Rational sequences converging to π

Alexandru Lupaş and Luciana Lupaş

Dedicated to Professor D. D. Stancu on his 75th birthday.

Abstract

Our aim is to give sequences $\left(\mathbf{q}_{n}\right)_{n=0}^{\infty}$ and $\left(\mathbf{Q}_{n}\right)_{n=0}^{\infty}$ of rational numbers such that $\mathbf{q}_{n}<\mathbf{q}_{n+1}<\pi<\mathbf{Q}_{k+1}<\mathbf{Q}_{k}, \quad n, k \in \mathbb{N}$. It is shown that there exists positive constants C_{1}, C_{2} such that for n large, $\left|\mathbf{q}_{n}-\pi\right|<\frac{C_{1}}{2^{5 n}}$ and $\left|\mathbf{Q}_{n}-\pi\right|<\frac{C_{2}}{n \cdot 2^{5 n}}$. Let us note that both sequences are constructed by means of the same three-term recurrence relation. Likewise, two series for π are given.

2000 Mathematical Subject Classification: 11Y60, 65B99, 65Q05

1 Introduction

For $a \in \mathbb{C}, k \in \mathbb{N}$, let us denote $(a)_{k}=a(a+1) \cdots(a+k-1),(a)_{0}=1$. Consider the Gauss hypergeometric series ${ }_{2} F_{1}(a, b ; c ; z)=\sum_{k=0}^{\infty} \frac{(a)_{k}(b)_{k}}{(c)_{k}} \frac{z^{k}}{k!}$ where $(a)_{k}=a(a+1) \cdots(a+k-1),(a)_{0}=1,(a \in \mathbb{C}, k \in \mathbb{N})$. For instance,
$R_{n}^{(\alpha, \beta)}(x)={ }_{2} F_{1}(-n, n+\alpha+\beta+1 ; \alpha+1 ;(1-x) / 2), \alpha>-1, \beta>-1$, is Jacobi polynomial normalized by $R_{n}^{(\alpha, \beta)}(1)=1$.

In the following $\gamma \in\left\{-\frac{1}{4}, \frac{1}{4}\right\}$ and

$$
\begin{aligned}
& a_{n}(\gamma)=\frac{n^{2}+(n-\gamma)(2 n+3-4 \gamma)}{2(n-\gamma)(n-\gamma+1)} \\
& b_{n}(\gamma)=\frac{n^{2}(n-2 \gamma)^{2}}{4(n-\gamma)^{2}(2 n-1-2 \gamma)(2 n+1-2 \gamma)} .
\end{aligned}
$$

Lemma 1.If $\left(\mathbf{I}_{n}(\gamma)\right)_{n=0}^{\infty},\left(\mathbf{Y}_{n}(\gamma)\right)_{n=0}^{\infty}$ are the sequences

$$
\left\{\begin{array}{l}
\mathbf{I}_{n}(\gamma)=\frac{16 \gamma}{\binom{2 n-2 \gamma}{n}} \int_{0}^{1} \frac{\left(1-x^{2}\right)^{n} x^{2 n-4 \gamma+1}}{\left(1+x^{2}\right)^{n+1}} d x \tag{1}\\
\mathbf{Y}_{n}(\gamma)=\frac{\binom{n-2 \gamma}{n}}{\binom{2 n-2 \gamma}{n}} \sum_{k=0}^{n}\binom{n}{k} \frac{(n+1-2 \gamma)_{k}}{(1-2 \gamma)_{k}}
\end{array}\right.
$$

then $\left(\mathbf{I}_{n}(\gamma)\right)_{n=0}^{\infty},\left(\mathbf{Y}_{n}(\gamma)\right)_{n=0}^{\infty}$ satisfy same three-term recurrence relation, namely

$$
\left\{\begin{array}{l}
\mathbf{I}_{n+1}(\gamma)=a_{n}(\gamma) \mathbf{I}_{n}(\gamma)-b_{n}(\gamma) \mathbf{I}_{n-1}(\gamma) \tag{2}\\
\mathbf{Y}_{n+1}(\gamma)=a_{n}(\gamma) \mathbf{Y}_{n}(\gamma)-b_{n}(\gamma) \mathbf{Y}_{n-1}(\gamma)
\end{array} \quad, n \in \mathbb{N}^{*}\right.
$$

with initial values

$$
\left(\begin{array}{cc}
\mathbf{I}_{0}(\gamma) & \mathbf{I}_{1}(\gamma) \\
\mathbf{Y}_{0}(\gamma) & \mathbf{Y}_{1}(\gamma)
\end{array}\right)=\left(\begin{array}{cc}
\pi+2(4 \gamma-1) & \frac{8 \gamma(4-\pi)+2(11 \pi-34)}{15} \\
1 & \frac{2(11-4 \gamma)}{15}
\end{array}\right)
$$

Proof. In order to prove that $\left(\mathbf{I}_{n}(\gamma)\right)_{n=0}^{\infty}$ verifies (2) it may be used repeated integration by parts. Recurrence (2) was put in evidence for $\left(\mathbf{Y}_{n}(\gamma)\right)_{n=0}^{\infty}$ by
means of three-term relation for Jacobi polynomials and equality

Other forms for $\mathbf{I}_{n}(\gamma)$ and $\mathbf{Y}_{n}(\gamma)$ are

$$
\begin{gathered}
\mathbf{Y}_{n}(\gamma)=\frac{\binom{n-2 \gamma}{n}}{\binom{2 n-2 \gamma}{n}} \sum_{k=0}^{n}\binom{n}{k}^{2} \frac{2^{n-k} k!}{(1-2 \gamma)_{k}}=\frac{1}{\binom{2 n-2 \gamma}{n}} \sum_{k=0}^{n}\binom{n}{k}\binom{n-2 \gamma}{k} 2^{k}= \\
=\sum_{k=0}^{n}\binom{n}{k} \frac{\binom{n-2 \gamma}{k}}{\binom{2 n-2 \gamma}{k}}=2^{n} \frac{\binom{n-2 \gamma}{n}}{\binom{2 n-2 \gamma}{n}}{ }_{2} F_{1}\left(-n,-n ; 1-2 \gamma ; \frac{1}{2}\right) \\
\mathbf{I}_{n}(\gamma)=\frac{8 \gamma}{(2 n-2 \gamma+1)\binom{2 n-2 \gamma}{n}^{2}} \cdot{ }_{2} F_{1}(n-2 \gamma+1, n+1 ; n-2 \gamma+2 ;-1)= \\
=\frac{8 \gamma}{2^{n}(2 n-2 \gamma+1)\binom{2 n-2 \gamma}{n}^{2}} \cdot{ }_{2} F_{1}(1,1-2 \gamma ; n-2 \gamma+2 ;-1)= \\
=\frac{16 \gamma\binom{n-2 \gamma}{n}}{\binom{2 n-2 \gamma}{n}} \int_{0}^{1} \frac{x^{-2 \gamma} R_{n}^{(-2 \gamma, 0)}\left(1-2 x^{2}\right)}{1+x^{2}} d x .
\end{gathered}
$$

Using theory of hypergeometric functions (see [1]), it may be proved that

$$
\begin{equation*}
\mathbf{I}_{n}(\gamma)=\frac{8 \gamma \cdot \zeta_{n}(\gamma)}{2^{n}(2 n-2 \gamma+1)\binom{2 n-2 \gamma}{n}^{2}} \tag{3}
\end{equation*}
$$

where $\zeta_{n}(\gamma)=1-\frac{1-2 \gamma}{n}+\frac{8(1-2 \gamma)(1-\gamma)}{n^{2}}+\mathcal{O}\left(\frac{1}{n^{3}}\right) \quad, \quad(n \rightarrow \infty)$.
Lemma 2. If $\mathbf{E}_{n}(\gamma):=\left|\frac{\mathbf{I}_{n}(\gamma)}{\mathbf{Y}_{n}(\gamma)}\right|$, then there exists $n \in \mathbb{N}$ and positive constants C_{1}, C_{2} such that

$$
\mathbf{E}_{n}(\gamma)<\left\{\begin{array}{rll}
\frac{C_{2}}{n \cdot 2^{5 n}} & , & \gamma=-\frac{1}{4} \\
\frac{C_{1}}{2^{5 n}} & , & \gamma=\frac{1}{4}
\end{array} \quad \text { for } n \geq n_{0}\right.
$$

Proof. Suppose that $\mathbf{I}_{n}(\gamma)$ and $\mathbf{Y}_{n}(\gamma)$, are as in (1). Because

$$
R_{n}^{(-2 \gamma, 0)}(3) \geq \frac{\Gamma(2 n-2 \gamma+1) \Gamma(1-2 \gamma)}{|\Gamma(n+1-2 \gamma)|^{2}}> \begin{cases}\frac{4^{n}}{3 n} & , \tag{4}\\ \frac{\gamma=-\frac{1}{4}}{4^{n}} & , \quad \gamma=\frac{1}{4}\end{cases}
$$

from (3) we find

$$
\mathbf{E}_{n}(\gamma)=\frac{2\left|\zeta_{n}(\gamma)\right|}{2^{n}(2 n-2 \gamma+1)\binom{2 n-2 \gamma}{n}\binom{n-2 \gamma}{n} R_{n}^{(-2 \gamma, 0)}(3)}
$$

If $n_{0} \in \mathbb{N}$ is such that $\left|\zeta_{n}(\gamma)\right|<2$ for $n \geq n_{0}$, according to (4) we find $\mathbf{E}_{n}(\gamma)<\delta_{n}(\gamma)$ where $\delta_{n}(\gamma)=\frac{4 \cdot|\Gamma(n+1) \Gamma(n+1-2 \gamma)|^{2}}{2^{n} \Gamma(2 n-2 \gamma+1) \Gamma(2 n-2 \gamma+1)}$. Using logconvexity of Gamma function we have

$$
\delta_{n}(1 / 4)<\frac{2 \pi \sqrt{2}}{\sqrt{n} 2^{5 n}} \quad, \quad \delta_{n}(-1 / 4)<\frac{20 \pi}{2^{5 n}} \quad, \quad\left(n \geq n_{0}\right)
$$

which completes the proof.

Define $\left(\mathbf{X}_{n}(\gamma)\right)_{n=0}^{\infty}$ by $\mathbf{X}_{n}(\gamma)=\pi \cdot \mathbf{Y}_{n}(\gamma)-\mathbf{I}_{n}(\gamma)$, then

$$
\mathbf{X}_{n+1}(\gamma)=a_{n}(\gamma) \mathbf{X}_{n}(\gamma)-b_{n}(\gamma) \mathbf{X}_{n-1}(\gamma) \quad, \quad n \in \mathbb{N}^{*}
$$

with

$$
\mathbf{X}_{0}(\gamma)=2(1-4 \gamma) \quad, \quad \mathbf{X}_{1}(\gamma)=\frac{4(17-8 \gamma)}{15}
$$

Using the fact that above recurrences (2) are linear, we give
Lemma 3. If $\mathbf{Z}_{n}(\gamma)=\frac{\mathbf{X}_{n}(\gamma)}{\mathbf{Y}_{n}(\gamma)}$, then

$$
\mathbf{Z}_{k+1}(\gamma)-\mathbf{Z}_{k}(\gamma)=b_{k}(\gamma) \frac{\mathbf{Y}_{k-1}(\gamma)}{\mathbf{Y}_{k+1}(\gamma)}\left(\mathbf{Z}_{k}(\gamma)-\mathbf{Z}_{k-1}(\gamma)\right), k \in \mathbb{N}^{*}
$$

and

$$
\begin{equation*}
\mathbf{Z}_{n+1}(\gamma)-\mathbf{Z}_{n}(\gamma)=\frac{16 \gamma(n-\gamma+1)}{(n-2 \gamma+1)^{2}\binom{n-2 \gamma}{n}^{2} R_{n}^{(-2 \gamma, 0)}(3) R_{n+1}^{(-2 \gamma, 0)}(3)} \tag{5}
\end{equation*}
$$

Proof. It may be seen that equalities

$$
\mathbf{Z}_{n+1}(\gamma)-\mathbf{Z}_{n}(\gamma)=\frac{4(8 \gamma+1)}{3 \mathbf{Y}_{n}(\gamma) \mathbf{Y}_{n+1}(\gamma)} \prod_{k=1}^{n} b_{k}(\gamma), n \geq 1
$$

and $\prod_{k=1}^{n} b_{k}(\gamma)=\frac{1-2 \gamma}{(2 n-2 \gamma+1)\left({ }^{2 n-2 \gamma}\right)^{n}}$ are verified.
Note that $\mathbf{Z}_{0}(\gamma)=2(1-4 \gamma), \mathbf{Z}_{1}(\gamma)=3+\frac{1}{12}(1-4 \gamma)$, and for $n \geq 1$
$\mathbf{Z}_{n+1}(\gamma)=\left(1+c_{n}(\gamma)\right) \mathbf{Z}_{n}(\gamma)-c_{n}(\gamma) \mathbf{Z}_{n-1}(\gamma) \quad, \quad c_{n}(\gamma):=b_{n}(\gamma) \frac{\mathbf{Y}_{n-1}(\gamma)}{\mathbf{Y}_{n+1}(\gamma)}$.
Further, the sequences $\left(\mathbf{q}_{n}\right)_{n=1}^{\infty},\left(\mathbf{Q}_{n}\right)_{n=1}^{\infty}$ are defined by
(6) $\quad \mathbf{q}_{n}=\mathbf{Z}_{n}(1 / 4)=\frac{\mathbf{X}_{n}(1 / 4)}{\mathbf{Y}_{n}(1 / 4)} \quad, \quad \mathbf{Q}_{n}=\mathbf{Z}_{n}(-1 / 4)=\frac{\mathbf{X}_{n}(-1 / 4)}{\mathbf{Y}_{n}(-1 / 4)}$.

If $\mathbf{r}_{n}=\frac{\mathbf{I}_{n}(1 / 4)}{\mathbf{Y}_{n}(1 / 4)} \quad, \quad \mathbf{R}_{n}=\frac{\mathbf{I}_{n}(-1 / 4)}{\mathbf{Y}_{n}(-1 / 4)}$, we have

$$
\pi=\mathbf{q}_{n}+\mathbf{r}_{n} \quad \text { and } \quad \pi=\mathbf{Q}_{n}+\mathbf{R}_{n}
$$

where

$$
\begin{gathered}
\mathbf{r}_{n}=\frac{4}{\binom{n-\frac{1}{2}}{n} R_{n}^{\left(-\frac{1}{2}, 0\right)}(3)} \int_{0}^{1} \frac{\left(1-x^{2}\right)^{n} x^{2 n}}{\left(1+x^{2}\right)^{n+1}} d x=\mathcal{O}\left(\frac{1}{32^{n}}\right) \\
\mathbf{R}_{n}=-\frac{4}{\binom{n+\frac{1}{2}}{n} R_{n}^{\left(\frac{1}{2}, 0\right)}(3)} \int_{0}^{1} \frac{\left(1-x^{2}\right)^{n} x^{2 n+2}}{\left(1+x^{2}\right)^{n+1}} d x=\mathcal{O}\left(\frac{1}{\sqrt{n} \cdot 32^{n}}\right) .
\end{gathered}
$$

From above remarks we find
Propozition 1. Suppose that $\left(\mathbf{q}_{n}\right)_{n=1}^{\infty},\left(\mathbf{Q}_{n}\right)_{n=0}^{\infty}$ are as in (6). Then
$3=\mathbf{q}_{1}<\cdots<\mathbf{q}_{n}<\mathbf{q}_{n+1}<\cdots<\pi<\cdots<\mathbf{Q}_{k+1}<\mathbf{Q}_{k}<\cdots<\mathbf{Q}_{1}=19 / 6$.

For instance $\mathbf{Q}_{4}=3763456 / 1197945=\mathbf{3 . 1 4 1 5 9 3 3 1 1 8 7 9 9 \ldots}$.

Propozition 2. If $P_{n}^{(\alpha, \beta)}(z)=\binom{n+\alpha}{n} R_{n}^{(\alpha, \beta)}(z)$, then

$$
\begin{aligned}
& \sum_{k=0}^{n} \frac{2(4 k+3)}{(k+1)(2 k+1) P_{k}^{(-1 / 2,0)}(3) P_{k+1}^{(-1 / 2,0)}(3)}<\pi< \\
& <4-\sum_{k=0}^{n} \frac{2(4 k+5)}{(k+1)(2 k+3) P_{k}^{(1 / 2,0)}(3) P_{k+1}^{(1 / 2,0)}(3)}
\end{aligned}
$$

Proof. From (5) we find

$$
\mathbf{Z}_{n+1}(\gamma)=2(1-4 \gamma)+16 \gamma \sum_{k=0}^{n} \frac{k+1-\gamma}{(k+1)(k+1-2 \gamma) P_{k}^{(-2 \gamma, 0)}(3) P_{k+1}^{(-2 \gamma, 0)}(3)}
$$

For $\gamma \in\left\{-\frac{1}{4}, \frac{1}{4}\right\}$ and we conclude with desired inequalities.
For $n \rightarrow \infty$ we give
Corollary 1. The following equalities are valid

$$
\begin{aligned}
& \pi=2 \sum_{k=0}^{\infty} \frac{4 k+3}{(k+1)(2 k+1) P_{k}^{(-1 / 2,0)}(3) P_{k+1}^{(-1 / 2,0)}(3)} \\
& \pi=4-2 \sum_{k=0}^{\infty} \frac{4 k+5}{(k+1)(2 k+3) P_{k}^{(1 / 2,0)}(3) P_{k+1}^{(1 / 2,0)}(3)} .
\end{aligned}
$$

References

[1] A. Erdélyi, W. Magnus, F. Oberhettinger, F.G., Tricomi , Higher Transcedental Functions, vol. I, . McGraw-Hill, New York, 1953.

University ,,Lucian Blaga" of Sibiu
Faculty of Sciences
Department of Mathematics
Sibiu, Romania
E-mail: alexandru.lupas@ulbsibiu.ro
luciana.lupas@ulbsibiu.ro

