^{*}(x)\right) \\
& =\frac{1}{2 k}\left((2 k-n) H_{2 k}^{*}(x)+n H_{2 k}^{*}(x)\right) \\
& =H_{2 k}^{*}(x) .
\end{aligned}
$$

Meanwhile, by (3.3) and the induction hypothesis again, in view of $\mathbf{x} H_{2 k-1}^{*}(x)=H_{2 k-1}^{*}(x) \mathbf{x}=(2 k-n) H_{2 k}^{*}(x)$, in a similar way one can check

$$
\left[H_{2 k+1}^{*}(x)\right] D=H_{2 k}^{*}(x) .
$$

Step 3. Suppose (3.4) holds for $j \leq 2 k$, or clearly,

$$
D\left[H_{j+1}^{*}(x)\right]=\left[H_{j+1}^{*}(x)\right] D=H_{j}^{*}(x), j \leq 2 k .
$$

Now we will prove that the following equality holds for $j=2 k+1$:

$$
D\left[H_{2 k+2}^{*}(x)\right]=\left[H_{2 k+2}^{*}(x)\right] D=H_{2 k+1}^{*}(x) .
$$

From (3.3) and the induction hypothesis, we have,

$$
\begin{aligned}
D\left[H_{2 k+2}^{*}(x)\right] & =\frac{1}{2 k+2-n} D\left[H_{2 k+1}^{*}(x) \mathbf{x}\right] \\
& =\frac{1}{2 k+2-n} \sum_{i=1}^{n} D\left[H_{2 k+1}^{*}(x) x_{i} e_{i}\right] \\
& =\frac{1}{2 k+2-n} \sum_{i=1}^{n}\left(D\left[H_{2 k+1}^{*}(x)\right] x_{i} e_{i}+e_{i} H_{2 k+1}^{*}(x) e_{i}\right) \\
& =\frac{1}{2 k+2-n}\left((2 k-n) H_{2 k+1}^{*}(x)+2 H_{2 k+1}^{*}(x)\right) \\
& =H_{2 k+1}^{*}(x) .
\end{aligned}
$$

In view of $H_{2 k+2}^{*}(x)$ being a scalar function, and so

$$
\left[H_{2 k+2}^{*}(x)\right] D=D\left[H_{2 k+2}^{*}(x)\right]=H_{2 k+1}^{*}(x)
$$

So, from the above three steps, the result follows.

Lemma 3.2. Let $H_{k}^{*}(x)(k<n)$ be as above, then we have,

$$
\left\{\begin{array}{l}
D^{k}\left[H_{k}^{*}(x)\right]=\left[H_{k}^{*}(x)\right] D^{k}=0, x \in \mathcal{R}_{0}^{n}, \tag{3.5}\\
D^{j}\left[H_{k}^{*}(x)\right]=\left[H_{k}^{*}(x)\right] D^{j}=H_{k-j}^{*}(x), x \in \mathcal{R}_{0}^{n}, \quad j<k
\end{array}\right.
$$

Proof. It may be directly proved by Lemma 3.1.
Similarly, we have:
Lemma 3.3. Let $H_{j}^{*}(x)$ be as above, then we have,

$$
\left\{\begin{array}{l}
D\left[H_{1}^{*}(x-z)\right]=\left[H_{1}^{*}(x-z)\right] D=0, x \in \mathcal{R}_{z}^{n} \tag{3.6}\\
D\left[H_{j+1}^{*}(x-z)\right]=\left[H_{j+1}^{*}(x-z)\right] D=H_{j}^{*}(x-z), x \in \mathcal{R}_{z}^{n}, \\
\quad \text { for any } 1 \leq j<n-1 .
\end{array}\right.
$$

Lemma 3.4. Let $H_{k}^{*}(x)(k<n)$ be as above, then we have,

$$
\left\{\begin{array}{l}
D^{k}\left[H_{k}^{*}(x-z)\right]=\left[H_{k}^{*}(x-z)\right] D^{k}=0, x \in \mathcal{R}_{z}^{n} \tag{3.7}\\
D^{j}\left[H_{k}^{*}(x-z)\right]=\left[H_{k}^{*}(x-z)\right] D^{j}=H_{k-j}^{*}(x-z), x \in \mathcal{R}_{z}^{n}, \quad j<k
\end{array}\right.
$$

Remark 3.1. From Lemma 3.2 and Lemma 3.4, $H_{k}^{*}(x)(k<n)$ are left (right) k-regular functions with values in the universal Clifford algebra $C\left(V_{n, n}\right)$ in $\mathcal{R}_{0}^{n} ; H_{k}^{*}(x-z)(k<n)$ are left (right) k-regular functions with values in the universal Clifford algebra $C\left(V_{n, n}\right)$ in \mathcal{R}_{z}^{n}.

4 Higher order Cauchy-Pompeiu formula

Lemma 4.1. Let M be an n-dimensional differentiable compact oriented manifold contained in some open non empty subset $\Omega \subset \mathcal{R}^{n}$, $f \in C^{(r)}\left(\Omega, C\left(V_{n, n}\right)\right), g \in C^{(r)}\left(\Omega, C\left(V_{n, n}\right)\right), r \geq 1$, and moreover ∂M is given the induced orientation. Then

$$
\int_{\partial M} f(x) \mathrm{d} \theta g(x)=\int_{M}(([f(x)] D) g(x)+f(x)(D[g(x)])) \mathrm{d} x^{N} .
$$

Proof. It has been proved in $[5,7]$.

Theorem 4.1.(Higher order Cauchy-Pompeiu formula) Suppose that M is an n-dimensional differentiable compact oriented manifold contained in some open non empty subset $\Omega \subset \mathcal{R}^{n}, f \in C^{(r)}\left(\Omega, C\left(V_{n, n}\right)\right), r \geq k$, $k<n$, moreover ∂M is given the induced orientation, $H_{j}^{*}(x)$ is as above. Then, for $z \in \stackrel{\circ}{M}$

$$
\begin{align*}
f(z) & =\sum_{j=0}^{k-1}(-1)^{j} \int_{\partial M} H_{j+1}^{*}(x-z) \mathrm{d} \theta D^{j} f(x)+ \tag{4.1}\\
& +(-1)^{k} \int_{M} H_{k}^{*}(x-z) D^{k} f(x) \mathrm{d} x^{N} .
\end{align*}
$$

Proof. Assume $z \in \stackrel{\circ}{M}$. Take $\delta>0$ such that $B(z, \delta) \subset \stackrel{\circ}{M}$, denoting

$$
\begin{gathered}
\Theta(\delta)=\sum_{j=0}^{k-1}(-1)^{j} \int_{\partial(M \backslash B(z, \delta))} H_{j+1}^{*}(x-z) \mathrm{d} \theta D^{j} f(x), \\
\Delta(\delta)=(-1)^{k-1} \int_{M \backslash B(z, \delta)} H_{k}^{*}(x-z) D^{k} f(x) \mathrm{d} x^{N} .
\end{gathered}
$$

by Lemma 3.1, Lemma 3.2 and Lemma 4.1, we have

$$
\begin{equation*}
\Theta(\delta)=\Delta(\delta) \tag{4.2}
\end{equation*}
$$

In view of the weak singularity of the kernel H_{k}^{*}, the existence of the integral over the manifold M in (4.1) follows, and so we have,

$$
\begin{equation*}
\lim _{\delta \rightarrow 0} \Delta(\delta)=(-1)^{k-1} \int_{M} H_{k}^{*}(x-z) D^{k} f(x) \mathrm{d} x^{N} \tag{4.3}
\end{equation*}
$$

Thus we have,

$$
\begin{equation*}
\Theta(\delta)=\sum_{j=0}^{k-1}(-1)^{j} \int_{\partial M} H_{j+1}^{*}(x-z) \mathrm{d} \theta D^{j} f(x)-\Theta_{1}(\delta), \tag{4.4}
\end{equation*}
$$

where

$$
\begin{equation*}
\Theta_{1}(\delta)=\sum_{j=0}^{k-1}(-1)^{j} \int_{\partial B(z, \delta)} H_{j+1}^{*}(x-z) \mathrm{d} \theta D^{j} f(x), \tag{4.5}
\end{equation*}
$$

where $\partial B(z, \delta)$ is given the induced orientation.

By Stoke's formula, it is easy to check that

$$
\begin{equation*}
\lim _{\delta \rightarrow 0} \Theta_{1}(\delta)=f(z) \tag{4.6}
\end{equation*}
$$

Taking limit $\delta \rightarrow 0$ in (4.2) and combining (4.3), (4.4), (4.5) with (4.6), (4.1) follows.

Remark 4.1.Introducing the operators

$$
\begin{equation*}
\left(T_{k} f\right)(z)=(-1)^{k} \int_{M} H_{k}^{*}(x-z) f(x) \mathrm{d} x^{N}, 1 \leq k<n \tag{4.7}
\end{equation*}
$$

then (4.1) may be rewritten as

$$
\begin{equation*}
f(z)=\sum_{j=0}^{k-1}(-1)^{j} \int_{\partial M} H_{j+1}^{*}(x-z) \mathrm{d} \theta D^{j} f(x)+\left(T_{k} D^{k} f\right)(z) . \tag{4.8}
\end{equation*}
$$

For $k=1$, the operator T_{1} is just the Pompeiu operator T, and we call (4.1) the higher order Cauchy-Pompeiu formula in the universal Clifford algebra $C\left(V_{n, n}\right)$.

5 Some applications

In this section, we will give some applications of the Cauchy-Pompeiu formula and for example, the Cauchy integral formula and the mean value theorem.

Theorem 5.1.(Cauchy integral formula) Suppose that M is an n-dimensional differentiable compact oriented manifold contained in some open non empty subset $\Omega \subset \mathcal{R}^{n}$, and let f be a left k-regular function in M,
moreover ∂M is given the induced orientation, $H_{j}^{*}(x)$ is as above. Then

$$
\sum_{j=0}^{k-1}(-1)^{j} \int_{\partial M} H_{j+1}^{*}(x-z) \mathrm{d} \theta D^{j} f(x)= \begin{cases}0, & \text { if } z \notin M \tag{5.1}\\ f(z), & \text { if } z \in \stackrel{\circ}{M}\end{cases}
$$

Proof. By Theorem 4.1 and Stoke's formula, in view of function f being a left k-regular function in M, the result follows.

Theorem 5.2.(Mean Value Theorem) Let Ω be an open non empty set in \mathcal{R}^{n}, and let f be a left k-regular function in Ω, t is chosen in such a way that $\bar{B}(a, t) \subset \Omega$, then
$f(a)=\frac{1}{t^{n} \omega_{n}} \sum_{j=0}^{\left[\frac{k-1}{2}\right]} t^{2 j} A_{2 j+1} \int_{B(a, t)}\left((\mathbf{x}-\mathbf{a}) D^{2 j+1} f(x)+(n-2 j) D^{2 j} f(x)\right) \mathrm{d} x^{N}$,
where $\omega_{n}=\frac{2 \pi^{n / 2}}{\Gamma(n / 2)}$ denotes the area of the unit sphere in \mathcal{R}^{n}, $A_{2 j+1}=\frac{1}{2^{j} j!\prod_{r=1}^{j}(2 r-n)}$.

Proof. By Theorem 5.1 and Lemma 4.1, combining (3.1) with (3.2), we have

$$
\begin{aligned}
f(a)= & \sum_{j=0}^{k-1}(-1)^{j} \int_{\partial B(a, t)} H_{j+1}^{*}(x-a) \mathrm{d} \theta D^{j} f(x) \\
= & \frac{1}{t^{n} \omega_{n}} \sum_{j=0}^{k-1}(-1)^{j} A_{j+1} \int_{\partial B(a, t)}(\mathbf{x}-\mathbf{a})^{j+1} \mathrm{~d} \theta D^{j} f(x) \\
= & \frac{1}{t^{n} \omega_{n}} \sum_{j=1}^{k-1}(-1)^{j} A_{j+1} \int_{\partial B(a, t)}(\mathbf{x}-\mathbf{a})^{j+1} \mathrm{~d} \theta D^{j} f(x)+ \\
& \quad+\frac{1}{t^{n} \omega_{n}} \int_{B(a, t)}(n f(x)+(\mathbf{x}-\mathbf{a}) D f(x)) \mathrm{d} x^{N} .
\end{aligned}
$$

Denote

$$
\begin{equation*}
\Delta_{j}=\frac{(-1)^{j} A_{j+1}}{t^{n} \omega_{n}} \int_{\partial B(a, t)}(\mathbf{x}-\mathbf{a})^{j+1} \mathrm{~d} \theta D^{j} f(x), \quad j=1, \cdots, k-1, \tag{5.3}
\end{equation*}
$$

then by Lemma 4.1, for $m=1, \cdots,\left[\frac{k-1}{2}\right]$, we have

$$
\begin{align*}
& \text { (5.4) } \Delta_{2 m-1}+\Delta_{2 m}=\frac{(-1)^{2 m-1} A_{2 m}}{t^{n} \omega_{n}} \int_{\partial B(a, t)}(\mathbf{x}-\mathbf{a})^{2 m} \mathrm{~d} \theta D^{2 m-1} f(x)+ \tag{5.4}\\
& +\frac{(-1)^{2 m} A_{2 m+1}}{t^{n} \omega_{n}} \int_{\partial B(a, t)}(\mathbf{x}-\mathbf{a})^{2 m+1} \mathrm{~d} \theta D^{2 m} f(x)= \\
& =\frac{t^{2 m}}{t^{n} \omega_{n}} \int_{B(a, t)}\left(A_{2 m+1}(\mathbf{x}-\mathbf{a}) D^{2 m+1} f(x)+\left(n A_{2 m+1}-A_{2 m}\right) D^{2 m} f(x)\right) \mathrm{d} x^{N}= \\
& =\frac{A_{2 m+1} t^{2 m}}{t^{n} \omega_{n}} \int_{B(a, t)}\left((\mathbf{x}-\mathbf{a}) D^{2 m+1} f(x)+(n-2 m) D^{2 m} f(x)\right) \mathrm{d} x^{N} .
\end{align*}
$$

Obviously, if $k-1$ is an even number, then

$$
\begin{align*}
f(a) & =\sum_{m=1}^{\frac{k-1}{2}}\left(\Delta_{2 m-1}+\Delta_{2 m}\right)+\frac{1}{t^{n} \omega_{n}} \int_{B(a, t)}(n f(x)+(\mathbf{x}-\mathbf{a}) D f(x)) \mathrm{d} x^{N}= \\
& =\sum_{m=0}^{\frac{k-1}{2}} \frac{A_{2 m+1} t^{2 m}}{t^{n} \omega_{n}} \int_{B(a, t)}\left((\mathbf{x}-\mathbf{a}) D^{2 m+1} f(x)+(n-2 m) D^{2 m} f(x)\right) \mathrm{d} x^{N} . \tag{5.5}
\end{align*}
$$

If $k-1$ is an odd number, since f is a left k-regular function in Ω, then by Lemma 4.1, we have

$$
\begin{equation*}
\Delta_{k-1}=\frac{(-1)^{k-1} A_{k}}{t^{n} \omega_{n}} \int_{\partial B(a, t)}(\mathbf{x}-\mathbf{a})^{k} \mathrm{~d} \theta D^{k-1} f(x)=0 \tag{5.6}
\end{equation*}
$$

and so,

$$
\begin{gather*}
f(a)=\Delta_{k-1}+\sum_{m=1}^{\left[\frac{k-1}{2}\right]}\left(\Delta_{2 m-1}+\Delta_{2 m}\right)+ \\
+\frac{1}{t^{n} \omega_{n}} \int_{B(a, t)}(n f(x)+(\mathbf{x}-\mathbf{a}) D f(x)) \mathrm{d} x^{N}= \tag{5.7}
\end{gather*}
$$

$$
=\sum_{m=0}^{\left[\frac{k-1}{2}\right]} \frac{A_{2 m+1} t^{2 m}}{t^{n} \omega_{n}} \int_{B(a, t)}\left((\mathbf{x}-\mathbf{a}) D^{2 m+1} f(x)+(n-2 m) D^{2 m} f(x)\right) \mathrm{d} x^{N} .
$$

From (5.6) and (5.7), the result follows.

References

[1] H. Begehr, Iterations of Pompeiu operators, Mem. Differential Equations Math. Phys., 12(1997), 13-21.
[2] H. Begehr, Iterated integral operators in Clifford analysis, Journal for Analysis and its Applications, Volume 18(1999), No.2, 361-377.
[3] H. Begehr, D. Q. Dai, X. Li, Integral representation formulas in polydomains, Complex Variables, 47(2002), No.6, 463-484.
[4] H. Begehr, Zhang Zhongxiang, Du Jinyuan, On Cauchy-Pompeiu formula for functions with values in a universal Clifford algebra, to appear in Mathematica Acta Scientia, 2003, 23B(1).
[5] F. Brackx, R. Delanghe and F. Sommen F, Clifford Analysis, Research Notes in Mathematics 76, London Pitman Books Ltd, 1982.
[6] F. Brackx and W. Pincket, The biregular functions of Clifford Analysis. Some special topics. Clifford algebra and their applications in mathematical physics, NATO. ASI Series C: Mathematical and physical sciences, 183 (1986), 159-166.
[7] R. Delanghe, On regular analytic functions with values in a Clifford algebra, Math. Ann. 185 (1970), 91-111.
[8] R. Delanghe, On the singularities of functions with values in a Clifford algebra, Math. Ann. 196 (1972), 293-319.
[9] R. Delanghe, F.Brackx, Hypercomplex function theory and Hilbert modules with reproducing kernel, Proc. London Math. Soc. 37 (1978), 545-576.
[10] Du Jinyuan, Zhang Zhongxiang, A Cauchy's integral formula for functions with values in a universal Cliffford algebra and its applications, Complex Variables, 2002,47(10),915-928.
[11] Huang Sha, A nonlinear boundary value problem with Haseman shift in Clifford analysis, J. Sys. Sci. \& Math. Scis. (in Chinese), 1991, 11(4), 336-345.
[12] Huang Sha, A Nonlinear boundary value problem for biregular functions in Clifford analysis, Sci. in China, 1996, 39(1), 1152-1164.
[13] V. Iftimie, Functions hypercomplex, Bull. Math. de la Soc. Sci. Math. de la R. S. R., 1965, 9(57), 279-332.
[14] Le Hung Son, Cousin problem for biregular functions with values in a Clifford algebra, Complex Variables, 1992, 20, 255-263.
[15] I. N. Vekua, Generalized analytic functions, Pergamon Press, Oxford, 1962.
[16] R. Z. Yeh, Hyperholomorphic functions and second order partial differential equations, Trans. Amer. Math. Soc., 325(1991), 287-318.
[17] R. Z. Yeh, Analysis and applications of holomorphic functions in higher dimensions, Trans. Amer. Math. Soc., 345 (1994), 151-177.

Freie Universität Berlin
Fachbereich Mathematik und Informatik
I. Mathematisches Institut

Arnimalle 3 D-14195 Berlin Germany

E-mail: begehr@math.fu-berlin.de,
jydu@whu.edu.cn,
zhangzx9@sohu.com

