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Eugen Constantinescu
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Abstract

Our aim is to investigate a quadrature of form:

1∫

0

f(x)dx = c1f(x1)+c2f(x2)+c3f(x3)+c4f(x4)+c5f(x5)+R(f)(1)

where f : [0, 1] → R is integrable, R(f) is the remainder-term and

the distinct knots xj an supposed to be symmetric distributed in

[0, 1]. Under the additional hypothesis that all xj an of rational type

(see(4)), we are interested to find maximum degree of exactness of

such quadrature.
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1 Introduction

Let
∏

m be the linear space of all real polynomials of degree ≤ m and denote

ej(t) = tj, j ∈ N. A quadrature of form

1∫

0

f(x)dx =
n∑

k=0

ckf(xk) + R(f)(2)

has degrees (of exactness) m if R(h) = 0 for any polynomial h ∈ ∏
m. If

R(h) = 0 for all h ∈ ∏
m and moreover R(em+1) 6= 0 it is said that (2) has

the exact degree m. It is known that if (2) has degree m, then m ≤ 2n− 1.

Likewise, there exists only one formula (2) having maximum degree 2n− 1.

The aim of this paper is to study the formulas like (2) for n = 5 having

some practical properties. Let us note that in this case, the optimal formula

having maximum degree m = 9 is

1∫

0

f(x)dx =
5∑

k=1

ckf(xk) + r(f)(3)

xk =
1

2
± 1

6

√
5± 2

√
10

7
, 1 ≤ k ≤ 4, x5 =

1

2

It is clear that not all knots xk are rational numbers.

Definition 1. Formula (1) is said to be of “practical-type”, if

i) the knots xj are of form

x1 = r1, x2 = r2, x3 =
1

2
, x4 = 1− r2, x5 = 1− r1(4)

where r1, r2 distinct rational numbers from
[
0, 1

2

)

ii) all coefficients c1, c2, c3, c4, c5 are rational numbers with c1 = c5 and

c2 = c4.
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iii) (1) is of order p, with p ≥ 1. Therefore, in case n = 5 a practical-

type formula has the form

1∫

0

f(x)dx = A(f(r1)+f(1−r1))+B(f(r2)+f(1−r2))+C ·f
(

1

2

)
+R(f)(5)

A, B being rational numbers, C = 1 − 2(A + B), and when r1, r2 are

distinct rational numbers from
[
0, 1

2

)
.

Lemma 1. Let s be a natural number and suppose in (5) we have R(h) = 0

for all h ∈ ∏
2s. Then R(g) = 0 for every g from

∏
2s+1.

Proof. Let H(x) =
(
x− 1

2

)2s+1

. According to symmetry

1∫
0

H(x)dx = 0 and also R(H) = 0. Observe that e2s+1(x) ≡ x2s+1 = H(x)+

+ h1(x) with h1 ∈
∏

2s. Therefore R(e2s+1) = 0 and supposing g ∈ ∏
2s+1

with g(x) = a0x
2s+1 + ..., we have R(g) = a0 · R(e2s+1) + R(h2), h2 ∈ R2s,

that is R(g) = 0.

Lemma 2. If in (5) we have R(h) = 0 for every polynomial of degree ≤ 4,

then

A =
10r2

2 − 10r2 + 1

60(1− 2r1)
2(r1 − r2)(1− r1 − r2)

(6)

B =
10r2

2 − 10r1 + 1

60(1− 2r2)
2(r2 − r1)(1− r1 − r2)

C =
8 + 40(r2

1 + r2
2)− 40(r1 − r2) + 240r1r2(1− r1 − r2 + r1r2)

15(1− 2r1)
2(1− 2r2)

2

Proof. We use standard method, namely by considering polynomials

lj =
ω(x)

(x− xj)ω
′(xj)

, j ∈ {1, 2, 3, 4, 5}, ω(x) =
5∏

k=1

(x− xk)
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For instance, taking into account that

ω′(x) = −1

4
(1− 2r1)

2(r1 − r2), with δ =
1

2

are found

0 = R(l1) =

1∫

0

l1(x)dx− Al1(x1)

and we conclude with

A =
1

ω′(x1)

1
2∫

−1
2

t[t− (1− 2r1)h][t2 − (1− 2r2)
2h2]dt =

=
10r2

2 − 10r2 + 1

60(1− 2r1)
2(r1 − r2)(1− r1 − r2)

In a similar way are found coefficients B and C. Taking into account

that (5) is symmetric, we give:

Corollary 1. Quadrature formula (5) has order, m ≥ 5, if and only if the

coefficients are given by (6).

Lemma 3. If (5) has order m, m ≥ 6, then r1, r2 must be distinct rational

numbers from (0, 1] such that

560r2
1r

2
2 + 56(r2

1 + r2
2)− 56(r1 + r2) + 560r1r2(1− r1 − r2) + 5 = 0.(7)

Proof. It is sufficient to impose condition R(e6) = 0, e6(x) = x6. By

considering [a, b] = [−1, 1], are found R(e6) = 1
7 − 2Ar6

1 − 2Br6
2 = 0. Using

Lemma 2, see (6) we obtain condition (7).



A certain class of quadratures 79

Corollary 2. Suppose that (5) is of practical-type. If r1, r2 are distinct

rational numbers from (0, 1] such that equalities (6) and (7) are verified,

then (5) has order m = 7.

Let us remark, that the above proposition implies that

r1 + r2 − 2r1r2 ≥ 2

7

Corollary 3. The maximum order of m of practical-type quadratus formula

at 5-knots satisfied m ≤ 7.

Proof. Formulas like (7) having order m = 8 does not exist. The reason is

that by assuming m ≥ 8, then according to Lemma 1 we must have m = 9.

But in this case numbers r1 and r2 are not rational (see (3)).

Lemma 4. Then does not exist pairs of rational numbers (r1, r2) which

satisfy

560r2
1r

2
2 + 56(r2

1 + r2
2)− 56(r1 + r2) + 560r1r2(1− r1 − r2) + 5 = 0.

Proof. The case (1− 2r1)(1− 2r2) = 0 is impossible. Further, consider

(1− 2r1)(1− 2r2) 6= 0

and let 1−2r1 =
p
2 , 1−2r2 = x

y , p, q, x, y,∈ Z, q > 0, y > 0, with (p, q) = 1,

(x, y) = 1.

Because (1 − 2r2)
2 =

3[5− 7(1− 2r1)
2]

7[3− 5(1− 2r1)
2]

, we obtain

7x2(3q2 − 5p2) = 3y2(5q2 − 7p2). It follows that x2 ≡ 0 (mod 3) or

p2 ≡ 0 (mod 3). Therefore x or p is divisible by 3, x = 0 (mod 3), x = 3k

with k ∈ Z. Then after dividing by 3, are finds y2(5q2−7p2) = 3·7(3q2−5p2),
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which means that 5q2 − 7p2 must be divisible by 3. From (x, y) = 1 it is

clear that y is not divisible by 3. Now

5q2 − 7p2 = 6(q2 − p2)− (q2 + p2) ≡ −(q2 + p2) ≡ 0 (mod 3)

implies p2 + q2 ≡ 0 (mod 3) which is impossible unless p ≡ q ≡ 0 (mod 3),

which can,t happen because (p, g) = 1.

Theorem 1. The practical quadratures at five knots, having maximal degree

of exactness m = 5 are those of form

1∫

0

f(x)dx = A[f(r1)+f(1−r1)]+B[f(r2)+f(1−r2)]+Cf

(
1

2

)
+R(f)(8)

where R(f) is remainder, r1, r2 are distinct rational numbers from (0, 1] and

A =
10r2

2 − 10r2 + 1

60(1− 2r1)
2(r2 − r1)(1− r1 − r2)

B =
10r2

1 − 10r1 + 1

60(1− 2r2)
2(r2 − r1)(1− r1 − r2)

C =
8 + 40(r2

1 + r2
2)− 40(r1 − r2) + 240r1r2(1− r1 − r2 + r1r2)

15(1− 2r1)
2(1− 2r2)

2

Let us note that in quadrature formula from (8) we have

R(e6) =
560r2

1r
2
2 + 56(r2

1 + r2
2)− 56(r1 + r2) + 560r1r2(1− r1 − r2) + 5

105
· 1

26

If by [z0, z1, ..., zk; f ] is denoted the difference of a function f : [0, 1] → R

at a system of distinct points {z0, z1, ..., zk} ⊂ [0, 1], it may be shown that.

Theorem 2. Any partial quadratures at five knots, having maximal degree

m = 5 may be written as

1∫

0

f(x)dx = f

(
1

2

)
+

1

12

[
r1,

1

2
, 1− r1; f

]
+

3− 5(1− 2r1)
2

240
·(9)
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·
[
r1, r2,

1

2
, 1− r2, 1− r1; f

]
+ R(f),

where r1, r2 are distinct rational numbers from (0, 1]

2 Examples

In the following of Rj(f), j ∈ N∗, we shall denote the remainders terms in

certain quadratures formulas.

Example 1. The closed formulas like (8) are obtained in case r2 = 1,

namely

1∫

0

f(x)dx = A0[f(0) + f(1)] + C0f(
1

2
) + B0[f(r) + f(1− r)] + R1(f)(10)

where r ∈ Q, r ∈ (0, 1), R1(e6) =
14(1− 2r)6 − 6

105 · 26 and

A0 =
1

6
− 1

15(1− 2r)2
; B0 =

1

60r(1− 2r)2(1− r)
; C0 =

3

2
− 2

15(1− 2r)2 .

Example 2. For instance, when (r1, r2) =
(
1; 1

2

)
, (10) gives

1∫

0

f(x)dx =
7

90
[f(0) + f(1)]+(11)

+
16

25

[
f

(
1

4

)
+ f

(
3

4

)
+

2

15
f

(
1

2

)
+ R2(f)

]

R2(e6) = 1
21 · 27

Example 3. In case (r1, r2) =
(

1
2; 1

4

)
are found

1∫

0

f(x)dx =
86

45

[
f

(
1

4

)
+ f

(
3

4

)]
− 224

45

[
f

(
3

8

)
+ f

(
5

8

)]
+(12)
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+
107

15
f

(
1

2

)
+ R3(f)

R3(e6) = 115
21 · 212

3 The remainder term

In order to investigate the remainder we use same methods as in [1]− [6].

Theorem 3. Let m = 1
2 , h = 1

2 , x1 = r1, x2 = r2, x3 = 1
2 , x4 = 1− r2, x5 =

1− r1.

If Ω(t) =
[
t2 − (1− 2r1)

2 · 1
4

] [
t2 − (1− 2r2)

2 · 1
4

]
.

R(f) =

1
2∫

−1
2

t2Ω(t)

[
1

2
− t, r1, r2,

1

2
, 1− r2, 1− r1,

1

2
+ t; f

]
dt(13)

Proof. Let ω(x) =
5∏

j=1

(x−xj). Because our formula (8) is of interpolatory

type, it follows that we have

1∫

0

f(x)dx =

1∫

0

L4(x1, x2, x3, x4, x5; f)dx + R(f)

where R(f) =
1∫
0

ω(x)[x, x1, x2, x3, x4, x5; f ]dx.

But
1∫
0

f(1−x)dx =
1∫
0

f(x)dx and using the symmetry of knots {x1, x2, ..., x5}
we have

L4

(
r1, r2,

1

2
, 1− r2, 1− r1; f |1− x

)
= L4

(
r1, r2,

1

2
, 1− r2, 1− r1; f |x

)
.
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Further, the equality ω(1− x) = −ω(x) gives

R(f) = −
1∫

0

ω(x)

[
1− x, r1, r2,

1

2
; 1− r2, 1− r1; f

]
dx

Therefore the remainder from (8) may be written as R(f) = 1
2

1∫
0

ω(x)D(f ; x)dx

with

D(f ; x) =

[
x, r1, r2,

1

2
; 1− r2, 1− r1; f

]
−

[
1− x; r1, r2,

1

2
, 1− r2, 1− r1; f

]
=

= 2

(
x− 1

2

)[
x, r1, r2,

1

2
, 1− r2, 1− r1; f

]

In this manner

R(f) =

1∫

0

(
x− 1

2

)
ω(x)

[
x, r1, r2,

1

2
, 1− r2, 1− r1; f

]
dx

which is the same with (13).

Further for g ∈ C[0, 1] we use the uniform norm ||g|| = max
x ∈ [a, b]

|g(x)|.

Corollary 4. Let us denote

ω(x) = (x−r1)(x−r2)(x−1+r1)(x−1+r2), J(r1, r2) =

1∫

0

(
x− 1

2

)2

|ω(x)|dx

If R(f), is the remainder in (8), then for f ∈ C6[0, 1]

|R(f)| ≤ 1

46080
J(r1, r2)||f ((6)||.(14)



84 Eugen Constantinescu

References

[1] Brass H., Quadraturverfahren, Vandenhoeck & Ruprecht, Göttingen,

1977.

[2] Ghizzetti A., Ossicini A., Quadrature Formulae, Birkhäuser Verlag
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