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About one fixed point theorem
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Abstract

The aim of this paper is the study of a fixed point property for

pairs of classes of topological spaces defined as follows:

for a class of sets ϕ and a set X we shall denote by

C(X) = {C ∈ C : C ⊂ X} and C∗(X) = {C ∈ C(X) : C 6= ∅}.

We say that a map T : X → Y has C (resp. C∗) values if for each

x ∈ X, T (x) ∈ C(X) (resp. T (x) ∈ C∗(X)).
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1 Introduction

In what follows we use the following definition:

Definition 1. We say that a pair (T , C) consisting of two classes of compact

Hausdorff topological spaces has the fixed point property provided:

i) X, Y ∈ C implies X × Y ∈ T ;
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ii) C ∈ C(X), D ∈ C(Y ) implies C ×D ∈ C(X × Y ), for each X,Y ∈ T ;

iii) for each X ∈ T , any upper semicontinuous map T : X → X with C∗
values has a fixed point.

Example 1. Both T and C are the class of all compact convex subsets of

all Hausdorff locally convex topological vector spaces. In this case condition

(iii) in Definition is satisfied according to the Kakutami - Tan - Glicksberg

fixed point theorem (see [2], [3]).

2 Fixed points

Let {Xi}1≤i≤n be a finite family of sets (n ≥ 2). Let

X =
n∏

i=1

Xi and X i =
n∏

j=1

j 6=1

Xj.

Any x = (x1, x2, ..., xn) ∈ X can be expressed as x = (xi, xi) for any

i ∈ {1, 2, ..., n}, where xi denotes the canonical projection of x on X i.

Theorem 1. Let Xi ∈ T (1 ≤ i ≤ n) and for each i ∈ {1, 2, ..., n} let

Ti : X → Xi be an upper semicontinuous map with C∗ values. Then there

exists an x̂ ∈ X such that x̂i ∈ Ti(x̂) for each i ∈ {1, 2, ..., n}.

The proof can be found in [1].

Theorem 2. Let Xi ∈ T (1 ≤ i ≤ n) and Si : Xi → Xi+1(1 ≤ i ≤ n − 1),

Sn : Xn → X1 be upper semicontinuous map with C∗ values. Then the

composite Sn ◦ ... ◦ S1 has a fixed point.

Proof. Let Ti : X → Xi(1 ≤ i ≤ n) be the maps defined by

T1(x1, x2, ..., xn) = Sn(xn)
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Ti(x1, x2, ..., xn) = Si−1(xi−1) for 2 ≤ i ≤ n.

By Theorem 1 there exists x̂ = (x̂1, ..., x̂n) ∈ X such that x̂1 ∈ T1(x̂) =

Sn(x̂n), x̂2 ∈ T2(x̂) = S1(x̂1), ..., x̂1 ∈ Tn(x̂) = Sn−1(x̂n−1), whence x̂1 ∈
(Sn ◦ ... ◦ S1)(x̂1).

Theorem 1 can be reformulated to the form of quasi-equilibrium theorem

as follows:

Theorem 3. For each i ∈ {1, 2, ..., n} let Xi ∈ T , Si : X → Xi closed map

and fi, gi : X = X i × Xi → R upper semicontinuous functions. Suppose

that for each i ∈ {1, 2, ..., n} the following conditions are satisfied:

a) gi(x) ≤ fi(x) for each x ∈ X;

b) the function Mi defined on X by Mi(x) = max
y∈Si(x)

gi(xi, y) is lower semi-

continuous;

c) for each x ∈ X, {y ∈ Si(x) : fi(x
i, y) ≥ Mi(x)} ∈ C(X). Then

there exists an x̂ ∈ X such that for each i ∈ {1, 2, ..., n}, x̂i ∈ Si(x̂) and

fi(x̂i, x̂i) ≥ Mi(x̂).

Proof. For each i ∈ {1, 2, ..., n} define a map Ti : X → Xi by

Ti(x) = {y ∈ Si(x) : fi(x
i, y) ≥ Mi(x)} for x ∈ X.

Note that each Ti(x) is non-empty by (i), since Si(x) is compact and

gi(x
i, ·) is upper semicontinuous on Si(x). We prove that the graph of Ti

is closed in X × Xi. In view of this let (xα, yα) ∈ graph Ti such that

(xα, yα) → (x, y).

Then

fi(x
i, y) ≥ lim

α
sup fi(x

i
α, yα) ≥ lim

α
sup Mi(xα) ≥ lim

α
inf Mi(xα) ≥ Mi(x)

and, since graph Si is closed in X × Xi, yα ∈ Si(xα) implies y ∈ Si(x).

Hence (x, y) ∈ graph Ti. Since Xi is compact, Ti is upper semicontinu-

ous. By Theorem 1, there exists an x̂ ∈ X such that x̂i ∈ Ti(x̂) for each
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i ∈ {1, 2, ..., n}; that is x̂i ∈ Si(x̂) and fi(x̂
i, x̂i) ≥ Mi(x̂). This completes

the proof.

The origin of Theorem 3 is the Nash equilibrium theorem [4].
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