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EFFICIENT EXPANSION OF SUBSPACES IN THE JACOBI-DAVIDSON METHOD
FOR STANDARD AND GENERALIZED EIGENPROBLEMS �

GERARD L.G. SLEIJPEN�, HENK A. VAN DER VORST�, AND ELLEN MEIJERINKy

Abstract. We discuss approaches for an efficient handling of the correction equation in the Jacobi-Davidson
method. The correction equation is effective in a subspace orthogonal to the current eigenvector approximation. The
operator in the correction equation is a dense matrix, but it is composed from three factors that allow for a sparse
representation. If the given matrix eigenproblem is sparse then one often aims for the construction of a preconditioner
for that matrix. We discuss how to restrict this preconditioner effectively to the subspace orthogonal to the current
eigenvector. The correction equation itself is formulated in terms of approximations for an eigenpair. In order to
avoid misconvergence one has to make the right selection for the approximations, and this aspect will be discussed
as well.

Key words. linear eigenproblems, generalized eigenproblems, Jacobi-Davidson, harmonic Ritz values, precon-
ditioning.
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1. Introduction. We will assume thatA is ann by n matrix and we are interested in
some of the eigenvalues and eigenvectors ofA. The Jacobi-Davidson method [14] is based
on the following two principles. The first one is to apply a Ritz-Galerkin approach for the
eigenproblemAx = �x, with respect to some given subspace spanned byv1, : : :, vk. The
usage of other than Krylov subspaces was suggested by Davidson [1], who also suggested
specific choices for the construction of orthonormal basis vectorsvj . If we defineVk as the
matrix with columnsv1 up tovk, then any vectorx in the subspace can be written asx = Vks,
wheres is a vector of lengthk. Approximate eigenpairs(�; x) follow from the Ritz-Galerkin
condition:

AVks� �Vks ? fv1; : : : ; vkg;

and this leads to the reduced system

V �
k AVks� �s = 0:(1.1)

Equation (1.1) hask solutions(�(k)j ; s
(k)
j ). Thek pairs(�(k)j ; u

(k)
j � Vks

(k)
j ) are called the

Ritz values and Ritz vectors, respectively, ofA with respect to the subspace spanned by the
vj . For certain choices of thevj these Ritz pairs form suitable approximations for eigenpairs
of A.

The other principle behind the Jacobi-Davidson approach goes back to Jacobi [6]. Sup-
pose that we have an eigenvector approximationu

(k)
j for a given eigenvalue�. Then Jacobi

suggested (in the original paper for strongly diagonally dominant symmetric matrices) to
compute the orthogonal correctiont for u(k)j so that

A(u
(k)
j + t) = �(u

(k)
j + t):

Sincet ? u
(k)
j , we can restrict ourselves to the subspace orthogonal tou

(k)
j . The operatorA

restricted to that subspace is given by

(I � u
(k)
j u

(k)
j

�
)A(I � u

(k)
j u

(k)
j

�
);
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and, withr(k)j � (A� �
(k)
j I)u

(k)
j , we find thatt satisfies the equation

(I � u
(k)
j u

(k)
j

�

)(A� �I)(I � u
(k)
j u

(k)
j

�

)t = �r
(k)
j :

In practical situations we do not know� and the obvious solution to this is to replace it by its
approximation�(k)j , which leads to theJacobi-Davidson correction equationfor the update
t(k):

(I � u
(k)
j u

(k)
j

�
)(A� �

(k)
j I)(I � u

(k)
j u

(k)
j

�
)t(k) = �r

(k)
j :(1.2)

This correction equation is often solved only approximately and its approximate solution
~t(k) is taken for the expansion of the subspace. This is the fundamental difference with the
Krylov subspace methods; instead of selecting a subspace as powers of an operator acting on
a given starting vector, we select some subspace without Krylov structure and we project the
given eigenproblem onto that subspace. Any approximation technique foret(k) is allowed in

the Jacobi-Davidson framework, provided that the projectors(I � u
(k)
j u

(k)
j

�
) are taken into

account.
It can be shown that the selection of the exact solutiont(k) of (1.2) leads to quadratic

convergence of the largest�(k)j towards�max(A), for increasingk (similar statements can be
made for the convergence towards other eigenvalues ofA, provided that the Ritz values are
selected appropriately in each step). The convergence is even cubic ifA is symmetric.

The Jacobi-Davidson correction equation (1.2) is the key ingredient of the method and
it is important to focus on how this equation can be handled. We will discuss the following
aspects of solving this equation:

1. A frequently occurring situation is that one has some sparse approximation for the
matrix (A � �

(k)
j I). If one wishes to use that approximation as a preconditioner for the

iterative solution of (1.2), then one has to restrict the preconditioner also to the subspace
orthogonal tou(k)j . It may be not so obvious how to handle all the projections involved, but
as we will see inx3, preconditioning can be implemented quite efficiently. In our discussions
we will also include the generalized eigenproblemAx = �Bx.

2. The proper choice of the pair(�(k)j ; u
(k)
j ) is not a trivial one, especially not if one is

heading for an interior eigenvalue�. A nearby Ritz value does not necessarily represent the
best choice. We will discuss this aspect inx4.

3. Finally, we will collect some reflections on the choice of preconditioners inx5. In
particular, we will discuss stability effects, associated with ill-conditioning of(A � �

(k)
j I)

when�(k)j is close to�.
Before we start our discussions on these aspects, we will first describe the Jacobi-

Davidson process for the generalized eigenproblemAx = �Bx. It turns out that much of
our discussion for the standard eigenproblem carries over to the generalized eigenproblem.

2. The generalized eigenproblem.The Jacobi-Davidson approach can also be fol-
lowed for computing a few selected eigenpairs of generalized eigenproblems [16, 3] of the
form

Ax� �Bx = 0:(2.1)

Here we suggest to follow a Petrov-Galerkin method for the construction of approximate
solutions. An approximate solution in a search subspace spanned byv1; : : : ; vk is tested
against a test subspace spanned by vectorsw1; : : : ; wk:

AVks� �BVks ? fw1; : : : ; wkg:(2.2)



ETNA
Kent State University 
etna@mcs.kent.edu

Gerard Sleijpen, Henk Van Der Vorst, and Ellen Meijerink 77

As before,Vk is the matrix with the vectorsvj as its columns. LikewiseWk is the matrix with

columnswj . Thek-vectors(k)j and the scalar�(k)j denote a solution of thek-dimensional
generalized eigenvalue problem

W �
kAVks

(k)
j � �

(k)
j W �

kBVks
(k)
j = 0:(2.3)

The pair(�(k)j ; u
(k)
j � Vks

(k)
j ) will be considered as approximation for an eigenpair ofA.

The value�(k)j will be called a Petrov value andu(k)j is a Petrov vector.
Of course, the test subspace could have been chosen to be equal to the search subspace, but
linear combinations ofAVk andBVk, seem to be more effective; seex4 and [16, 3],

We define the residualr(k)j asr(k)j � �(A � �
(k)
j B)u

(k)
j . The search subspace is ex-

panded by the solutiont(k) ? u
(k)
j of the Jacobi-Davidson correction equation

(I � q
(k)
j q

(k)
j

�

)(A� �
(k)
j B)(I � u

(k)
j u

(k)
j

�

)t(k) = �r
(k)
j :(2.4)

The selected Petrov vectoru(k)j and the “test” vectorq(k)j are assumed to be normalized. For
fast, asymptotically quadratic convergence, this test vector should be a linear combination of
Au

(k)
j andBu(k)j , and orthogonal to the residualr

(k)
j [16, 3]. In practical situations, we solve

equation (2.4) only approximately under these conditions, which leads to an approximationet(k). Of course, we loose the asymptotical quadratic convergence in that case.

3. Preconditioning for Jacobi-Davidson.

3.1. Preconditioning for the standard eigenproblem.If we solve the correction equa-
tion (1.2) approximately by replacing the operatorA��

(k)
j I by some approximationPk , then

we obtain the following simple formula foret(k):
et(k) = �P�1

k rk + �P�1
k u

(k)
j :

The value for� follows from the orthogonality constraintet(k) ? u
(k)
j . The resulting formula

was proposed by Olsen et al [8]. Note that we need two actions with the preconditioner for
the computation ofet(k).

We will now discuss how to use preconditioning for an iterative solver for the approx-
imate solution of equation (1.2). We can then derive ‘Olsen’-like formulas for the vectors
occurring in the iteration process, but, as we will see, we will need only one action with the
preconditioner per iteration step. Of course, the preconditionerPk has to be restricted to the
subspace orthogonal tou(k)j as well, which means that we have to work effectively with

ePk = (I � u
(k)
j u

(k)
j

�
)Pk(I � u

(k)
j u

(k)
j

�
):

This may look quite complicated, but it is not that difficult to work withePk, as we will show
now. We will first discuss the usage ofePk as a left-preconditioner.

3.1.1. Left-preconditioning. We will assume that we apply a Krylov solver like MIN-
RES [10], or GMRES, etc., with starting vectort(k)0 = 0. With left-preconditioning we apply

the iterative solver with the operatoreP�1
k

eA, with eA = (I � u
(k)
j u

(k)
j

�

)(A � �
(k)
j I)(I �

u
(k)
j u

(k)
j

�

). It is easy to see that, because of the factors(I � u
(k)
j u

(k)
j

�

), all vectors in the

iterative solution process will be orthogonal tou(k)j .
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In the solution process we will have to compute the vectorz = eP�1
k

eAy, for vectorsy

generated in the Krylov solver. This can be done in two stages. Note thaty ? u
(k)
j , which

simplifies the computation in the first stage. If we defineey � (A � �
(k)
j I)y, then we have

that:

eAy = (I � u
(k)
j u

(k)
j

�
)(A� �

(k)
j I)(I � u

(k)
j u

(k)
j

�
)y

= (I � u
(k)
j u

(k)
j

�
)(A� �

(k)
j I)y

= (I � u
(k)
j u

(k)
j

�
)ey:

Then we solvez from ePkz = (I � u
(k)
j u

(k)
j

�
)ey, or, expressed in terms ofPk:

(I � u
(k)
j u

(k)
j

�
)Pk(I � u

(k)
j u

(k)
j

�
)z = (I � u

(k)
j u

(k)
j

�
)ey:

Sincez has to be orthogonal tou(k)j , it is not difficult to see that the above expression can be
rewritten as

Pkz = ey � �u
(k)
j :(3.1)

Let �y be the solution ofPk�y = ey, and�u the solution ofPk�u = u
(k)
j . Then it follows from

(3.1) that

z = �y � ��u:(3.2)

The orthogonality constraint onz gives the formula for�:

� =
u
(k)
j

�
�y

u
(k)
j

�
�u
:(3.3)

Since�u andu(k)j

�
�u have to be computed only once at the start of the iterative solution process

for (1.2), we see that each action with the preconditioned operator involves only one matrix-
vector product, one action with the preconditioner, one inner product, and one vector update.
This is quite surprising in view of the four projections that play a role in the formal definitions
of the involved operators.

3.2. Preconditioning for the generalized eigenproblem.Although the operator in the
correction equation (2.4) can be viewed as acting on the subspaceu?j , it is defined on the
whole n-dimensional space. The projection factors take care for the proper action of the
operators in the(n � 1)-dimensional subspace. The fact that the image subspaceq?j may
differ from the original subspaceu?j raises another problem. Iterative linear solvers of Krylov
subspace type require that the operator is defined on its image subspace as well. Krylov
subspace methods, as GMRES [12] and Bi-CGSTAB methods [19, 13], subject to appropriate
preconditioning, can cope with this difficulty: the preconditioner can be designed to map
the image subspace to the original subspace, while the Krylov subspace solver keeps the
approximate solutions of the linear system in the original subspace.

A preconditioner for the generalized problem can be implemented in a way similar to the
standard eigenproblem (x3.1).
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Suppose thatPk is an approximation ofA� �kB that leads to systemsPkx = y that can
be solved efficiently. Since the preconditioner has to be restricted to subspaces of dimension
n� 1, we have to work effectively with (cf.x3.1)

~Pk � (I � q
(k)
j q

(k)
j

�
)Pk(I � u

(k)
j u

(k)
j

�
):(3.4)

The solutionz of the system

z ? u
(k)
j ; ~Pkz = y;(3.5)

for y ? q
(k)
j , can be written as

z = ~y � ~q

�
1

�
u
(k)
j

�
~y

�
;(3.6)

where~y � P�1
k y, ~q � P�1

k q
(k)
j , and� � u

(k)
j

�
~q. Obviously, the same vector~q and the scalar

� can be used for different right-hand side vectorsy. Note also that, for an arbitrary vectory,
the vectorz computed as in (3.6) satisfies the equation

z ? q
(k)
j ; ~Pkz = (I � q

(k)
j q

(k)
j

�
)y:(3.7)

This observation leads to a simplification in the computations with left-preconditioningwithin
the Krylov solver.

An action of a preconditioned operator in a Krylov method on, say, a vectorv, consists,
in the case of left preconditioning, of a multiplication by the projected matrix

y = (I � q
(k)
j q

(k)
j

�

)(A� �
(k)
j B)(I � u

(k)
j u

(k)
j

�

)v;(3.8)

followed by solving the preconditioning equation (3.5). Whenv is orthogonal tou(k)j , equa-
tions (3.7) and (3.8) show that this is equivalent to a multiplication byA� �jB, the compu-
tation ofy = (A � �jB)v, followed by the computation ofz as in (3.6). Here, we used that

(I � q
(k)
j q

(k)
j

�
)(I � q

(k)
j q

(k)
j

�
) = (I � q

(k)
j q

(k)
j

�
). Since the result vectorz is orthogonal to

u
(k)
j , we see that the Krylov subspace for the linear solver and the preconditioned operator can

be built with multiplications by the matrixA� �jB itself (no projections!) and precondition-

ing steps as in (3.6), provided that the initial guess is orthogonal tou
(k)
j . The preconditioning

step (3.6) can be coded as a standard preconditioning “solvePk~y = y ”, followed by a skew

projection “z = (I � ~q 1
�
u
(k)
j

�
)~y ”.

Note that the choicePk = I provides on operator that maps the image subspace of
the operator in (2.4) back to the original subspace and this is necessary if one has no other
preconditioner available for an iterative solution process.

3.2.1. Right preconditioning. In practice, it may be inefficient to solve the correction
equation accurately. Often a moderate accuracy already leads to efficient performance of the
Jacobi-Davidson method. If the solution of the correction equation is more accurate, then
it may be expected to form a better expansion vector for the search subspace and to lead to
accurate eigenvector approximations for smallerk. It is usually unknown what degree of
accuracy leads to the most efficient overall performance.

The Jacobi-Davidson method can be viewed as an accelerated inexact Newton method
(see [15]). For inexact Newton methods there are some guidelines in the literature (cf., e.g.,
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[2]) for effective reduction factors for the residuals in the Newton steps. The suggestion to
solve the Jacobian systemDF (xk)h = rk in stepk of the Newton method with a residual
reduction by a factor2�k (that is,krk �DF (xk)~hk2=krkk2 � 2�k, xk+1 = xk + ~h) seems
to work well also for the Jacobi-Davidson method [3]1 Since residuals for a a right precon-
ditioned system are also residuals for the unpreconditioned system, the right preconditioning
seems to be more suitable for the “2�k-criterion”.

If ~t solves

(A� �B) ~P y
k
~t = �rk; where ~P y

k �

�
I � ~q

1

�
u
(k)
j

�
�
P�1
k(3.9)

(cf. (3.7) and (3.6)), then orthogonality ofrk with respect toq(k)j implies thatt = ~P y
k
~t solves

(2.4). Also in this case of right preconditioning, the preconditioned operator can be written as
the product of a standard preconditioning step, a skew projection, and a multiplication by the
matrixA��jB. However, since the image of the operator in (3.9) needs not to be orthogonal

to q
(k)
j , (3.9) may be inconsistent. Therefore, an iterative solution of (2.4) with right instead

of left preconditioning requires an additional post projection withI � q
(k)
j q

(k)
j

�
in each step

of the iterative method.

3.2.2. Preconditioning for a deflated eigenproblem.If more than one eigenvector is
wanted, then the target can be re-selected after detection of an eigenpair. Especially when
nearby eigenvalues are computed, deflation with the detected eigenvectors is recommended,
since this improves the performance of the method considerably [3]. For stability and effi-
ciency reasons, eigenpairs for (2.1) are computed via partial Schur decompositions. Deflation
is also based on these decompositions.

A partial Schur decomposition for the pencilA, B is of the form

AQ` = Z`S; BQ` = Z`T;(3.10)

with Q` andZ` orthonormaln by ` matrices andS andT upper triangular̀ by ` matrices.
Eigenpairs for thè-dimensional generalized eigenproblemSy � �Ty = 0 yield eigenpairs
for the originaln-dimensional eigenproblem (2.1).

Suppose that a partial Schur decomposition (3.10) for a value of` has been computed
already. Then the next Schur pairu; q satisfies

A
�
Q` u

�
=
�
Z` q

� � S a
0� �s

�
; B

�
Q` u

�
=
�
Z` q

� � T b
0� �c

�
;(3.11)

and (see [3])u is precisely the solution of

u ? Q`; �c(I � Z`Z
�
` )A(I �Q`Q

�
` )u� �s(I � Z`Z

�
` )B(I �Q`Q

�
`)u = 0:(3.12)

In other words,(�s=�c; u) is an eigenpair of the deflated system.
The Jacobi-Davidson method can be applied to solve (3.12). If(�

(k)
j ; u

(k)
j ), with u

(k)
j ?

Q` andu(k)j ? Vk, is an approximate eigenpair for (3.12), then, for some appropriateq
(k)
j ?

Z, the correction equation for (3.12) reads as

(I � [Z`; q
(k)
j ] [Z`; q

(k)
j ]�)(A� �

(k)
j B)(I � [Q`; u

(k)
j ] [Q`; u

(k)
j ]�)t = �rk;(3.13)

1This was also mentioned by A. Stathopoulos (personal communication).
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whererk is the residual for the deflated system,

�rk � �(I � Z`Z
�
` )(A� �

(k)
j B)(I �Q`Q

�
` )u

(k)
j ;(3.14)

andt ? [Q`; uj(k)] is the wanted expansion vector for the search subspaceVk.
The correction equation (3.13) can be obtained directly from correction equation (2.4),

simply by replacingq(k)j with [Z`; q
(k)
j ] andu(k)j with [Q`; u

(k)
j ]. Incorporating a precon-

ditioner for the deflated equation can be done in a similar way: ifPk is a preconditioner
for A � �

(k)
j B, then the approaches in the preceding subsections 3.2 and 3.2.1, withq

(k)
j re-

placed with[Z`; q
(k)
j ] andu(k)j with [Q`; u

(k)
j ], give a correct way of handling of the projected

preconditioner for (3.13). Then� transforms into thè + 1 by `+ 1 matrix

[Q`; u
(k)
j ]P�1

k [Z`; q
(k)
j ] =

"
Q�

`P
�1
k Z` Q�

` ~q

u
(k)
j

�
P�1
k Z` u

(k)
j

�
~q

#
; with ~q � P�1

k q
(k)
j

and 1
�

should be interpreted as matrix inversion.

4. The selection of approximate eigenpairs.The pair(�; u � Vks) may be considered
as the best approximate eigenpair in the search subspace if it solves the minimization problem

min
�;u

fkAu� �Buk j u = Vks; kuk2 = 1g:

However, solving this problem is computationally more expensive than solving the Petrov-
Galerkin system (2.3), and there may be Petrov-Galerkin solutions that are of comparable
quality if the test subspace is appropriately chosen.

First, inx4.1, we will argue that test subspaces for so-called harmonic-Petrov values are
appropriate and then, inx4.2, we will discuss an approach for finding the best approximate
eigenvectors among the set ofk Petrov vectors.

4.1. Harmonic Ritz values for standard eigenproblems.In order to simplify our dis-
cussions, we will assume thatA is normal andB = I (a standard eigenproblem). Then, there
is an orthonormal basis of eigenvectors.

For a Ritz pair(�; u � Vks), the search subspace is also the test space and(�; u) satisfies
Au � �u ? Vk . Hence� = (Au; u)=(u; u), from which it can be deduced that� is a
convex combination

P
i 
i�i of the eigenvalues�i. If � is close to an extremal eigenvalue

�i0 then this eigenvalue will give a major contribution to�, that is,
i � 
i0 (i 6= i0) and,
consequently, the Ritz vectoru will have a small angle with the eigenvector associated with
�i0 : 
i0 is the square of the cosine of this angle. If we are interested in this eigenvector, then
we can safely select this Ritz pair for the Jacobi-Davidson correction equation. If� is close
to an interior eigenvalue�i0 then
i0 can very well be negligible:� may be a combination of,
for instance, eigenvalues far to the left and far to the right of�.
Conclusion: if we are interested in extremal eigenvalues, say the one with smallest real part,
then the Ritz pair, with Ritz value of smallest real part, forms a safe choice, at least for the
Jacobi-Davidson correction equation, when we have some degree of convergence. For interior
eigenvalues, the approach with Ritz pairs may fail.

Suppose that we are interested in eigenvalues close to some target value� in the interior
of the spectrum ofA. Since(A � �I)�1x = x=� impliesAx = (� + �)x, we see that
eigenvalues close to� correspond to large, extremal, eigenvalues of(A��I)�1. Therefore, it
is tempting to use the Ritz approach for(A��I)�1 . With a test space of the form(A��I)Vk ,
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−2

−1
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2
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−2

−1

0

1

2

FIG. 4.1.The figures show the set of eigenvalues(the�’s) of a normal matrixA (top figure), and of(A��I)�1

(bottom figure). The diamond(�) is the target value� ; the dotted circle(��) is the target eigenvalue, that is the
eigenvalue closest to� in the upper figure, the absolute largest eigenvalue in the bottom figure. The asterisk(�) is
the(harmonic) Ritz value.

the matrix inversion can be avoided. If we writey � (A� �I)Vks then

Vks�
1

�
(A� �I)Vks = (A� �I)�1y �

1

�
y

? (A� �I)Vk ;

or, equivalently, withu � Vks:

Au� (� + �)u ?Wk � (A� �I)Vk :

The Ritz approach for(A��I)�1 corresponds to the so-calledharmonic Ritzspace approach
for A, whereVk spans the search subspace andWk = (A � �I)Vk spans the test subspace.
The pair(� � � + �; u) is a harmonic Ritz pair forA � �I with respect toVk [9]. Since
multiplication byA � �I diminishes the eigenvector component which is of interest inu, u
is taken as eigenvector approximation, rather thany = (A� �I)u. Arguments for preferring
harmonic Ritz values for interior eigenvalues can be found in, e.g., [7, 14].

Apparently, misselection can be avoided, at least asymptotically, if we use harmonic Ritz
pairs in the Jacobi-Davidson correction equation for the computation of interior eigenvalues.
But in the non-Hermitian case, the harmonic Ritz value can be attractive also for extremal
eigenvalues. If, for a small positive�, A has eigenvalues, say,�1 = �, �2;3 = �i + 2� and
all other eigenvalues have real part much larger than�, then a Ritz value� = 2� may be a
combination of�2 and�3 with zero�1-component (see the top figure in Fig. 4.1). On the
other hand, since a harmonic Ritz value2� for A corresponds to a Ritz value12� for A�1, and
since the eigenvalues1

�2
and 1

�3
of A�1 are still close to the imaginary axis, the Ritz vector
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FIG. 4.2. The effect of testing with harmonic Ritz values when(�; u) approximates an eigenpair(�i0 ; xi0)
moderately well. The residualr = Au� �u is orthogonal with respect to the test subspace spanned byAu� �u.
Note thatj�i0 � � j � j�i0 � �j.

associated with12� will have a large component in the eigenvector direction of the eigenvalue
1
�1

(see the bottom figure in Fig. 4.1).

4.2. Locally minimal residuals. In this subsection, we will consider again the standard
normal eigenproblem.

In the discussion inx4.1, we considered approximate eigenvalues that are already close to
some target eigenvalue. In the non-asymptotic case, extremal Ritz values are not necessarily
the best candidates for approximating extremal eigenvalues. If, for instance,A is symmetric
with eigenvalues�i in increasing order, and the smallest Ritz value�1 is larger than�2, then
�1 may be a combination of mainly�2 and�3 with almost zero�1-component, while�2 may
have a very significant�1-component (and a smaller�n-component). Since harmonic Ritz
values close to a target� correspond to extremal Ritz values for the inverse ofA � �I , a
similar observation also holds for harmonic Ritz values with respect to interior eigenvalues
close to� .

It would be ideal to have a moderately accurate initial guess for the initial search space;
a � that is moderately close to some�i0 , while the eigenvectorxi0 associated with�i0
plus some other eigenvectors with nearby eigenvalues are moderately close to the subspace
spanned byV`, with, say, angles less than10�. Such an ideal situation is likely to occur after
restarts (provided that the target is updated) and when, after detection of an eigenpair, de-
flation is applied for the computation for a next nearby eigenpair: in the preceding steps the
search subspace will have gathered already components in the direction of the desired eigen-
vector. However, it is precisely this situation were, when using harmonic Ritz values, the con-
fusion as sketched in the previous paragraph occurs. For a harmonic Ritz pair(�; u � V`s)
we have thatAu � �u ? Au � �u. If u is directionally close toxi0 and�i0 is close to� ,
then� is far from � (see Fig. 4.2). Ifu is directionally close to an eigenvector with eigen-
value not close to� , then� will approximate that eigenvalue well: either the angle between
the harmonic Ritz vector and the target eigenvector is large or the harmonic Ritz value is far
from the target eigenvalue. It can be shown that there is a harmonic Ritz vector, in this almost
converged situation, that is directionally close to the desired eigenvector. The question is how
to detect that harmonic Ritz vector and how to avoid working with the associated harmonic
Ritz value, which seems to be inappropriate.

Efficient detection of the appropriate harmonic Ritz vector
If we have a good approximate eigenvectoruold from, for instance, a previous Jacobi-Davidson
step, then we propose to scan all harmonic Ritz vectors by computing the angle with this
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approximate eigenvector. If the angle with a harmonic Ritz vector is less than, say,45�

then we may select that harmonic Ritz vector and stop further scanning. Since the harmonic
Ritz vectors converge to an orthogonal system, we may expect correct selection already after
moderate convergence. In practice, the search matrixV` has orthonormal columns which
facilitates efficient computation of the angles, since, ifuold = V`�1sold andu = V`s then
(uold; u) = (sold; ~s), where~s is the vector composed from the first` � 1 components ofs. If
a QZ-factorization of the interaction matricesW �

` AV` andW �
` V` is used for computing the

`-dimensional vectorss, then some additional savings are possible by exploiting the structure
of the triangular matrices in the factorization.

Using locally minimal residuals
Now, suppose we have detected a harmonic Ritz vector, sayuhR, that is moderately close to
xi0 , and suppose that the associated harmonic Ritz value�hR is far from�i0 . ThenkAuhR �
�hRuhRk2 is large (in comparison withkAuhR � �uhRk2). To find a better residual and a better
approximate eigenvalue, we can simply take the value� = �locR for which kAuhR � �uhRk2
is minimal. This is precisely the Rayleigh quotient(AuhR; uhR)=(uhR; uhR), which is a Ritz
value with respect to the 1-dimensional space generated byuhR. Note that the associated
residualrlocR = (A � �locRI)uhR, the locally minimal residual, is orthogonal touhR. As for the
Ritz approach, this mixed approach with harmonic Ritz vectors and local Ritz values leads
to cubic convergence for standard normal eigenproblems, if the search subspace is expanded
with exact solutions of the associated Jacobi-Davidson correction equation

t ? uhR; (I � uhRu
�
hR)(A � �locRI)(I � uhRu

�
hR)t = �rlocR:(4.1)

Summary
The approach with harmonic Ritz values avoids misselection when we have near convergence;
selecting the approximate eigenvector from the set of harmonic Ritz vectors by inspection of
the angles with the approximate eigenvector from the preceding step avoids a poor selection
of (�j ; u

(k)
j ) in case of moderate convergence and does not lead to a significant increase in the

computational costs per step; for a selected approximate eigenvector, the norm of the residual
can be minimized by selecting a suitable approximate�j , which avoids irregular convergence.

4.3. Harmonic Petrov values for generalized eigenproblems.The approaches
sketched inxx4.1 and 4.2 can be generalized forAx = �Bx. Although, for this type of
problem, a theoretical justification can generally not be given, the approach appears to be
practical. We will sketch its main ingredients.

Suppose we are interested in eigenvalues near a target� . Thenharmonic Petrov pairs
[3] (�; u = Vks) are formed from the solutions of thek-dimensional eigenproblem (2.3),
with Wk � (A � �B)Vk (or with Wk an orthonormal matrix over(A � �B)Vk). Again,
harmonic Petrov values closest to the target� can be related to extremal Ritz values of a
matrix involving the inverse ofA � �B. However, in general the matrices involved are non-
normal and then the Ritz values can not be expressed as a convex combination of appropriate
eigenvalues. It cannot be proved that a Ritz vector is directionally close to an eigenvector if
the associated eigenvalue is extremal and close to a Ritz value. Nevertheless the approach
with harmonic Petrov vectors appears to work well.

As before, inspection of the angles, between the selected approximate eigenvector of
Jacobi-Davidson stepj versus the harmonic Petrov vectors of stepj + 1, can help to avoid
misselection in case of moderate convergence (and accurate target� ).

Minimizing the residual normkAuhR � �BuhRk2, with kuhRk2 = 1, can introduce in-
stabilities ifkBuhRk2 is small relative tokBk2, while kAuhRk2 is relatively not small: then
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the computedBuhR may be affected significantly by rounding errors, in contrast to the com-
putedAuhR. For this reason eigenvalues and approximate eigenvalues are “balanced” over
both components [11]: the residual normk�cAuhR� �sBuhRk2 is minimized over all complex
pairs(�c; �s), with �c 2 [0; 1] and�2c + j�sj

2 = 1. Then the locally minimizing residual
rlocR = �c;locRAuhR � �s;locRBuhR is proportional to the smallest singular vector of the system
E � [AuhR; BuhR]. To be more precise,rlocR = �1p1, whereE[b1; b2] = [p1; p2]diag(�1; �2)
is the singular value decomposition ofE with �1 � �2, andb1 = (�c;locR;��s;locR)

�. The
largest singular vectorp2 is orthogonal torlocR and is a linear combination ofAuhR andBuhR.
The correction equation, as in (2.4) withq(k)j replaced byp2 andrk by rlocR, leads to good
expansion vectors~t for the search subspaceVk, and, withA~t � �B~t, to suitable expansion
vectors for the test subspaceWk .

5. Some ideas for preconditioners.UnlessA has some very special structure so that
(the major part of)A can be inverted efficiently, we have to consider some kind of pre-
conditioning, for instance a preconditioner based on incompleteLU decompositions. A
major problem is that we would like to have an efficient preconditioner for the operator

(I � u
(k)
j u

(k)
j

�
)(A� �

(k)
j I)(I � u

(k)
j u

(k)
j

�
), but since this operator is represented by a dense

matrix, we focus on preconditionersK for A� �I and we use the projected preconditioner

(I � u
(k)
j u

(k)
j

�
)K(I � u

(k)
j u

(k)
j

�
):

Note that this does not necessarily lead to a good preconditioner, because we approximate
before we project. The projected preconditioner should behave like the projectedA � �I
for eigenvectors associated with eigenvalues close to�. In general this is a difficult goal to
achieve with incomplete decompositions, especially if� approximates some interior eigen-
value. This is a fundamental complication. In general it is difficult, for givenA, to identify
a successful preconditioner, but for eigenproblems the situation is even more complicated
because we also have the shift�, which varies with the eigenvalue that we are looking for. A
preconditioning technique that leads to efficient preconditioners for givenA for some values
of � may be impractical for the sameA with a different set of�’s. In particular, for values
of � located in the interior of the spectrum ofA, the matrixA� �I will be highly indefinite.
There is no guarantee that a standard incomplete decomposition will lead to errors that do not
affect the eigenvectors of the preconditioner for eigenvalues close to the wanted one. In our
experience we found that one has to admit a great deal of fill-in in order to get efficient pre-
conditioning matrices for interior eigenvalues, sometimes so much that we could have used a
full decomposition at virtually the same costs.

Sometimes the situation is more favourable. For the discretized Poisson operatorA, it
has been shown that an incomplete decompositionK has almost the same eigenvectors asA
for a few of the smallest eigenvalues. This has been used as an argument to explain the effec-
tiveness of ILU-preconditioning [18, 17]. If such a preconditioner is used for values of� close
to zero, then the ILU-process will yield a preconditioner that is also effective for a number
of nearby small eigenvalues. This helps to explain the success of ILU preconditioning in the
Jacobi-Davidson method for computing a number of the smallest eigenvalues of discretized
elliptic operators and other eigenproblems that stem from discretized pde’s. A procedure that
has been reported to work well is to construct an incomplete LU-decomposition, for the initial
target value, only once and to use this for various values of�, even for different eigenvalues
in combination with deflation [3]. In [3] it has been argued that deflation may help to improve
the effectiveness of a given fixed preconditioner, since possible large errors in the incomplete
decomposition in critical eigenvector directions may be removed by the deflation process.
In [3, x4.7] an example is given where the usage of a fixed but deflated preconditioner is
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still very efficient for the twentieth eigenvalue (when ordered algebraically), notwithstanding
the increased costs per iteration involved with deflation against the previously determined19
eigenvectors.

It is well-known that MILU [5] often leads to a significant reduction in iteration steps
when used as a preconditioner for Krylov subspace iteration methods for the solution of
discretized PDE’s with a relatively smooth solution. For an incomplete decomposition of
the 5-point discretized Poisson operator, over a rectangular grid, the diagonal elements of a
MILU decomposition are typically smaller than those for standard ILU. Consequently, the
off-diagonal decomposition errors with MILU are larger, but their effect is compensated by
corrections to the diagonal. When we try to compute, with Jacobi-Davidson, the smallest
eigenvalue of the Poisson matrixA, with corresponding smooth eigenvector, then MILU will
still work well as a preconditioner for the correction equation as long as the involved�’s are
small as well. If� is located more in the interior ofA’s spectrum, then the diagonal elements
of the MILU preconditioner will be smaller, making the decomposition errors bigger. There-
fore, for larger values of� the MILU preconditioner may be less effective or even become
unstable.
Moreover, if we want to compute interior eigenvalues ofA, then the corresponding eigenvec-
tors will also be more oscillatory and hence the errors in the MILU approximation will not
have a small effect in those eigenvector directions (remember that the error matrix in MILU
is designed to have a small effect for almost constant vectors by compensating the decom-
position errors with corrections to the diagonal). This may help to explain our observations
that for interior eigenvalues, ILU-type preconditioning was more effective than MILU pre-
conditioning (see Fig. 5.1). We have not systematically investigated whether the discussed
effects can be diminished for MILU, for instance, by including appropriate fill-in, or by other
correction mechanisms for the diagonal elements.

5.1. Ill-conditioned Preconditioners. If we attempt to approximateA � �
(k)
j I , then

when�(k)j is close to an eigenvalue an accurate approximation should necessarily be close
to a singular matrix. This can be easily controlled by checking the diagonal elements of an
incomplete factorization. The problem is that, sinceA� �

(k)
j I is in general not an M-matrix,

a flawless incomplete decomposition is not guaranteed to exist and a small diagonal element
may occur as the result of approximation errors in the incomplete decomposition process, as
well as because of the near-singularity. For the discretized Poisson operator we can prove
that for� close to the smallest eigenvalue ofA, the incomplete decomposition process will
lead to a small diagonal element only at the end of the decomposition. Anyway, with a near-
singular preconditioner we run the risk of stability problems. If the preconditioner is denoted
by Pk, then the preconditioned vector in the projected subspace is formally represented as
(cf. formula (3.2))

z = P�1
k ey � �P�1

k u
(k)
j :(5.1)

The effect of cancellation is most easily seen when we takePk = A � �I , and this has been
discussed in [14]. There is an easy way to remove the cancellation problem. It is readily
verified that the solution of the correction equation (1.2) remains unaltered if we replace

A��I byA��I+�u
(k)
j u

(k)
j

�
.2 For� 6= 0 we have removed the near-singularity, which kills

2In [20] it is suggested to use this this operator right away for the construction of a correction, that is, without
the projections. In their case that would lead to a different approximation than ouret(k). In particular, the usage of

the update in [20] does not cure the effects of ill-conditioning ofA � �
(k)
j . Also, their update does not satisfy the

constraint to be orthogonal tou(k)j .
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FIG. 5.1. The log10 of the residual norm for iterative solves of the correction equations with 15 steps of
GMRESwithout preconditioning(the dash-dotted curve: – �), with ILU preconditioner(the solid curve: —), and
with MILU preconditioner(the dashed curve: – –). A is the5-point discretized Poisson operator over a20 by 20
grid. Both preconditioners are incomplete factorizations ofA � �I with � = 0:23. With this value of� we are
aiming for the 5th smallest eigenvalue.

the large components in each of the two vectors in the right-hand side of (5.1) in the direction
of u(k)j . Although this cures the problem, we note that this may not be very practical, since

the correctionu(k)j u
(k)
j

�
will be a dense matrix and destroys all sparsity in the given matrix.

In other words, it may be difficult to identify a good preconditioner for the rank-one updated
matrix. With the Sherman-Woodbury formula [4], for the inversion of a rank-one updated
matrix, the problems with the ill-conditioning will not be avoided. The correction equation
gives us more freedom with respect to corrections in the direction ofu

(k)
j . For instance, we

may correct very tiny diagonal elements, in the factorsL andU of Pk, by rank-one updates
with unit-vectors:

fPk = (L+ u
(k)
j e�i1)(U + ei2u

(k)
j

�
):

This, in exact arithmetic, does not change the effect ofPk in the subspace orthogonal to
u
(k)
j . More of these updates may be included if necessary. Note that the factors of this new

factorization can also be cheaply solved without cancellation problems, unless thei1-th or
i2-th element ofu(k)j is zero.
We illustrate the effect of rank-one updating to the operator,in the context of the correction

equation(1.2), by a simple experiment. In Fig. 5.2 we have displayed the convergence history,
that is, the norm of the residual vectorsAu(k)1 � �

(k)
1 u

(k)
1 , for the5-point discretized Poisson

operator over a20 by 20 grid. One curve shows what happens if we solve by direct solution
with A � �

(k)
1 I , taking into account the projections in (1.2), but without reorthogonalization
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FIG. 5.2.The log10 of the residual norm for direct solves of the correction equations with reorthogonalization
(the solid curve: —) and without reorthogonalization(the dash-dotted curve: – �). In the first part of the picture both
curves coincide.

of the basis vectorsvk. The other curve shows that reorthogonalization is necessary. If we

update the matrix, inside the projections in (1.2), with�u
(k)
1 u

(k)
1

�

then we get virtually the
same curve as with reorthogonalization. That means that one has the choice between a single
rank-one update or a reorthogonalization against all previous basis vectors and one may select
the most convenient strategy depending on whether the rank-one update complicates the direct
solution step or not.
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