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SOBOLEV ORTHOGONAL POLYNOMIALS:
INTERPOLATION AND APPROXIMATION ∗

ESTHER M. GARC´ıA–CABALLERO†, TERESA E. ṔEREZ‡, AND MIGUEL A. PIÑAR‡

Abstract. In this paper, we study orthogonal polynomials with respect to the bilinear form

(f, g)S = (f(c0), f(c1), . . . , f(cN−1))A




g(c0)
g(c1)

...
g(cN−1)


 + 〈u, f(N)g(N)〉,

whereu is a quasi-definite (or regular) linear functional on the linear spacePof real polynomials,c0, c1, . . . , cN−1

are distinct real numbers,N is a positive integer number, andA is a realN ×N matrix such that each of its principal
submatrices are nonsingular. We show a connection between these non-standard orthogonal polynomials and some
standard problems in the theory of interpolation and approximation.
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1. Introduction. During the past few years, orthogonal polynomials with respect to an
inner product involving derivatives (so–called Sobolev orthogonal polynomials) have been the
object of increasing number of works (see, for instance [1], [5], [6], [4], [7], [8]). Recurrence
relations, asymptotics, algebraic, differentiation properties and zeros for various families of
polynomials have been studied. In this paper we study a connection between a particular case
of non–standard orthogonal polynomials and standard problems in the theory of interpolation
and approximation.

In Section 2, we give a description of the monic polynomials{Qn}n which are orthogo-
nal with respect to

(f, g)S = (f(c0), f(c1), . . . , f(cN−1))A




g(c0)
g(c1)

...
g(cN−1)


 + 〈u, f (N)g(N)〉,(1.1)

whereu is a regular (or quasi-definite) linear functional on the linear spaceP of real poly-
nomials,c0, c1, . . . , cN−1 are distinct real numbers,N is a positive integer, andA is a real
N × N matrix such that each of its principal submatrices are nonsingular. Let{Pn}n be
the monic polynomials orthogonal with respect to the functionalu. If n ≥ N , we have
Qn(ci) = 0, i = 0, 1, . . . , N − 1, andQ

(N)
n (x) = n!

(n−N)!Pn−N (x), while {Qn}N−1
n=0 are

orthogonal with respect to the discrete part of the symmetric bilinear form (1.1).
In Section 3, we give some examples of monic orthogonal polynomial sequences (in

short MOPS) which are orthogonal with respect to the bilinear form (1.1), using the Laguerre
and Jacobi linear functionals.
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In Section 4, we show that the MOPS with respect to (1.1) can be expressed as the inter-
polation error of anN–th primitive of{Pn−N}n≥N , where{Pn}n is the MOPS associated
with the regular linear functionalu.

The final section of this paper is devoted to establish the relation between this kind of
discrete–continuous Sobolev orthogonality and a problem of simultaneous polynomial inter-
polation and approximation, in the case when (1.1) is an inner product.

2. The Sobolev discrete–continuous bilinear form.Let P be the linear space of real
polynomials,u a regular linear functional onP (see [2]),N a positive integer number, andA
a quasi-definite, symmetric and real matrix, that is, a symmetric and real matrix such that all
its principal minors are different from zero. The expression

(f, g)S = (f(c0), f(c1), . . . , f(cN−1))A




g(c0)
g(c1)

...
g(cN−1)


 + 〈u, f (N)g(N)〉,(2.1)

wherec0, c1, . . . , cN−1 are distinct real numbers, defines a symmetric bilinear form onP.
Since expression (2.1) involves derivatives, this bilinear form is non-standard, and by

analogy with the usual terminology we call it adiscrete–continuous Sobolev bilinear form.
Let

wN (x) =
N−1∏
i=0

(x − ci).

In the linear space of real polynomials, we can consider the basis given by

B =
{
{li(x)}i=0,1,...,N−1 ,

{
wN (x)xj

}
j≥0

}
,

where

li(x) =
N−1∏
j=0
j 6=i

x − cj

ci − cj
, i = 0, 1, . . . , N − 1,

are Lagrange polynomials.
For n ≤ N − 1, the associated Gram matrixGn is given by then-th order principal

submatrix of the matrixA. Forn ≥ N , the associated Gram matrix is given by

Gn =
(

A 0
0 Bn−N

)
,

whereBn−N is the Gram matrix associated with the quasi-definite linear functionalu in the
basisB̃ =

{
D(N)[wN (x)xj ], j ≥ 0

}
. In both cases,Gn is quasi-definite and therefore, the

discrete–continuous Sobolev bilinear form (2.1) is quasi-definite. Thus, we can assure the
existence of a sequence of monic polynomials, denoted by{Qn}n, which is orthogonal with
respect to (2.1). These polynomials will be calledSobolev orthogonal polynomials.

THEOREM2.1. Let{Qn}n be the MOPS with respect to the Sobolev discrete–continuous
form (2.1) and let{Pn}n be the MOPS associated with the regular linear functionalu.
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i) The polynomials{Qn}N−1
n=0 are orthogonal with respect to the discrete bilinear form

(f, g)D = (f(c0), f(c1), . . . , f(cN−1))A




g(c0)
g(c1)

...
g(cN−1)


 ,(2.2)

ii) If n ≥ N , then

Qn(ci) = 0, i = 0, 1, . . . , N − 1,(2.3)

Q(N)
n (x) =

n!
(n − N)!

Pn−N (x).(2.4)

Proof. i) If 0 ≤ n, m < N , thenQ
(N)
n (x) = Q

(N)
m (x) = 0, and obviously

(Qn, Qm)S = (Qn, Qm)D = (Qn(c0), Qn(c1), . . . , Qn(cN−1))A




Qm(c0)
Qm(c1)

...
Qm(cN−1)


 .

ii) For n ≥ N , from the orthogonality of the polynomialQn, we deduce

0 = (Qn, li)S = (Qn, li)D = (Qn(c0), Qn(c1), . . . , Qn(cN−1))A




li(c0)
li(c1)

...
li(cN−1)




= (Qn(c0), Qn(c1), . . . , Qn(cN−1))A




0
...
1
...
0




,

for 0 ≤ i ≤ N − 1. Thus, the vector

(Qn(c0), Qn(c1), . . . , Qn(cN−1)),

is the only solution of a homogeneous linear system withN equations andN unknowns,
whose coefficient matrixA is regular. We conclude thatQn(ci) = 0, i = 0, 1, . . . , N − 1,
i.e.,Qn contains the factor(x − c0)(x − c1) · · · (x − cN−1).

In this way, ifn, m ≥ N ,

(Qn, Qm)S = 〈u, Q(N)
n Q(N)

m 〉 = k̃nδn,m, k̃n 6= 0.

Thus, the polynomials{Q(N)
n }n≥N are orthogonal with respect to the linear functionalu, and

equality (2.4) follows from a simple inspection of the leading coefficients.

Conversely, we are going to show that a system of monic polynomials{Qn}n satisfying
equations (2.3) and (2.4) is orthogonal with respect to some discrete–continuous Sobolev
form like (2.1). This result could be considered aFavard-type theorem.
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THEOREM 2.2. Let {Pn}n be the MOPS associated with a regular linear functionalu
andN ≥ 1 be a given integer. Let{Qn}n be a sequence of monic polynomials satisfying
i) deg Qn = n, n = 0, 1, . . . ,
ii) Qn(ci) = 0, 0 ≤ i ≤ N − 1, n ≥ N,

iii) Q
(N)
n (x) = n!

(n−N)!Pn−N (x), n ≥ N .
Then, there exists a quasi-definite and symmetric real matrixA, of orderN , such that

{Qn}n is the monic orthogonal polynomial sequence associated with the Sobolev bilinear
form defined by (2.1).

Proof. Obviously the polynomialQn, with n ≥ N , is orthogonal to every polynomial of
degree less than or equal ton−1 with respect to a Sobolev bilinear form like (2.1), containing
an arbitrary matrixA in the discrete part and the functionalu in the second part.

Next, we will show that we can recover the matrixA from the N first polynomials
Qk, k = 0, 1, . . . , N − 1.

Introduce

Q =




Q0(c0) Q0(c1) . . . Q0(cN−1)
Q1(c0) Q1(c1) . . . Q1(cN−1)

...
...

...
QN−1(c0) QN−1(c1) . . . QN−1(cN−1)


 .

The matrixQ is regular since the system of linearly independent polynomials{Qn}N−1
n=0

satisfies the Haar condition (see [3]).
Let D be a diagonal regular matrix. Define

A = Q−1D(Q−1)T .

ObviouslyA is symmetric and quasi-definite and since

QAQT = D,

the polynomialsQ0, Q1, . . . , QN−1 are orthogonal with respect to the bilinear form (2.1),
with the matrixA in the discrete part. Moreover, the diagonal entries ofD are(Qk, Qk)S for
k = 0, 1, . . . , N − 1.

REMARK. Observe that the matrixA is not unique, because its construction depends on
the arbitrary regular matrixD.

3. Examples.

3.1. Laguerre case.Let α ∈ R, and introduce the monic generalized Laguerre polyno-
mials, cf. [8, p. 102],

L(α)
n (x) = (−1)nn!

n∑
j=0

frac(−1)jj!
(

n + α
n − j

)
xj , n ≥ 0,

where

(
a
k

)
denotes the generalized binomial coefficient

(
a
k

)
=

(a − k + 1)k

k!

and(b)k denotes thePochhammer’s symboldefined by

(b)0 = 1, (b)n = b(b + 1) . . . (b + n − 1), b ∈ R, n ≥ 0.
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When α is not a negative integer, Laguerre polynomials are orthogonal with respect to a
regular linear functionalu(α). This linear functional is positive definite forα > −1.

We know that the derivatives of Laguerre polynomials are again Laguerre polynomials

d

dx
L(α)

n (x) = nL
(α+1)
n−1 (x), n ≥ 1.

Let {Qn}n be the sequence of monic polynomials given by

Qn(x) = L(α−N)
n (x), n = 0, 1, . . . , N − 1,(3.1)

Qn(x) = L(α−N)
n (x) −

N−1∑
i=0

L(α−N)
n (ci)li(x), n ≥ N,(3.2)

whereli(x), i = 0 . . . N − 1, are the Lagrange polynomials. It follows from Theorem 2.2
that the sequence{Qn}n is orthogonal with respect to the Sobolev bilinear form

(f, g)S = (f(c0), f(c1), . . . , f(cN−1))A




g(c0)
g(c1)

...
g(cN−1)


 + 〈u(α), f (N)g(N)〉,

wherec0, c1, . . . , cN−1 are distinct real numbers and the matrixA is given by

A = Q−1D(Q−1)T ,

Q is the matrix of Laguerre polynomials{L(α−N)
n }N−1

n=0 evaluated atc0, c1, . . . , cN−1, i.e.,

Q =
(
L(α−N)

n (ci)
)

i,n=0,...,N−1

andD is an arbitrary regular diagonal matrix.

3.2. Jacobi case.Forα andβ real numbers, the generalized Jacobi polynomials can be
defined by means of their explicit representation

P (α,β)
n (x) =

n∑
m=0

(
n + α

m

) (
n + β
n − m

) (
x − 1

2

)n−m (
x + 1

2

)m

, n ≥ 0,

see [8, p. 68].
Whenα andβ are nonnegative integers, Jacobi polynomials are orthogonal with respect

to a regular linear functionalu(α,β). This linear functional is positive definite forα, β > −1.
Let P̃

(α,β)
n (x), n ≥ 0, be monic Jacobi polynomials. We know that the derivatives of

Jacobi polynomials are again Jacobi polynomials

d

dx
P̃ (α,β)

n (x) = nP̃
(α+1,β+1)
n−1 (x), n ≥ 1.

Let {Qn}n be the sequence of monic polynomials given by

Qn(x) = P̃ (α−N,β−N)
n (x), n = 0, 1, . . . , N − 1,(3.3)

Qn(x) = P̃ (α−N,β−N)
n (x) −

N−1∑
i=0

P̃ (α−N,β−N)
n (ci)li(x), n ≥ N,(3.4)
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whereα, β andα + β − 2N + 1 are not negative integers. It follows from Theorem 2.2 that
the sequence{Qn}n is orthogonal with respect to the Sobolev bilinear form

(f, g)S = (f(c0), f(c1), . . . , f(cN−1))A




g(c0)
g(c1)

...
g(cN−1)


 + 〈u(α,β), f (N)g(N)〉,

wherec0, c1, . . . , cN−1 are distinct real numbers and the matrixA is given by

A = Q−1D(Q−1)T ,

where

Q =
(
P̃ (α−N,β−N)

n (ci)
)

i,n=0,...,N−1

andD is an arbitrary regular diagonal matrix.

REMARK. Jacobi polynomials{P̃ (−1,−1)
n }n≥2 contain forn ≥ 2, the factorx2 − 1.

Therefore, forα = β = 1, N = 2 andc0 = 1, c1 = −1, Theorem (2.2) provides Sobolev
orthogonality for these polynomials (see [6]).

4. Sobolev Orthogonal Polynomials and Interpolation.Let {Qn}n be the MOPS
with respect to the Sobolev discrete–continuous form (2.1) and let{Pn}n be the MOPS as-
sociated with the regular linear functionalu. Then the polynomials{Qn}n can be expressed
as the interpolation error of aN–th primitive of{Pn−N}n≥N

THEOREM 4.1. Let the MOPS{Qn}n and{Pn} be defined as above, and let{Rn}n≥N

be a sequence ofN -th monic primitives of the polynomials{Pn−N}n≥N . Then

Qn(x) = Rn[c0, c1, . . . , cN−1, x]
N−1∏
i=0

(x − ci), n ≥ N,

whereRn[c0, c1, . . . , cN−1, x], n ≥ N , denotes the usual divided difference.
Proof. Integrating in (2.4)N times, we obtain

Qn(x) = Rn(x) +
N−1∑
i=0

Aili(x), n ≥ N,

whereli(x), i = 0, . . . , N − 1, are the Lagrange polynomials. Using (2.3), we deduce

Ai = −Rn(ci), i = 0, . . . , N − 1.

Hence

Qn(x) = Rn(x) −
N−1∑
i=0

Rn(ci)li(x), n ≥ N,

i.e., forn ≥ N , Qn(x) for n ≥ N is the error of interpolation of the polynomialRn(x) at
c0, c1, . . . , cN−1 (see [10], p. 49), and therefore

Qn(x) = Rn[c0, c1, . . . , cN−1, x]
N−1∏
i=0

(x − ci), n ≥ N,
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whereRn[c0, c1, . . . , cN−1, x], n ≥ N , are the divided differences.

REMARK. In section 3 we observe thatQn, n ≥ 0, given by (3.1) and (3.2), is
the interpolation error of Laguerre polynomialsL

(α−N)
n at c0, c1, . . . , cN−1. Analogously

Qn, n ≥ 0, given by (3.3) and (3.4), is the interpolation error of Jacobi polynomials
P

(α−N,β−N)
n at c0, c1, . . . , cN−1.

THEOREM 4.2. Let {Rn}n be a sequence of monic polynomials such thatdeg Rn =
n, n = 0, 1, . . ., and let{Qn}n be the sequence of polynomials determined by

Qn(x) = Rn(x), n = 0, 1, . . . , N − 1,(4.1)

and let

Qn(x) = Rn(x) −
N−1∑
i=0

Rn(ci)li(x), n ≥ N,(4.2)

wherec0, c1, . . . , cN−1 are distinct real numbers.

If {R(N)
n }n≥N is an orthogonal polynomial sequence with respect to some regular linear

functionalu, then there exists a quasi-definite and symmetric real matrixA, of orderN , such
that{Qn}n≥N is the MOPS associated with the Sobolev bilinear form defined by (2.1).

Proof. By (4.1) and (4.2) we havedeg Qn = deg Rn = n, and forn ≥ N we have

Qn(cj) = Rn(cj) −
N−1∑
i=0

Rn(ci)li(cj) = Rn(cj) −
N−1∑
i=0

Rn(ci)δij = 0.

Moreover,

Q(N)
n (x) = R(N)

n (x) =
n!

(n − N)!
Pn−N (x), n ≥ N,

where{Pn}n is the MOPS associated withu.
From Theorem (2.2) it follows that{Qn}n is the MOPS with respect to the bilinear form
defined by (2.1), where

A = R−1D(R−1)T

R =




R0(c0) R0(c1) . . . R0(cN−1)
R1(c0) R1(c1) . . . R1(cN−1)

...
...

...
RN−1(c0) RN−1(c1) . . . RN−1(cN−1)




=




Q0(c0) Q0(c1) . . . Q0(cN−1)
Q1(c0) Q1(c1) . . . Q1(cN−1)

...
...

...
QN−1(c0) QN−1(c1) . . . QN−1(cN−1)


 ,

andD is an arbitrary regular diagonal matrix.
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5. Sobolev Orthogonal Polynomials and Approximation. This kind of discrete–
continuous Sobolev orthogonality can be related to simultaneous polynomial interpolation
and approximation when (2.1) is an inner product. Assume thatu is positive definite and that
A is a positive definite, symmetric and real matrix. Sinceu is positive definite, there exists a
positive definite Borel measureµ satisfying

〈u, f〉 =
∫
R

f(x)dµ(x)

(see [2, p. 57]), and the discrete–continuous Sobolev inner product (2.1) can be written as

(f, g)S = (f(c0), f(c1), . . . , f(cN−1))A




g(c0)
g(c1)

...
g(cN−1)


+

∫
R

f (N)(x)g(N)(x)dµ(x).(5.1)

Let I the convex hull of the set supp(µ) ∪ {ci}N−1
i=0 , and introduce the Sobolev space

WN
2 [I, dµ] = {f : I −→ R; f ∈ CN−1(I), f (N) ∈ L2

µ(I)}.

Define the norm|f |S =
√

(f, f)S in WN
2 [I, dµ]; thusWN

2 [I, dµ] becomes a normed
linear space (see [3], p. 160). This space is strictly convex (see [3], p. 141). Therefore the
problem of best approximation inWN

2 [I, dµ] has a unique solution.
We want to compute the best approximation off ∈ WN

2 [I, dµ] related toPn. It is well
know thatv ∈ Pn is the best approximation off ∈ WN

2 [I, dµ] if and only if f − v is
orthogonal toPn.

THEOREM 5.1. Let f ∈ WN
2 [I, dµ]. The best approximation off in (Pn, (·, ·)S) is

the N–th primitive of the best approximation off (N) in (Pn−N , dµ) that interpolatesf at
c0, c1, . . . , cN−1.

Proof. Let w be the best approximation off (N) in (Pn−N , dµ). Let v be theN–th order
primitive of w that interpolatesf at c0, c1, . . . , cN−1. Therefore

(f − v, q)S = (f − v, q)D +
∫
R

(f (N) − v(N))q(N)dµ

= (f − v, q)D +
∫
R

(f (N) − w)q(N)dµ = 0, ∀q ∈ Pn.

Thus,v is the best approximation off in (Pn, (·, ·)S).

Let {Qn}n be the MOPS with respect to the Sobolev discrete–continuous inner product
(5.1). Letv be the best approximation off ∈ WN

2 [I, dµ] in (Pn, (·, ·)S).
We know that

v =
n∑

i=0

(f, Qi)S

‖ Qi ‖2
S

Qi,

where
(f, Qi)S

‖ Qi ‖2
S

are the Fourier coefficients ofv.

THEOREM 5.2. Let{Qn}n andv be defined as above.
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i) If n ≤ N − 1, then

v =
n∑

i=0

(f, Qi)D

‖ Qi ‖2
D

Qi.

ii) If n ≥ N , then

v =
N−1∑
i=0

(f, Qi)D

‖ Qi ‖2
D

Qi +
n∑

i=N

(i − N)!
i!

〈u, f (N)Pi−N 〉
〈u, P 2

i−N 〉 Qi.

REMARK. We observe that the coefficients

〈u, f (N)Pi−N 〉
〈u, P 2

i−N 〉

are the Fourier coefficients of the best approximation off (N) in (Pn−N , dµ).
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