General Mathematics Vol. 10, No. 1-2 (2002), 71-74

About one fixed point theorem

Amelia Bucur

Dedicated to Professor D. D. Stancu on his 75th birthday.

Abstract

The aim of this paper is the study of a fixed point property for pairs of classes of topological spaces defined as follows:

for a class of sets φ and a set X we shall denote by

 $\mathcal{C}(X) = \{ C \in \mathcal{C} : C \subset X \} \text{ and } \mathcal{C}^*(X) = \{ C \in \mathcal{C}(X) : C \neq \emptyset \}.$

We say that a map $T : X \to Y$ has \mathcal{C} (resp. \mathcal{C}^*) values if for each $x \in X, T(x) \in \mathcal{C}(X)$ (resp. $T(x) \in \mathcal{C}^*(X)$).

2000 Mathematical Subject Classification: 46E99

1 Introduction

In what follows we use the following definition:

Definition 1. We say that a pair $(\mathcal{T}, \mathcal{C})$ consisting of two classes of compact Hausdorff topological spaces has the fixed point property provided: i) $X, Y \in \mathcal{C}$ implies $X \times Y \in \mathcal{T}$; ii) $C \in \mathcal{C}(X), D \in \mathcal{C}(Y)$ implies $C \times D \in \mathcal{C}(X \times Y)$, for each $X, Y \in \mathcal{T}$; iii) for each $X \in \mathcal{T}$, any upper semicontinuous map $T : X \to X$ with \mathcal{C}^* values has a fixed point.

Example 1. Both \mathcal{T} and \mathcal{C} are the class of all compact convex subsets of all Hausdorff locally convex topological vector spaces. In this case condition (iii) in Definition is satisfied according to the Kakutami - Tan - Glicksberg fixed point theorem (see [2], [3]).

2 Fixed points

Let $\{X_i\}_{1 \le i \le n}$ be a finite family of sets $(n \ge 2)$. Let

$$X = \prod_{i=1}^{n} X_i$$
 and $X^i = \prod_{\substack{j=1 \ j \neq 1}}^{n} X_j$.

Any $x = (x_1, x_2, ..., x_n) \in X$ can be expressed as $x = (x^i, x_i)$ for any $i \in \{1, 2, ..., n\}$, where x^i denotes the canonical projection of x on X^i .

Theorem 1. Let $X_i \in \mathcal{T}(1 \leq i \leq n)$ and for each $i \in \{1, 2, ..., n\}$ let $T_i : X \to X_i$ be an upper semicontinuous map with \mathcal{C}^* values. Then there exists an $\widehat{x} \in X$ such that $\widehat{x}_i \in T_i(\widehat{x})$ for each $i \in \{1, 2, ..., n\}$.

The proof can be found in [1].

Theorem 2. Let $X_i \in \mathcal{T}(1 \leq i \leq n)$ and $S_i : X_i \to X_{i+1}(1 \leq i \leq n-1)$, $S_n : X_n \to X_1$ be upper semicontinuous map with \mathcal{C}^* values. Then the composite $S_n \circ \ldots \circ S_1$ has a fixed point.

Proof. Let $T_i: X \to X_i (1 \le i \le n)$ be the maps defined by

$$T_1(x_1, x_2, ..., x_n) = S_n(x_n)$$

$$T_i(x_1, x_2, \dots, x_n) = S_{i-1}(x_{i-1})$$
 for $2 \le i \le n$.

By Theorem 1 there exists $\hat{x} = (\hat{x}_1, ..., \hat{x}_n) \in X$ such that $\hat{x}_1 \in T_1(\hat{x}) = S_n(\hat{x}_n), \ \hat{x}_2 \in T_2(\hat{x}) = S_1(\hat{x}_1), \ ..., \ \hat{x}_1 \in T_n(\hat{x}) = S_{n-1}(\hat{x}_{n-1}),$ whence $\hat{x}_1 \in (S_n \circ ... \circ S_1)(\hat{x}_1).$

Theorem 1 can be reformulated to the form of quasi-equilibrium theorem as follows:

Theorem 3. For each $i \in \{1, 2, ..., n\}$ let $X_i \in \mathcal{T}$, $S_i : X \to X_i$ closed map and $f_i, g_i : X = X^i \times X_i \to \mathbb{R}$ upper semicontinuous functions. Suppose that for each $i \in \{1, 2, ..., n\}$ the following conditions are satisfied:

a) $g_i(x) \leq f_i(x)$ for each $x \in X$;

b) the function M_i defined on X by $M_i(x) = \max_{y \in S_i(x)} g_i(x_i, y)$ is lower semicontinuous;

c) for each $x \in X$, $\{y \in S_i(x) : f_i(x^i, y) \ge M_i(x)\} \in \mathcal{C}(X)$. Then there exists an $\hat{x} \in X$ such that for each $i \in \{1, 2, ..., n\}$, $\hat{x}_i \in S_i(\hat{x})$ and $f_i(\hat{x}_i, \hat{x}_i) \ge M_i(\hat{x})$.

Proof. For each $i \in \{1, 2, ..., n\}$ define a map $T_i : X \to X_i$ by $T_i(x) = \{y \in S_i(x) : f_i(x^i, y) \ge M_i(x)\}$ for $x \in X$.

Note that each $T_i(x)$ is non-empty by (i), since $S_i(x)$ is compact and $g_i(x^i, \cdot)$ is upper semicontinuous on $S_i(x)$. We prove that the graph of T_i is closed in $X \times X_i$. In view of this let $(x_\alpha, y_\alpha) \in \text{graph } T_i$ such that $(x_\alpha, y_\alpha) \to (x, y)$.

Then

$$f_i(x^i, y) \ge \lim_{\alpha} \sup f_i(x^i_{\alpha}, y_{\alpha}) \ge \lim_{\alpha} \sup M_i(x_{\alpha}) \ge \lim_{\alpha} \inf M_i(x_{\alpha}) \ge M_i(x)$$

and, since graph S_i is closed in $X \times X_i$, $y_\alpha \in S_i(x_\alpha)$ implies $y \in S_i(x)$. Hence $(x, y) \in \text{graph } T_i$. Since X_i is compact, T_i is upper semicontinuous. By Theorem 1, there exists an $\hat{x} \in X$ such that $\hat{x}_i \in T_i(\hat{x})$ for each $i \in \{1, 2, ..., n\}$; that is $\hat{x}_i \in S_i(\hat{x})$ and $f_i(\hat{x}^i, \hat{x}_i) \ge M_i(\hat{x})$. This completes the proof.

The origin of Theorem 3 is the Nash equilibrium theorem [4].

References

- Balaj M., On fixed point property, The 27th Annual Congress of the American Romanian Academy of Arts and Sciences, Oradea, 2002, 595 - 597.
- [2] Fan K., Fixed point and minimax theorems in locally convex topological linear spaces, Proc. Nat. Acad. Sci., U.S.A., 38, 1952, 121 - 126.
- [3] Glicksberg I. L., A further generalization of the Kakutami fixed point theorem, with application to Nash equilibrium points, Proc. Amer. Math. Soc., 3, 1952, 170 - 174.
- [4] Nash J., Non cooperative games, Ann. Math., 54, 1951, 286 295.

Department of Mathematics "Lucian Blaga" University of Sibiu Str. Dr. I. Raţiu, nr. 5 - 7 550012 - Sibiu, România E-mail: *amelia.bucur@ulbsibiu.ro*