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THE ANALYSIS OF INTERGRID TRANSFER
OPERATORS AND MULTIGRID METHODS FOR
NONCONFORMING FINITE ELEMENTS *

ZHANGXIN CHENT

Abstract. In this paper we first analyze intergrid transfer operators and their iterates for some nonconforming
finite elements used for discretizations of second- and fourth-order elliptic problems. Then two classes of multigrid
methods using these elements are considered. The first class is the usual one, which uses discrete equations on
all levels which are defined by the same discretization, while the second one is based on the Galerkin approach
where quadratic forms over coarse grids are constructed from the quadratic form on the finest grid and the iterates of
intergrid transfer operators, which we call the Galerkin multigrid method. The properties of these intergrid transfer
operators are utilized for the analysis of the first class, while the properties of their iterates are exploited for the
second one. Convergence results available for these two classes of multigrid methods are summarized here.

Key words. multigrid methods, nonconforming and mixed finite elements, second and fourth-order problems,
intergrid operators.

AMS subject classifications.65N30, 65N22, 65F10.

1. Introduction. The study of multigrid methods for nonconforming finite elements
started in the later 1980s. Multigrid methods usingEheronconforming element for second-
order problems (i.e., the Crouzeix-Raviart element [28]) have been considered in [7, 12, 16,
19, 22, 25, 32, 35, 49, 50], while these methods for the rot@gdonconforming element
[18, 41] for the same differential problems have been analyzed in [2, 16, 26]. Multigrid
methods for the Morley nonconforming element [34] for the biharmonic equation have been
developed in [13, 16, 29, 31, 38, 39, 42, 49], and for the plate bending problems using the
Zienkiewicz [5] and Adini [1] nonconforming elements have been described in [36, 40, 44,
48, 51]. Finally, these methods for tig¢ and rotated?);-nonconforming divergence-free
elements for the stationary Stokes problem have been studied in [14, 15, 45]. In all these
earlier papers except in [26], only th&-cycle multigrid methods have been shown to con-
verge under the assumption that the number of smoothing iterations on all levels is sufficiently
large. The methodology developed for the multigrid methods of conforming finite elements
in [4] has been extensively employed to analyze the nonconforming multigrid methods; the
convergence study is based on establishment of the so-called smoothing and approximation
properties and analysis of a two-level scheme.

Multigrid methods for nonconforming finite elements have the feature that the multilevel
finite element spaces are nonnested and the quadratic forms defined on these spaces are non-
inherited. Consequently, the convergence proof of the conforming multigrid methods intro-
duced in [6] does not apply to the nonconforming case since coarse-to-fine intergrid transfer
operators for nonconforming finite elements do not preserve the energy norm. That is why
the approach in [4] has been mainly exploited in the analysis of the nonconforming multigrid
methods in the last decade. In multigrid methods for nested conforming finite elements the
multilevel finite element spaces are nested and the quadratic forms are inherited.

The purpose of this paper is to analyze intergrid transfer operators and their iterates
for some nonconforming finite elements used for discretizations of second- and fourth-order
elliptic problems and to discuss convergence of two classes of multigrid methods using these
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elements. The first class is the usual one, which uses discrete equations on all levels which
are defined by the same discretization. The methodology developed in [11] where nonnested
spaces and non-inherited quadratic forms are allowed shall be applied to analyze this class
of nonconforming multigrid methods. Toward that end, we shall need to find the lower and
upper bounds of the energy norm of the usual coarse-to-fine intergrid transfer operators for
the nonconforming elements considered here. In [26], it has been shown that the bound
of the energy norm of the edge averaging intergrid transfer operators for the r@ated
nonconforming element is not bigger than two. As a result of this, the theory of [11] shows
the convergence of thé/-cycle multigrid methods with any number of smoothing iterations

for this element. In this paper, we shall discuss the applicability of this result t@the
Morley, Zienkiewicz, and Adini nonconforming elements.

The second class of multigrid methods was recently introduced in [20] and is based on
the “Galerkin approach” where quadratic forms over coarse grids are constructed from the
guadratic form on the finest grid and iterated coarse-to-fine intergrid operators, which we
call the Galerkin multigrid method. This approach automatically leads to the case where the
coarse-to-fine intergrid transfer operators preserve the energy norm. However, to apply the
convergence theory of the conforming multigrid methods [6, 8], a key ingredient is to prove
upper bounds of the iterated intergrid transfer operators in terms of the energy norm. These
bounds have been shown for tie element in [35] and for the rotateg; element in [26].

Here we shall discuss them for the Morley, Zienkiewicz, and Adini elements. The conver-
gence of both th&’-cycle andW-cycle multigrid methods with any number of smoothing
steps for these nonconforming elements using the second approach is considered. Conver-
gence results for partial differential problems with less than full elliptic regularity and without
any elliptic regularity are considered. Problems related to the discontinuity in the coefficient
of differential problems are not discussed here.

In recent years, the study of multigrid methods for mixed finite element methods, which
are popular in the simulation of fluid flow in porous media [21], has been quite active; see [2,
19, 31, 43, 46, 47], for example. However, due to the equivalence between nonconforming
and mixed finite element methods [2, 3, 17, 19, 23], the analysis for the nonconforming finite
methods directly applies to the mixed methods. Thus all the results derived here carry over to
the mixed methods. Also, the present techniques can be used to analyze other nonconforming
elements.

The rest of the paper is organized as follows. In the next section we analyze the coarse-to-
fine intergrid operators and their iterates; the above mentioned nonconforming elements are
treated there. Then in the third section we analyze the two approachs for defining multigrid
methods; partial differential problems with less than full elliptic regularity and without elliptic
regularity are handled in this section.

2. Analysis of Intergrid Transfer Operators. In this section we analyze the usual
coarse-to-fine intergrid transfer operators and their iterates foPtheotated@,, Morley,
Zienkiewicz, and Adini nonconforming finite elements.

2.1. The P;-nonconforming element. In this subsection we consider the numerical
solution of the model problem

-V (AVu) = f inQ,
(2.1) v =0 onof,

using theP;-nonconforming finite element method, whétec IR? is a simply connected
bounded polygonal domain with the boundafy, f € L?(Q2), and the symmetric coefficient
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A € (L% ())?*? satisfies
(2:2) EA@)E 2 at’e,  z€9 €€ R,

with a fixed constanty > 0.
Problem (2.1) is recast in weak form as follows. The quadratic fofm) is defined by

a(v,w) = (AVu, Vw), v,w € HY(Q),

where(-,-) denotes the.?(Q2) or (L?(2))? inner product, as appropriate. Then the weak
form of (2.1) is, findu € H}(Q) such that

(2.3) a(u,v) = (fv), Vo€ HY(Q).

For0 < h < 1, let&, be a triangulation of) into triangles{ E'} of diameters: g, which
are not bigger than, and define thé®; -nonconforming finite element space [28]

Vi, ={v € L?(Q) : v|gislinearforallE € &,,v is continuous
at the midpoints of interior edges, and
vanishes at the midpoints of edgesafn}.

Note thatV,, ¢ H}(Q2). Associated with/,, we introduce a quadratic form dn, © Hi ()
by

ap(v,w) = Z (AVv, Vw)g, v,w € Vi, @ HY(Q),
Ecé&y,

where(-,-)g is the L?(E) inner product. Then thé -nonconforming finite element dis-
cretization of (2.1) is, find.;, € V}, such that

(2.4) ap(up,v) = (f,v), Vove V.

To apply the multigrid methods introduced in the next section for solving (2.4), we as-
sume a structure to our family of partitions. Uetand&,, = &y be given. For each integer
1 <k < K,leth, =2 %hy and&y,, = & be constructed by connecting the midpoints of
the edges of the triangle &)._1, and let&;, = £k be the finest grid. In this and the following
sections, we shall replace subscriptsimply by subscripk:.

SinceVi_1 ¢ Vi (i.e., nonnested), we need to introduce intergrid transfer operators to
connect them. Following [7, 12], the coarse-to-fine intergrid transfer opefatof,_; —
Vi fork =1,..., K is defined as follows. Far € V;,_1, letq be a midpoint of an edge of a
triangle in&; then we defindv by

0 if ¢ € 09,
(Ixv) (¢) = v(@) if g ¢ OE foranyE € &1,
2 {vlEg (@) +vlE, (@)}  if ¢ € DE NOE, for someEs, By € E,_;.
We also define the iterates 6f by
(2.5) HE =TI Lyt Vi — Vi,

We now state the boundedness of the operdrptzde,f, which will be used in the
next section and was shown in [7, 12] and [35], respectively. Be&logwith or without a
subscript) denotes a generic positive constant, which may take on different values in different
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FIG. 1. The definition of the functiom in Example 1

occurrences. For the inequality (2.7) below, we assume that there meet at most six edges at
each interior vertex ig, and four edges at each boundary vertex. This is easily satisfied.

PROPOSITION2.1. There exist constants independent of such that

(2.6) ap(Ipv, Iyv) < Cag—1(v,v), Yov € Vi_q,
and
(2.7) ax (HEv, HEv) < Cag(v,v), Yo e V.

Inequalities (2.6) and (2.7) will be used in the analysis of the first and second classes of
multigrid methods considered in the next section, respectively. While the valueqR.7) is
notimportant for analyzing the second class, the value in (2.6) is critical in applying the theory
of [11] to the first one. Different values yield different consequences for the convergence of
theV- andW-cycle multigrid methods (see the next section). We here show, via the following
example, that the constafitin (2.6) is generally bigger than two for thig element.

Examplel. Let() be given as in Figure 1 andbe inV; with the nodal values determined
in this figure, where the dotted lines indicate refinement. Thenith I it can be checked
that

ag(v,v) = 16,
and
a1 (v, [1v) = 32.5.
Consequently,

a1 (v, [1v) > 2a9(v,v).

Example2. We report numerical results to illustrate the behavior of the energy norm of
the iteratesH I<,

~ax(H§ ¢, Hf ¢o)
e = ;)?13/0 ao(¢o, ¢o) 7

over the basis functiong, € Vy. The results are given in Table 1, whede = I and

Q = (0,1)? are taken in (2.1). From the table, we see numerical evidence to the fagithat
is uniformly bounded for thé”, element. This agrees with (2.7). For details on the numerical
results of3x reported in this paper, see [20].
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K Bk Br [ Br—1
1 | 0.16875E+01 1.6875
2 | 0.21250E+01] 1.2593
3 | 0.24141E+01] 1.1360
4 | 0.26066E+01] 1.0797
5 | 0.27358E+01] 1.0496
6 | 0.28228E+01] 1.0318

Table 1. TheP; element.

2.2. The rotated@,-nonconforming element. We now consider the rotatég, -nonconforming
element for (2.1). For this, l&f;,, = &, be a triangulation of? into rectangles having max-
imum diameterhy and oriented along the coordinate axes. For each integerk < K,
let h, = 27%ho and&y,, = &, be constructed by connecting the midpoints of the edges
of the rectangle irf;_1, and letf, = £ be the finest grid. For eadh the rotated),
nonconforming space is defined by, see [18, 41],

Vi = {v € L*(Q): v|lg = af +afr +aby + afp(2® —y?), iy € R, VE € &;
if E1 andE; share an edge then/v|aE1ds = /v|aE2ds;

and [, 5 Vloads = O}.
SinceVy, ¢ H(2) andVi_; ¢ Vi, following [2, 18], we define the coarse-to-fine intergrid
transfer operatorg, : Vi1 — V; as follows. Ifv € V;,_; ande is an edge of a rectangle in
&k, thenlv € Vj is defined by

0 if e C 09,

/vds if e OFE foranyFE € &1,
(2.8) /Ikvds = e

1 .
5 /(1}|E1 +v|g,)ds if e COFE; NOE;

for someFE,, Es € & 1.

Their iterates are defined as in (2.5). Also, we have the following boundedngsard H £,

which was proven in [2] and [26], respectively. Equation (2.10) below was shown for square
partitions of a square. Extensions to other domains and triangulations were discussed in [26];
it holds for polygonal domains if their initial triangulation into quadrilaterals is topologically
equivalent to a uniform square partition@f= (0, 1), for example. Hence, whenever (2.10)

is used below, this condition is assumed.

PROPOSITION2.2. There are constants' independent of such that
(2.9) ag(Ixv, Iyv) < Cag—1(v,v), Vv e Vi,
and

(2.10) ax (HEv, HEv) < Cag(v,v), Yo e V.
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FIG. 2. The definition of the functiom in Example 3

We now consider a simple case of the model problem (2.1) where the coeffitisnt
constant; i.e.A = I. In this case we shall show, by the next example, that the corGtant
(2.9) is generally bigger than one. However, it is not bigger than two, as stated in Proposition
2.3 below (see its proof in [26]).

Example3. Let(2 be as in Figure 2 andbe in1{, with the integral averaging values over
edges given in this figure. Then with = I it can be shown that

ap(v,v) =5,
and
a1 (liv, [yv) = 201/32.
Hence we find that

a1 (I1v, [1v) > agp(v,v).

PropPOSITION2.3. With A = I, it holds that

(2.11) ar(Ixv, w) < 2a_1(v,v), Yov € Vip_1.

Exampled. As for theP; element, here we report numerical resultsdgn The same
data are taken as in Example 2 except that d@wis a square partition. From Table 2, we
also see numerical evidence tliat is uniformly bounded for the rotateg; element, which
agrees with (2.10).

K Br Br/Br -1
1 | 0.11875E+01 1.1875
2 | 0.13393E+01 1.1278
3 | 0.14249E+01] 1.0639
4 | 0.14719E+01 1.0330
5 1 0.14970E+01 1.0171
6 | 0.15103E+01] 1.0089

Table 2. The rotate@; element.

We end with a remark that the rotatéd element also can be defined with degrees of
freedom given by the values at the midpoints of edges of the elements. However, (2.10) and
(2.11) do not hold with this definition [26].
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2.3. The Morley nonconforming element. In this and the next two subsections, we
consider the numerical solution of the fourth-order problem

e Sptie,
using the Morley, Zienkiewicz, and Adini nonconforming finite element methods, respec-
tively. Now the quadratic form(-, -) is given by
a(v, W) = (Vg Wez) + 2(Vays Way) + (Vyy, Wyy), v, w € H*(Q).
The weak form of (2.12) is, find € HZ(Q) such that
(2.13) a(u,v) = (f,v), Youe HZ(9).

It has a unique solution [27].
Let {&,}E, be the family of dyadically refined triangulations @f into triangles as
defined in§2.1. For eaclt, we define the Morley element, see [34],

Vi ={v € L*Q): v|p € P(E) forall E € &; v is continuous at the
vertices and vanishes at the verticesi$h and
Ov/0dv is continuous at the midpoints of interior
edges and vanishes at the midpoints of edge¥®h

Note thatV, ¢ C°(Q2). Associated witt/y, ax (-, -) is defined by

ag(v,w) = Z {(Vaz, Waz) B + 2(Vay, Way ) B + (Vyy, wyy)E}, v, w € Vi
Eeé&y

Then the approximate method for (2.12) using the Morley element is determined as in (2.4).
The coarse-to-fine intergrid transfer operafior V1 — Vi fork =1,..., K is again

the usual averaging operator, which is given as follows.JFarV},_1, let ¢ be a vertex of a

triangle and; the midpoint of an edge of a triangle §i; then we defindv by [13, 39]

{0 if ¢ € 90,

(Ixv) (@) = ¢ v(q) if ¢ is also a vertex i€y, _1,

2 {vle, (¢) + v|e, ()} if gis nota vertexir€,_1,
and
0 if § € 99,
v (g) if ¢ OE foranyE € &,_1,
Ge(@) + Z3E (@)} it g€ 0B N OB,
forsomeFE;, B> € E,_1.

The iterates [ of I, are defined as in (2.5).

We have the following result for the boundedness of the opefatar.f. [13, 39]. Note
that we cannot control the growth of the energy norn#fgf. In fact, the energy norm grows
exponentially with the number of grid levels, as is demonstrated numerically in Example 6
below.

PROPOSITION2.4. There is a constanf' independent of such that

(2.14) ap(Ipv, Iyv) < Cag—1(v,v), Vv € Vi_q.
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We now show, via the next example, that the constaimt (2.14) is generally bigger than
two.

Exampleb. Let(2 be as in Figure 1 and € V; such thaw is zero at all the vertices and
Ov/0v has the values at the midpoints as displayed in this figure. Then we see that
ap(v,v) = 28 — 6v/2

and

231 147
CLl(IlU,IlU):T—l—6 .

Thus, we have
a1 (v, 1v) > 2a9(v,v).

Example6. Numerical results for thgx with Q = (0,1)? are presented in Table 3 for
the Morley element.

K Br Br/Br -1
1 | 0.19375E+01 1.9375
2 | 0.34297E+01 1.7702
3 | 0.63681E+01] 1.8568
4 | 0.12549E+02 1.9706
5 | 0.25969E+02 2.0694
6 | 0.55608E+02] 2.1413

Table 3. The Morley element.

2.4. The Zienkiewicz element.We now turn to the Zienkiewicz nonconforming ele-
ment. For this, we define

a(v,w) = (Av, Aw) + (1 = 0){2(vVay, Way) = (Vaw, Wyy) = (Vyy, Was)},
v, w € H3(Q),
where0 < o < 1/2 is the Poisson ratio [27]. Then the weak form of (2.12) for the
Zienkiewicz method is, find € HZ(Q) such that (2.13) holds [27].

Let {&,}K, again be the family of dyadically refined triangulationg binto triangles
as defined ir32.1. For eaclk, we define the Zienkiewicz element, see [5],

3 ; 3 i i
Vi ={v:v|p € P3(E), v(qg) = %Zi:l v(qg) — %Zi:l(q%‘ —4q%) - Vu(dg),
forall E € &; v, vy, andv, are continuous at the vertices

of & and vanish at the vertices @)},

where they}; are the vertices of andg, is the centroid of € &;. Note thatl}, C C°(9),
butV, ¢ C*(). For eachi/, we define

ar(v,w) = Y peg, {(Av, Aw)p + (1 = 0){2(vry, way )

_(U:c:c;wyy)E - (Uyy;wacac)E}}a v, w € V.
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FIG. 3. The definition of the functiom in Example 7

With this the Zienkiewicz nonconforming method is defined as in (2.4).

The intergrid transfer operatofs : Vi1 — Vj is described as follows. Fere Vi1,
if ¢ is a vertex of a triangle ig,_; andgq is the midpoint of an edge of a triangle éiy 1,
thenlyv € V; is determined by

(Irv)(q) = v(q), V(Ixv)(q) = Vu(q),

_J0 if 7 €09,
(Ixv)(q) = v(q) if g€ 09,
0 if g €09,
V)@ = { {0l @ + Vol @} 1 q € OB NIE,

forsomeFE;, B> € E,_1.

The inequality (2.15) below regarding the boundedness, @fan be seen in [40]. The
constantC in this inequality is generally bigger than one, as shown in Example 7 below.
However, we have numerically observed that it is not bigger than two. A theoretical proof of
this fact is yet to be given. Numerical evidence of the boundedness of the itBratean be
seen in Example 8 below.

PROPOSITION2.5. There exists a constant independent of such that
(2.15) ar(Ixv, v) < Cag_1(v,v), Yv € Vi_1.
Example7. LetQ = (0,1)? be determined as in Figure 3 andc V; such thabv/dx

anddv/0y are zero at all the vertices amdas the nodal values at the vertices as determined
by this figure. Then we find that

ap(v,v) = 192,
and
a1 (Iv, Iv) = 317.58 — 44.50.
Thus we observe that
ay(liv, [1v) > ap(v,v) for 0<o<1/2.

Example8. Numerical results for théy for the Zienkiewicz element witkk = (0,1)?
are described in Table 4.
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K Br Br /Br-1

1 | 0.16541E+01 1.6541

2 | 0.20824E+01] 1.2589

3 | 0.23053E+01] 1.1070

4 | 0.24088E+01] 1.0449

5 | 0.24539E+01] 1.0187

6 | 0.24729E+01] 1.0077

Table 4. The Zienkiewicz element.

2.5. The Adini nonconforming element. We now consider the Adini nonconforming
element. The quadratic form(-,-) is defined as ir§2.4. Let{&,}X , be the family of
dyadically refined triangulations @? into rectangles as defined §2.2. For eachk, we
define the Adini element, see [1],

Vi ={v € L%(Q) :v|p € P(E) @ {23y} @ {zy3} forall E € &;
v, vz, andv, are continuous at the vertices
of & and vanish at the vertices &) }.

Again, Vi, ¢ C°(Q), butV;, ¢ C*(Q). The quadratic fornay (-, -) is given as in§2.4, and
the Adini nonconforming method is defined as in (2.4).

The intergrid transfer operatdg : Vi1 — V} is modified as follows. For € Vj,_4, if
q is a vertex of a rectangle ifi,_1, ¢ is the midpoint of an edge of a rectangledin_;, and
q° is the center of a rectangle fiy 1, theniv € Vj is determined by

(Ixv)(q) = v(g),  V(Ixv)(q) = Vu(q),
(Ix0)(¢°) = v(q), V(Iv)(g®) = Vu(g®),

B 0 if qe aQa
0 if ¢ €09,
V(L)@ = { (Yol (@) + Volm(@)} i g€ 0B NOE;

forsomeFE;, By € E_1.

Similar properties fod;, and HX to those for the Zienkiewicz element have been observed
for the Adini element; see Proposition 2.6 [36] and Examples 9 and 10 below.

PrROPOSITION2.6. There is a constart’ independent of such that

(2.16) ar(Ipv, Iyv) < Cag—1(v,v), Vv € Vi_q.

Example9. LetQ2 = (0,1)? be given as in Figure 4 and< V; such thaty anddv/dy
are zero at all the vertices add/dx has the nodal values at the vertices as determined by
this figure. Then we have

ap(v,v) = (176 — 160)/30,
and

a1 (v, I1v) = (193 — 80)/30,
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FIG. 4. The definition of the functiom in Example 9

so that
ar (v, [1v) > ap(v,v) for 0<o<1/2.

Examplel0. Numerical results for thgx for the Adini element with2 = (0,1)? are
displayed in Table 5.

K Br Br/Br -1
1 | 0.10966E+01] 1.0966
2 | 0.11767E+01 1.0730
3 | 0.12088E+01] 1.0273
4 | 0.12189E+01] 1.0084
5 1 0.12219E+01] 1.0025
6 | 0.12228E+01] 1.0007

Table 5. The Adini element.

For all the nonconforming elements tested here except for the Adini elements, numerical
results forGx were also reported in [37].

3. Analysis of Multigrid Methods. In this section, we apply the results of the previous
section to derive convergence of multigrid methods. We state several theorems to illustrate the
type of convergence results available utilizing the estimates on the intergrid transfer operators
and their iterates. We first state convergence results in a general setting. Two approaches of
defining multigrid methods are then discussed. Partial differential problems with less than
full elliptic regularity and without elliptic regularity are considered.

3.1. Multigrid methods. We assume that we are given a sequence of nonconforming
finite element spaces

Vb; Vlv"'aVKv

along with the nonsingular coarse-to-fine grid operafprsV;,_; — Vi fork =1,..., K.

In addition, assume that we are given symmetric positive definite quadratic fa(ms and

(-, )r overVy x Vi, for k = 0,..., K. Finally, suppose that we are given another family
of symmetric positive definite quadratic forrg(-, -) overV;, x Vi, for k = 0,..., K such
thatbx (-,-) = ax(-,-). On all lower levelspy(,-) may be different fromu(-,-). The
norms corresponding tg, ), andb (-, -) will be denoted by| - || and|| - || x, respectively.
Examples of spaces, operators, and quadratic forms will be given later in this section.
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Given f € Vi, the multigrid methods will be designed for the solution of the problem:
Findugx € Vi such that

(3.1) ak(uk,v) = (f,v)k, Yv € Vik.
To introduce them, we define the discretization operdipr Vi, — Vj, on levelk given by
(3.2) (Apv,w) = bi(v,w), VweVe, k=0,..., K.

Note that the operatoty, is clearly symmetric (in both thi, (-, -) and(-, -);, inner products)
and positive definite. Also, we define the operatBgs, : Vi — Vi1 andP,?_1 Ve —
Vi—1 by

(3.3) bkfl(Pkflv,w) :bk(v,Ikw), Vwe Vi1, k=1,..., K,
and
(PY_yv,w), , = (v, [rw)y, Vwe Vi, k=1,..., K.

It is obvious thatl; P, is a symmetric operator with respect to theform. Finally, let

Ry : Vi, — Vi fork = 1,..., K be the linear operators associated with the point Jacobi or
Gauss-Seidel smoothing proceduresAgtenote the adjoint ok, with respect to th¢-, - ),
inner product, and define

RO _ Ry, if I is odd
kT Ry if Lis even

onV,, let Ry = A;'; i.e., we solve exactly on the coarsest level. Following [11], the
multigrid operatoBy, : Vi, — V is defined recursively as follows:
MULTIGRID METHOD 3.1. Letl < k < K andp be a positive integer. LBy = Agl.
Assume thai3;,_; has been defined and defiBgg for g € V;, as follows:
1. Letz® = 0andz® = 0.
2. Definex! forl =1,...,m(k) by

I R,i”m(k))(g — Apa'™h).

3. Definey™®) = z™(*) 4 [, 2P, wherez’ fori = 1, ..., p is defined by
2t = i1 + Br_1 [P]?_l (g — Akl‘m(k)) — Ak_lzi_l] .

4. Definey! forl = m(k) +1,...,2m(k) by

— m(k —
gt =y 1+Rl(cl+ ())(g—Akyl 1).

5. LetBg = 3>,

In the Multigrid Method (MG) 3.1 (k) gives the number of pre- and post-smoothing
iterations and can vary as a function /af The valuesp = 1 andp = 2 yield the so-
calledV- andW-cycle multigrid methods, respectively. A variabBlecycle method is one in
which the number of smoothings (k) increases exponentially dsdecreases (i.ep = 1
andm(k) = 2K—F%). Other versions of multigrid methods without pre- or post-smoothing
iterations can be analyzed similarly.
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To apply the convergence theory developed in [11] for analyzing MG 3.1, we need the
following two estimates:

(3.4) bk(Ik’U,Ik’U) < C*bk,l(v,v), Vovée Vi,
and
A 2\ /!
(3.5) |bk ((I—IkPk_l)v,vﬂ < C, <|§7v”k> bk(v,v)li(a/l), VoveV,
k
fork =1,..., K, whereC, andC, are constants independentigf\; is the largest eigen-

value of Ax, 0 < a < 1,1 = 1 for second-order problems, ahd= 2 for forth-order
problems. The convergence rate for MG 3.1 onktielevel is measured by a convergence
factord,, satisfying

(3.6) |bk ((I—BkAk)U,UH < 5kbk(v,v), VoeVy, k=0,..., K.

THEOREM3.1. Assume thaf3.4)with C, = 1 and(3.5)are satisfied. Then we have the
following cases:

(i) DefineBy, byp = 1 andm(k) = m for all k in MG 3.1 Then inequality3.6) holds
with

C«k(lfa)/a
= Ckl—a)/a + me/l’

k

(i) DefineBy, byp = 2 andm(k) = m for all k in MG 3.1 Then(3.6)holds withd, = &
(independent of) given by

C

= —Y
C + mo/!

(iii) DefineBy byp = 1 andm(k) = 28=*fork = 1,..., K in MG 3.1 Then(3.6)
holds withé;, determined by

C
6k = 7@”
C +m(k)

The constan€ in Theorem 3.1 depends @, C,, and the estimate on the smoothing
operatorRy, but is independent df.

THEOREM 3.2. Assume tha3.4)and(3.5) are satisfied. Then

(i) for m big enough (independent &, the above result for thig/-cycle holds.

(i) there arefy, 6; > 0, independent ok, such that the variablé’-cycle multigrid
operatorBy, satisfies

Oobi(v,v) < br(BrAgv,v) < 01 (v,v), Yo € Vi,
where

m(k)e/!

C + m(k)/!
B > — W) * G mx)
' Ot m(k)e!

and 6; < /!
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When the ‘n big enough” in the above theorem is replacedhy= 2 in (3.4), we have
the next result, which is slightly stronger than Theorem 3.2 fontheycle.

THEOREM 3.3. Assume that3.4)with C, = 2 and(3.5)are satisfied. Then
(i) the same result as in Theoreri for the WW-cycle holds.
(i) the same result as in Theore3r2 for the variable)-cycle holds.

The validity of inequality (3.5) requires the elliptic regularity property of solutions of
partial differential equations. An alternative hypothesis without requiring such a property can
be provided with an appropriate choice of the quadratic fdrfns); such that

(3.7) br—1(v,w) = bp(Ixv, [yw), Yv,we Vi1, k=1,..., K.

THEOREM 3.4. Assume tha3.7)is satisfied and that there exist linear operata :
Vi — Vi, k=0,..., K, with Q¥ = I, such that

(3.8) 1@k — k@i vllf < Ok (v,0), k=1, K,
' b (Q%v, Q% v) < Cbx (v,v), k=0,...,K—1.

Then inequality3.6) with £ = K holds with one smoothing iteration per level for both the
V- andW-cycle multigrid methods with

1
:1——
Ok CK'’

whereC is independent oK.

For the proof of the first three theorems, we refer to [11]. For the proof of Theorem 3.4
in the conforming case, see [10], and for the nonconforming case, consult [20]. Condition
(3.8) and thus Theorem 3.4 can be verified without any elliptic regularity assumption for
the underlying partial differential equations, as mentioned above. For numerical results on
the discontinuity in the coefficient of differential problems for the second class of multigrid
methods defined if3.3 below, see [24].

Note that we have uniform convergence estimates foitheycle and variablé’-cycle
methods in Theorem 3.1-3.3. However, the convergence rate for the multigsidle meth-
ods in Theorems 3.1 and 3.4 deteriorates with the number of grid levels. We shall now state
a uniform convergence rate for thecycle methods with one smoothing on each level. For
this, defind1%. : Vi — V; by

b (50, w) = by (v, HXw), v € Vi, w € Vi,

fork =0,...,K —1andlI¥ = I for k = K i.e.,II% is the adjoint operator off /< with
respect tdy(-, ).

THEOREM 3.5. Assume thaf3.7) and the following condition are satisfied:
(3.9) Nl (I = LI Yollf < Of|( — Ll ol 4, Vo € Vi

Then inequality(3.6) with £ = K holds with one smoothing iteration for both thve and
W-cycle multigrid methods with < 1 independent of<.

The proof of this theorem can be found in [20].
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3.2. The first class of multigrid methods. The first class of multigrid methods is the
usual one, which uses discrete equations on all levels which are defined by the same dis-
cretization. That is, the quadratic forig -, -) are given by

br(v,w) = ag(v,w), v, we Vg, k=0,...,K,

whereay (-, -) for each of the nonconforming elements considered here are definedas in
In this case we have the next results for our nonconforming finite elements.

3.2.1. TheP;-nonconforming element. For theP;-nonconforming element, the quadratic
forms(-, ) are defined by

(U7w)k = h’i Zv(q)w(Q)a v,w & Vk;

q

where the summation is taken over all the midpoipia £,. The regularity and approxi-
mation property (3.5) has been shown in [16] under the following elliptic regularity on the
solution of (2.1),

(3.10) [ullhita < Cllfl-14a, 0<a <1,

where|| - [|1+, denotes the Sobolev norin- || z1+a (). Consequently, due to (2.6) and
Example 1, only Theorem 3.2 applies to this element.

3.2.2. The rotated@;-nonconforming element. The quadratic forms, ), are deter-
mined as follows. Lef¢]} be the basis functions df;, such that the edge averagedf
equals one at exactly one edge and zero at all other edges. Then eakh has the repre-

sentation
v = Z vjqﬁi.

J

Now, forv, w € V;, we define

(v,w)x = h3 Zvjwj.
J

By the uniformZ2-stability of the basis functions, we can easily show that the norm induced
by (-, )% is equivalent to the standaidf (©2) norm|| - ||.

The regularity and approximation property (3.5) can be seen as iR ttdement [2].
Now, thanks to (2.9), (2.11), and Example 3, Theorem 3.2 can be applied to the @Qtated
element for a general in (2.1), while Theorem 3.3 holds whefh= I in (2.1).

3.2.3. The Morley element. For the Morley element, the quadratic forrfis-);, are
given by

ov,_ Ow  _
(v,w)x = hj, Zv(q)w(Q) + hy, a E(Q)E(q)’ v, w € Vg,

q

where the summations are taken over all the verticesd midpointsj in &, respectively.
The property (3.5) can be shown in a similar fashion as forRhelement [16] under the
following elliptic regularity on the solution of (2.12):

(3.11) lullz4a < Cllfll-24a, 0<a<1

Thus, by (2.14) and Example 5, only Theorem 3.2 applies to the Morley element.
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3.2.4. The Zienkiewicz element.The forms(-, -);, are defined by

(vv w)k = hi Z U(Q)w(Q) + hi Z (vm (Q)wm(Q) + Uy (Q)wy (Q))v v, W€ Vk;

q q

where the summation is taken over all the vertigan &,. For the Zienkiewicz noncon-
forming element, the property (3.5) can be shown under (3.11). Hence it follows from (2.15)
and Example 7 that Theorem 3.2 applies to this element. As mentioned before, numerical
evidence suggests that Theorem 3.3 may apply to it.

3.2.5. The Adini element. The quadratic formé, -);, are defined as in the case of the
Zienkiewicz element, and the property (3.5) also follows from an analogous argument under
(3.11). Therefore, by (2.16) and Example 9, we see that similar convergence results to those
for the Zienkiewicz element hold for the Adini element.

In summary, Theorem 3.2 applies to tie and Morley elements, while Theorem 3.3
applies to the rotate@, element (withA = I) and possibly to the Zienkiewicz and Adini
elements. Namely, we have shown that ¥wecycle multigrid methods converge for tiig
and Morley elements with a sufficiently large number of smoothing iterations on all levels
(which is well known), and for the rotate@; element and possibly (based on numerical
evidence) for the Zienkiewicz and Adini elements with one smoothing iteration per level
(which is less known), and that the variaBlecycle multigrid methods provide a uniform
condition number estimate for all these nonconforming elements. As a matter of fact, for the
Morley element thé/V-cycle methods diverge unless the number of smoothing iterations on
all levels is sufficiently large [31]. For thB, element we have not numerically observed this
fact; in fact, numerical evidence suggests thathend)W-cycle methods converge with
one smoothing for this element [20]. Finally, Theorem 3.1 does not apply to any of these
elements; i.e, we do not have any result for the stantdegyicle methods. It is for this reason
that we shall consider the second class of multigrid methods in the next subsection.

3.3. The second class of multigrid methodsThe second class of multigrid methods is
determined by

(3.12) b (v, w) = arx (HE v, HEw), Yo, we Vi, k=0,..., K -1,

where we recall that the iteratd$/ of I, are defined as in (2.5) and on the finest level
br(-,+) =ak(-,-) = an(-,), which is determined from the continuous problem as in the last
section. For each of the nonconforming elements under consideration, the quadratic forms
(+,)x can be defined as i§8.2. It follows from (3.12) that (3.4) automatically holds with
C, = 1. Consequently, it suffices to show (3.5). The ideas presented in [20] indicate that the
proof of (3.5) depends on the boundedness of the energy nofiifofin fact, the regularity
and approximation assumption (3.5) was shown forfthand rotated), elements; see [20].
Also, it is mentioned in [20] that (3.5) possibly holds for the Zienkiewicz and Adini elements.
As a consequence, Theorem 3.1 applies toffhend rotated?); elements; i.e., both the
V- andW-cycle multigrid methods with any number of smoothing iterations converge with
the convergence rate given as in this theorem for these elementsbyien is defined by
(3.12). For the Morley element, due to the fact that we cannot control the growth of the
energy norm ofd [ (see§2.3), Theorem 3.1 does not apply. Since the energy norfi/of
grows exponentially with the number of grid levels, it is not appropriate to employ the second
approach to define the multigrid methods for this element.

Note that (3.12) also implies (3.7), so we now consider Theorems 3.4 and 3.5 fér,the
rotated@,, Zienkiewicz, and Adini elements. Theorem 3.5 was proven in [20] for the former
two elements under a full elliptic regularity assumption on the solution of (2.1)di-e. ] in
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(3.10)), and its extension to the latter two elements is possible (based on numerical evidence).
For Theorem 3.4, we need the operatQfs, which are constructed as follows.

3.3.1. TheP, element. Following [20, 37], we define the fine-to-coarse intergrid trans-
fer operatordy,_; : Vi, — Vi, as follows. Ifv € Vi, andq is the midpoint of an edgeof a
triangle in&;_1, Tix_1v € Vi1 is given by

1
(Th-10) (q) = 5 (v(@1) +v(g2)),
whereq; andgs are the respective midpoints of the edgesandes in &, which form the
edgee in &, . Note that the definition df,_, automatically preserves the zero nodal values
on the boundary. We now introduce the iterated transfer operators

(3.13) Q- =Ty T 1:Vk - Vi, k=0,....K.

With Q% we can show (3.8); see [20], so Theorem 3.4 holds fothelement.

3.3.2. Therotated®, element. The operatorg},_; : Vi — Vj_1 are defined similarly.
If v € Vi ande is an edge of an element&€y_1, Tx—1v € Vi_1 is given by [26]

1 1 1 1
—/Tklvds:—{—/ vds+—/ vds},
|6| e 2 |€1| e1 |62| e2

wheree; ande; in 9&, form the edges € 0&;_1. Note that the definition of,_; also
automatically preserves the zero average values on boundary edges. The @raieg},

are given as in (3.13), and also satisfy (3.8); see [20]. Hence Theorem 3.4 applies to the
rotated@, element.

3.3.3. The Zienkiewicz and Adini elements.For the Zienkiewicz and Adini elements,
if v € Vi, andq is a vertex of a triangle i&;_1, thenTy_ v € Vi, is defined by, see [20],

(Th10) (¢) = v(@),  V (Tr-1v) (q) = V()

which has the zero nodal values on the boundary and le&g tas in (3.13). Condition (3.8)
could be shown similarly if the energy norm B would be uniformly bounded. However,
the boundedness @f X has not been proved yet.

In summary, exploiting the second approach of defining multigrid methods faPithe
rotated®,, Zienkiewicz, and Adini nonconforming elements, Theorems 3.1, 3.4, and 3.5 can
be appled to the first two methods. Numerical evidence suggests that they may also be applied
to the last two methods. This approach is not suitable for the Morley element.
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