# A certain class of quadratures 

Eugen Constantinescu

Dedicated to Professor D. D. Stancu on his 75th birthday.


#### Abstract

Our aim is to investigate a quadrature of form: (1) $\int_{0}^{1} f(x) d x=c_{1} f\left(x_{1}\right)+c_{2} f\left(x_{2}\right)+c_{3} f\left(x_{3}\right)+c_{4} f\left(x_{4}\right)+c_{5} f\left(x_{5}\right)+R(f)$ where $f:[0,1] \rightarrow \mathbb{R}$ is integrable, $R(f)$ is the remainder-term and the distinct knots $x_{j}$ an supposed to be symmetric distributed in $[0,1]$. Under the additional hypothesis that all $x_{j}$ an of rational type (see(4)), we are interested to find maximum degree of exactness of such quadrature.


2000 Mathematical Subject Classification: 65D32

## 1 Introduction

Let $\prod_{m}$ be the linear space of all real polynomials of degree $\leq m$ and denote $e_{j}(t)=t^{j}, j \in \mathbb{N}$. A quadrature of form

$$
\begin{equation*}
\int_{0}^{1} f(x) d x=\sum_{k=0}^{n} c_{k} f\left(x_{k}\right)+R(f) \tag{2}
\end{equation*}
$$

has degrees (of exactness) $m$ if $R(h)=0$ for any polynomial $h \in \prod_{m}$. If $R(h)=0$ for all $h \in \prod_{m}$ and moreover $R\left(e_{m+1}\right) \neq 0$ it is said that (2) has the exact degree $m$. It is known that if (2) has degree $m$, then $m \leq 2 n-1$. Likewise, there exists only one formula (2) having maximum degree $2 n-1$.

The aim of this paper is to study the formulas like (2) for $n=5$ having some practical properties. Let us note that in this case, the optimal formula having maximum degree $m=9$ is

$$
\begin{gather*}
\int_{0}^{1} f(x) d x=\sum_{k=1}^{5} c_{k} f\left(x_{k}\right)+r(f)  \tag{3}\\
x_{k}=\frac{1}{2} \pm \frac{1}{6} \sqrt{5 \pm 2 \sqrt{\frac{10}{7}}}, 1 \leq k \leq 4, x_{5}=\frac{1}{2}
\end{gather*}
$$

It is clear that not all knots $x_{k}$ are rational numbers.

Definition 1. Formula (1) is said to be of "practical-type", if
i) the knots $x_{j}$ are of form

$$
\begin{equation*}
x_{1}=r_{1}, x_{2}=r_{2}, x_{3}=\frac{1}{2}, x_{4}=1-r_{2}, x_{5}=1-r_{1} \tag{4}
\end{equation*}
$$

where $r_{1}, r_{2}$ distinct rational numbers from $\left[0, \frac{1}{2}\right)$
ii) all coefficients $c_{1}, c_{2}, c_{3}, c_{4}, c_{5}$ are rational numbers with $c_{1}=c_{5}$ and $c_{2}=c_{4}$.
iii) (1) is of order $p$, with $p \geq 1$. Therefore, in case $n=5$ a practicaltype formula has the form
(5) $\int_{0}^{1} f(x) d x=A\left(f\left(r_{1}\right)+f\left(1-r_{1}\right)\right)+B\left(f\left(r_{2}\right)+f\left(1-r_{2}\right)\right)+C \cdot f\left(\frac{1}{2}\right)+R(f)$
$A$, $B$ being rational numbers, $C=1-2(A+B)$, and when $r_{1}, r_{2}$ are distinct rational numbers from $\left[0, \frac{1}{2}\right)$.

Lemma 1. Let s be a natural number and suppose in (5) we have $R(h)=0$ for all $h \in \prod_{2 s}$. Then $R(g)=0$ for every $g$ from $\prod_{2 s+1}$.

Proof. Let $H(x)=\left(x-\frac{1}{2}\right)^{2 s+1}$. According to symmetry $\int_{0}^{1} H(x) d x=0$ and also $R(H)=0$. Observe that $e_{2 s+1}(x) \equiv x^{2 s+1}=H(x)+$ $+h_{1}(x)$ with $h_{1} \in \prod_{2 s}$. Therefore $R\left(e_{2 s+1}\right)=0$ and supposing $g \in \prod_{2 s+1}$ with $g(x)=a_{0} x^{2 s+1}+\ldots$, we have $R(g)=a_{0} \cdot R\left(e_{2 s+1}\right)+R\left(h_{2}\right), h_{2} \in R_{2 s}$, that is $R(g)=0$.

Lemma 2. If in (5) we have $R(h)=0$ for every polynomial of degree $\leq 4$, then

$$
\begin{gather*}
A=\frac{10 r_{2}^{2}-10 r_{2}+1}{60\left(1-2 r_{1}\right)^{2}\left(r_{1}-r_{2}\right)\left(1-r_{1}-r_{2}\right)}  \tag{6}\\
B=\frac{10 r_{2}^{2}-10 r_{1}+1}{60\left(1-2 r_{2}\right)^{2}\left(r_{2}-r_{1}\right)\left(1-r_{1}-r_{2}\right)} \\
C=\frac{8+40\left(r_{1}^{2}+r_{2}^{2}\right)-40\left(r_{1}-r_{2}\right)+240 r_{1} r_{2}\left(1-r_{1}-r_{2}+r_{1} r_{2}\right)}{15\left(1-2 r_{1}\right)^{2}\left(1-2 r_{2}\right)^{2}}
\end{gather*}
$$

Proof. We use standard method, namely by considering polynomials

$$
l_{j}=\frac{\omega(x)}{\left(x-x_{j}\right) \omega^{\prime}\left(x_{j}\right)}, j \in\{1,2,3,4,5\}, \omega(x)=\prod_{k=1}^{5}\left(x-x_{k}\right)
$$

For instance, taking into account that

$$
\omega^{\prime}(x)=-\frac{1}{4}\left(1-2 r_{1}\right)^{2}\left(r_{1}-r_{2}\right), \text { with } \delta=\frac{1}{2}
$$

are found

$$
0=R\left(l_{1}\right)=\int_{0}^{1} l_{1}(x) d x-A l_{1}\left(x_{1}\right)
$$

and we conclude with

$$
\begin{gathered}
A=\frac{1}{\omega^{\prime}\left(x_{1}\right)} \int_{-\frac{1}{2}}^{\frac{1}{2}} t\left[t-\left(1-2 r_{1}\right) h\right]\left[t^{2}-\left(1-2 r_{2}\right)^{2} h^{2}\right] d t= \\
=\frac{10 r_{2}^{2}-10 r_{2}+1}{60\left(1-2 r_{1}\right)^{2}\left(r_{1}-r_{2}\right)\left(1-r_{1}-r_{2}\right)}
\end{gathered}
$$

In a similar way are found coefficients B and C . Taking into account that (5) is symmetric, we give:

Corollary 1. Quadrature formula (5) has order, $m \geq 5$, if and only if the coefficients are given by (6).

Lemma 3. If (5) has order $m$, $m \geq 6$, then $r_{1}, r_{2}$ must be distinct rational numbers from $(0,1]$ such that
(7) $560 r_{1}^{2} r_{2}^{2}+56\left(r_{1}^{2}+r_{2}^{2}\right)-56\left(r_{1}+r_{2}\right)+560 r_{1} r_{2}\left(1-r_{1}-r_{2}\right)+5=0$.

Proof. It is sufficient to impose condition $R\left(e_{6}\right)=0, e_{6}(x)=x^{6}$. By considering $[a, b]=[-1,1]$, are found $R\left(e_{6}\right)=\frac{1}{7}-2 A r_{1}^{6}-2 B r_{2}^{6}=0$. Using Lemma 2, see (6) we obtain condition (7).

Corollary 2. Suppose that (5) is of practical-type. If $r_{1}, r_{2}$ are distinct rational numbers from $(0,1]$ such that equalities (6) and (7) are verified, then (5) has order $m=7$.

Let us remark, that the above proposition implies that

$$
r_{1}+r_{2}-2 r_{1} r_{2} \geq \frac{2}{7}
$$

Corollary 3. The maximum order of $m$ of practical-type quadratus formula at 5 -knots satisfied $m \leq 7$.

Proof. Formulas like (7) having order $m=8$ does not exist. The reason is that by assuming $m \geq 8$, then according to Lemma 1 we must have $m=9$. But in this case numbers $r_{1}$ and $r_{2}$ are not rational (see (3)).

Lemma 4. Then does not exist pairs of rational numbers $\left(r_{1}, r_{2}\right)$ which satisfy

$$
560 r_{1}^{2} r_{2}^{2}+56\left(r_{1}^{2}+r_{2}^{2}\right)-56\left(r_{1}+r_{2}\right)+560 r_{1} r_{2}\left(1-r_{1}-r_{2}\right)+5=0
$$

Proof. The case $\left(1-2 r_{1}\right)\left(1-2 r_{2}\right)=0$ is impossible. Further, consider

$$
\left(1-2 r_{1}\right)\left(1-2 r_{2}\right) \neq 0
$$

and let $1-2 r_{1}=\frac{p}{2}, 1-2 r_{2}=\frac{x}{y}, p, q, x, y, \in \mathbb{Z}, q>0, y>0$, with $(p, q)=1$, $(x, y)=1$.

Because $\left(1-2 r_{2}\right)^{2}=\frac{3\left[5-7\left(1-2 r_{1}\right)^{2}\right]}{7\left[3-5\left(1-2 r_{1}\right)^{2}\right]}$, we obtain $7 x^{2}\left(3 q^{2}-5 p^{2}\right)=3 y^{2}\left(5 q^{2}-7 p^{2}\right)$. It follows that $x^{2} \equiv 0(\bmod 3)$ or $p^{2} \equiv 0(\bmod 3)$. Therefore $x$ or $p$ is divisible by $3, x=0(\bmod 3), x=3 k$ with $k \in \mathbb{Z}$. Then after dividing by 3 , are finds $y^{2}\left(5 q^{2}-7 p^{2}\right)=3 \cdot 7\left(3 q^{2}-5 p^{2}\right)$,
which means that $5 q^{2}-7 p^{2}$ must be divisible by 3 . From $(x, y)=1$ it is clear that $y$ is not divisible by 3 . Now

$$
5 q^{2}-7 p^{2}=6\left(q^{2}-p^{2}\right)-\left(q^{2}+p^{2}\right) \equiv-\left(q^{2}+p^{2}\right) \equiv 0(\bmod 3)
$$

implies $p^{2}+q^{2} \equiv 0(\bmod 3)$ which is impossible unless $p \equiv q \equiv 0(\bmod 3)$, which can't happen because $(p, g)=1$.

Theorem 1. The practical quadratures at five knots, having maximal degree of exactness $m=5$ are those of form
(8) $\int_{0}^{1} f(x) d x=A\left[f\left(r_{1}\right)+f\left(1-r_{1}\right)\right]+B\left[f\left(r_{2}\right)+f\left(1-r_{2}\right)\right]+C f\left(\frac{1}{2}\right)+R(f)$
where $R(f)$ is remainder, $r_{1}, r_{2}$ are distinct rational numbers from $(0,1]$ and

$$
\begin{gathered}
A=\frac{10 r_{2}^{2}-10 r_{2}+1}{60\left(1-2 r_{1}\right)^{2}\left(r_{2}-r_{1}\right)\left(1-r_{1}-r_{2}\right)} \\
B=\frac{10 r_{1}^{2}-10 r_{1}+1}{60\left(1-2 r_{2}\right)^{2}\left(r_{2}-r_{1}\right)\left(1-r_{1}-r_{2}\right)} \\
C=\frac{8+40\left(r_{1}^{2}+r_{2}^{2}\right)-40\left(r_{1}-r_{2}\right)+240 r_{1} r_{2}\left(1-r_{1}-r_{2}+r_{1} r_{2}\right)}{15\left(1-2 r_{1}\right)^{2}\left(1-2 r_{2}\right)^{2}}
\end{gathered}
$$

Let us note that in quadrature formula from (8) we have
$R\left(e_{6}\right)=\frac{560 r_{1}^{2} r_{2}^{2}+56\left(r_{1}^{2}+r_{2}^{2}\right)-56\left(r_{1}+r_{2}\right)+560 r_{1} r_{2}\left(1-r_{1}-r_{2}\right)+5}{105} \cdot \frac{1}{2^{6}}$
If by $\left[z_{0}, z_{1}, \ldots, z_{k} ; f\right]$ is denoted the difference of a function $f:[0,1] \rightarrow \mathbb{R}$ at a system of distinct points $\left\{z_{0}, z_{1}, \ldots, z_{k}\right\} \subset[0,1]$, it may be shown that.

Theorem 2. Any partial quadratures at five knots, having maximal degree $m=5$ may be written as

$$
\begin{equation*}
\int_{0}^{1} f(x) d x=f\left(\frac{1}{2}\right)+\frac{1}{12}\left[r_{1}, \frac{1}{2}, 1-r_{1} ; f\right]+\frac{3-5\left(1-2 r_{1}\right)^{2}}{240} \tag{9}
\end{equation*}
$$

$$
\cdot\left[r_{1}, r_{2}, \frac{1}{2}, 1-r_{2}, 1-r_{1} ; f\right]+R(f)
$$

where $r_{1}, r_{2}$ are distinct rational numbers from $(0,1]$

## 2 Examples

In the following of $R_{j}(f), j \in \mathbb{N}^{*}$, we shall denote the remainders terms in certain quadratures formulas.

Example 1. The closed formulas like (8) are obtained in case $r_{2}=1$, namely
$(10) \int_{0}^{1} f(x) d x=A_{0}[f(0)+f(1)]+C_{0} f\left(\frac{1}{2}\right)+B_{0}[f(r)+f(1-r)]+R_{1}(f)$
where $r \in \mathbb{Q}, r \in(0,1), R_{1}\left(e_{6}\right)=\frac{14(1-2 r)^{6}-6}{105 \cdot 2^{6}}$ and
$A_{0}=\frac{1}{6}-\frac{1}{15(1-2 r)^{2}} ; \quad B_{0}=\frac{1}{60 r(1-2 r)^{2}(1-r)} ; \quad C_{0}=\frac{3}{2}-\frac{2}{15(1-2 r)^{2}}$.
Example 2. For instance, when $\left(r_{1}, r_{2}\right)=\left(1 ; \frac{1}{2}\right)$, (10) gives

$$
\begin{gather*}
\int_{0}^{1} f(x) d x=\frac{7}{90}[f(0)+f(1)]+  \tag{11}\\
+\frac{16}{25}\left[f\left(\frac{1}{4}\right)+f\left(\frac{3}{4}\right)+\frac{2}{15} f\left(\frac{1}{2}\right)+R_{2}(f)\right]
\end{gather*}
$$

$R_{2}\left(e_{6}\right)=\frac{1}{21 \cdot 2^{7}}$
Example 3. In case $\left(r_{1}, r_{2}\right)=\left(\frac{1}{2} ; \frac{1}{4}\right)$ are found

$$
\begin{equation*}
\int_{0}^{1} f(x) d x=\frac{86}{45}\left[f\left(\frac{1}{4}\right)+f\left(\frac{3}{4}\right)\right]-\frac{224}{45}\left[f\left(\frac{3}{8}\right)+f\left(\frac{5}{8}\right)\right]+ \tag{12}
\end{equation*}
$$

$$
+\frac{107}{15} f\left(\frac{1}{2}\right)+R_{3}(f)
$$

$R_{3}\left(e_{6}\right)=\frac{115}{21 \cdot 2^{12}}$

## 3 The remainder term

In order to investigate the remainder we use same methods as in [1] - [6].
Theorem 3. Let $m=\frac{1}{2}, h=\frac{1}{2}, x_{1}=r_{1}, x_{2}=r_{2}, x_{3}=\frac{1}{2}, x_{4}=1-r_{2}, x_{5}=$ $1-r_{1}$.

$$
\text { If } \Omega(t)=\left[t^{2}-\left(1-2 r_{1}\right)^{2} \cdot \frac{1}{4}\right]\left[t^{2}-\left(1-2 r_{2}\right)^{2} \cdot \frac{1}{4}\right] \text {. }
$$

$$
\begin{equation*}
R(f)=\int_{-\frac{1}{2}}^{\frac{1}{2}} t^{2} \Omega(t)\left[\frac{1}{2}-t, r_{1}, r_{2}, \frac{1}{2}, 1-r_{2}, 1-r_{1}, \frac{1}{2}+t ; f\right] d t \tag{13}
\end{equation*}
$$

Proof. Let $\omega(x)=\prod_{j=1}^{5}\left(x-x_{j}\right)$. Because our formula (8) is of interpolatory type, it follows that we have

$$
\int_{0}^{1} f(x) d x=\int_{0}^{1} L_{4}\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5} ; f\right) d x+R(f)
$$

where $R(f)=\int_{0}^{1} \omega(x)\left[x, x_{1}, x_{2}, x_{3}, x_{4}, x_{5} ; f\right] d x$.
But $\int_{0}^{1} f(1-x) d x=\int_{0}^{1} f(x) d x$ and using the symmetry of knots $\left\{x_{1}, x_{2}, \ldots, x_{5}\right\}$ we have

$$
L_{4}\left(r_{1}, r_{2}, \frac{1}{2}, 1-r_{2}, 1-r_{1} ; f \mid 1-x\right)=L_{4}\left(r_{1}, r_{2}, \frac{1}{2}, 1-r_{2}, 1-r_{1} ; f \mid x\right)
$$

Further, the equality $\omega(1-x)=-\omega(x)$ gives

$$
R(f)=-\int_{0}^{1} \omega(x)\left[1-x, r_{1}, r_{2}, \frac{1}{2} ; 1-r_{2}, 1-r_{1} ; f\right] d x
$$

Therefore the remainder from (8) may be written as $R(f)=\frac{1}{2} \int_{0}^{1} \omega(x) D(f ; x) d x$ with

$$
\begin{gathered}
D(f ; x)=\left[x, r_{1}, r_{2}, \frac{1}{2} ; 1-r_{2}, 1-r_{1} ; f\right]-\left[1-x ; r_{1}, r_{2}, \frac{1}{2}, 1-r_{2}, 1-r_{1} ; f\right]= \\
=2\left(x-\frac{1}{2}\right)\left[x, r_{1}, r_{2}, \frac{1}{2}, 1-r_{2}, 1-r_{1} ; f\right]
\end{gathered}
$$

In this manner

$$
R(f)=\int_{0}^{1}\left(x-\frac{1}{2}\right) \omega(x)\left[x, r_{1}, r_{2}, \frac{1}{2}, 1-r_{2}, 1-r_{1} ; f\right] d x
$$

which is the same with (13).
Further for $g \in C[0,1]$ we use the uniform norm $\|g\|=\max _{x \in[a, b]}|g(x)|$.

Corollary 4. Let us denote
$\omega(x)=\left(x-r_{1}\right)\left(x-r_{2}\right)\left(x-1+r_{1}\right)\left(x-1+r_{2}\right), J\left(r_{1}, r_{2}\right)=\int_{0}^{1}\left(x-\frac{1}{2}\right)^{2}|\omega(x)| d x$
If $R(f)$, is the remainder in (8), then for $f \in C^{6}[0,1]$

$$
\begin{equation*}
|R(f)| \leq \frac{1}{46080} J\left(r_{1}, r_{2}\right)\left\|f^{((6)}\right\| \tag{14}
\end{equation*}
$$

## References

[1] Brass H., Quadraturverfahren, Vandenhoeck \& Ruprecht, Göttingen, 1977.
[2] Ghizzetti A., Ossicini A., Quadrature Formulae, Birkhäuser Verlag Basel, Stuttgart, 1970.
[3] Krylov V.I., Approximate calculation of integrals, Macmillan, New York, 1962.
[4] Lupaş A., Teoreme de medie pentru transformări liniare şi pozitive (in Romanian), Rev. de Anal. Num. şi Teor. Aprox. 3, 1974, 2, 121-140.
[5] Lupaş A., Contributions to the theory of approximation by linear operators, Dissertation, Romanian, Cluj, 1975.
[6] Lupaş A., Metode numerice (in Romanian), Ed. Constant, Sibiu, 2001.

Department of Mathematics
"Lucian Blaga" University of Sibiu
Str. Dr. I. Raţiu, nr. 5-7
550012 Sibiu, România.
E-mail address: egnconst68@yahoo.com

