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A STABLE MULTIGRID STRATEGY FOR CONVECTION-DIFFUSION USING
HIGH ORDER COMPACT DISCRETIZATION ∗

ANAND L. PARDHANANI †, WILLIAM F. SPOTZ‡, AND GRAHAM F. CAREY§

Abstract. Multigrid schemes based on high order compact discretization are developed for convection-diffusion
problems. These multigrid schemes circumvent numerical oscillations and instability, while also yielding higher ac-
curacy. These instabilities are typically exacerbated by the coarser grids in multigrid calculations. Our approach
incorporates a 4th order compact formulation for the discretization, while also constructing a consistent multigrid
restriction scheme to preserve the accuracy of the fine-to-coarse grid projections. Numerical results demonstrating
the higher accuracy and robustness of this approach are presented for representative 2D convection-diffusion prob-
lems. These calculations also confirm that our numerical algorithms exhibit the typical multigrid efficiency and
mesh-independent convergence properties.
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1. Introduction. Convection-diffusion problems in which convective effects are strong
frequently exhibit steep boundary layers or interior layers within the domain. When conven-
tional methods are used to solve such problems, the cell Peclet (or Reynolds) number imposes
restrictions on the permissible mesh size – the solution is oscillatory when the mesh is too
coarse. The usual techniques for circumventing this problem in standard single-grid formu-
lations include the use of artificial dissipation, upwind discretizations, mesh grading and/or
refinement [1, 3].

When multigrid methods are used for solving convection-diffusion problems, these diffi-
culties are exacerbated [2]. The use of coarser grid levels introduces a new source of problems
since, even if the finest grid satisfies the mesh restrictions, one or more coarser grids may vio-
late it. Various techniques for dealing with such problems have been proposed in recent years
[2, 8, 9, 14]. Some of these are based on extensions of the standard single-grid techniques,
while certain others are designed specifically for use with multigrid methods. The degree
of effectiveness varies with choice of technique, and each of them has limitations in terms
of efficiency and robustness. In the present work we develop a multigrid strategy based on
high-order compact (HOC) discretizations that yields higher accuracy and robustness when
applied to convection-diffusion problems. This is conceptually similar to the strategy used by
Gupta et al. [5, 6], but differs in the formulation of the discretization scheme and the multi-
grid projections between different grid levels, as discussed in Section 2. There we present
the model 2D convection-diffusion problem and its higher-order compact approximation, and
we also describe the associated multilevel projections for the HOC scheme. In Section 3 we
show results for three specific test problems, and compare the HOC multigrid calculations
with more standard schemes to demonstrate its numerical behavior.

2. Model Problem and HOC Scheme.For simplicity of exposition we consider the
familiar steady convection-diffusion model PDE

−∆u+α ·∇u = f(2.1)
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whereα = (c, d) andf may all be functions of(x, y) in general. A variety of test cases can
be constructed from this framework for given convective velocityα by choosing the form of
the solutionu and determining a corresponding source functionf .

The idea of operating on the differential equation as an auxiliary relation to obtain ex-
pressions for higher-order derivatives in the truncation error has been exploited in, for in-
stance, defect-correction schemes and also the classical Lax-Wendroff method to yield a
stable scheme for differencing hyperbolic problems. Recently we have generalized and ex-
panded upon these concepts to develop a class of difference methods that exhibit higher-order
asymptotic accuracy, while still using only a simple stencil of nodes surrounding a grid point.
We refer to these schemes as high-order compact (HOC) methods (e.g., see [11, 12]). Inclu-
sion of these approximations in a central difference method for (2.1) increases the order of
accuracy, typically toO(h4) while still retaining the compact stencil defined by a grid point
and its immediate neighbors. In addition to the higher accuracy, which allows problems to be
solved on coarser grids, HOC schemes have been shown to suppress oscillations in transport
simulations [10, 11]. This behavior suggests that they might work well in conjunction with
multigrid strategies for convection-diffusion applications.

For clarity of exposition let us introduce the HOC formulation by first considering the
1D form of (2.1)

−u′′ + cu′ = f(2.2)

Introducing a uniform gridxi with spacingh and central differencing, the representative
difference equation at interior nodei is simply

−δ2
xui + ciδxui = fi(2.3)

whereδx andδ2
x denote the first and second order central difference approximations on a

uniform mesh with spacingh. The associated truncation error is

τi =
h2

12
(2ciu′′′i − uivi ) +O(h4)(2.4)

As is well known, the scheme (2.3) yields oscillatory solutions if the cell Peclet condition
ch < 2 is violated. It can also be easily verified that in a multigrid solution of (2.3), even
if the fine grid satisfies the cell condition, the overall scheme may diverge if coarser levels
violate the condition.

A HOC scheme can be constructed by differentiating the transport equation to obtain
expressions foru′′′ anduiv and then substituting in (2.4) to obtain, after central difference,
the HOC formula

−Aiδ2
xui + Ciδxui = Fi(2.5)

with

Ai = 1 +
h2

12
(c2i − 2δxci),

Ci = ci +
h2

12
(δ2
xci − ciδxci),

Fi = fi +
h2

12
(δ2
xfi − ciδxfi)

We emphasize thatFi is obtained by applying an HOC operator to the nodal valuesfi. This
will influence the construction of inter-grid transfer operators in the multigrid scheme, as we
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will see later. The resulting scheme has been demonstrated to be nonoscillatory for the stan-
dard model 1D convection-diffusion test problem, independent of mesh-sizeh [10, 11]. This
suggests that multigrid schemes with discretization and projections based on HOC represen-
tations may not be prone to the divergence problems mentioned previously.

We next present the HOC scheme for the 2D problem (2.1) and discuss the associated
multigrid implementation. The basic derivation proceeds as in the 1D case above and hence
we will simply sketch the construction and give the final form of the discrete HOC scheme.
We assume a uniform mesh (extension of the HOC approach to nonuniform grids and map-
ping is discussed elsewhere [13]). Central differencing (2.1) we obtain

−(δ2
x + δ2

y)uij + (cij , dij) · (δx, δy)uij = fij(2.6)

The truncation error for (2.6) is

τij =
h2

12

[
2
(
c
∂3u

∂x3
+ d

∂3u

∂y3

)
−
(
∂4u

∂x4
+
∂4u

∂y4

)]
ij

+O(h4).(2.7)

As in the 1D case, expressions for the higher derivatives in the truncation error can be ob-
tained by differentiating the PDE. After substituting the corresponding expressions in (2.7)
and central differencing we obtain the following HOC approximation for (2.1)

−Aijδ2
xuij −Bijδ2

yuij + Cijδxuij +Dijδyuij−
h2

6
[
δ2
xδ

2
yuij − cijδxδ2

yuij − dijδ2
xδyuij −Gijδxδyuij

]
=(2.8)

Fij +O(h4),

where the coefficientsAij ,Bij ,Cij ,Dij , Fij andGij are given by

Aij = 1 +
h2

12
(
c2ij − 2δxcij

)
,

Bij = 1 +
h2

12
(
d2
ij − 2δydij

)
,

Cij = cij +
h2

12
(
δ2
xcij + δ2

ycij − cijδxcij − dijδycij
)
,

Dij = dij +
h2

12
(
δ2
xdij + δ2

ydij − cijδxdij − dijδydij
)
,

Fij = fij +
h2

12
(
δ2
xfij + δ2

yfij − cijδxfij − dijδyfij
)
,

Gij = δycij + δxdij − cijdij .

For convenience in our later analyses, we replace thei, j-index with a single global index for
the nodes, and rewrite equation (2.8) in matrix-vector notation as∑

l

Mklul = Fk +O(h4)(2.9)

where,k andl denote the standard matrix indexing system, and (2.9) applies at any interior
node(xk, yk). Introducing the superscript notation to denote mesh spacing for multigrid
analysis, and assembling (2.9) over the whole mesh, we get a matrix system of the form

Mhuh = F h(2.10)
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Implementing the HOC formulation within a multigrid framework involves modifying
the usual procedure for constructing the matrix on the fine and coarse grids to include com-
puting derivatives of the PDE coefficients and allowing for a 9-point stencil. In addition, the
restriction procedure and the right hand side of the matrix systems must be modified if 4th
order consistency of the algorithm is to be enforced at all grid levels.

To illustrate the modified procedure for fine-to-coarse restriction of residuals, consider
the original PDE rewritten in operator form

Lu = f(2.11)

where

L ≡ −∆ +α ·∇(2.12)

Let u∗ denote a smooth interpolant of the fine grid approximationu∗h. Then we can write
(2.11) as

0 = L(u− u∗ + u∗)− f = L(e∗) + L(u∗)− f = L(e∗)− r(2.13)

wherer = f −L(u∗). The HOC approximation ofLe∗ = r on the fine gridΩh follows from

0 = (Le∗ − r)|xk =
∑
l

Mkle
∗
l − r̂k − τk(2.14)

as

Mheh∗ = r̂h, r̂h = f̂
h − ̂(Lu∗)h(2.15)

We use the “hat” notation to denote quantities evaluated by applying an HOC difference
formula to their nodal values. This is to distinguish them from similar quantities that are
evaluated directly at the nodes, which are written without the “hat” notation. Similarly, the
HOC approximation on the coarse gridΩH is

MHeH∗ = r̂H , r̂H = f̂
H − ̂(Lu∗)H(2.16)

Using the linearity ofL and the fact that the residual is evaluated at the nodes, it follows that
r̂H can be obtained directly from̂rh and this is constructed precisely as in (2.8) using the
nodal valuesrk. For example, in the 1D case described in (2.5) we have

r̂Hk =
H2

12
(δ2
xrk − ckδxrk)(2.17)

at the coarse grid nodesk, whereδ2
x, δx are the coarse grid difference operators. Note that

this also implies that the residuals at the additional (non-nested) nodes on the fine grid need
not be evaluated. However, in practice we simply computerh = fh −Mhu

h∗ on the fine
grid and then use it in (2.17) to computer̂H at the coarser grid nodes. Finally, the solution of
(2.16) gives the coarse grid correctioneH∗, and this can be added directly componentwise to
the fine grid approximationuh∗.

LetP denote them×n restriction matrix for the map from fine to coarse grid. Then the
restriction operation can be written as

rH = Prh(2.18)
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whereP has the necessary unit entries in the appropriate row and column locations to “ex-
tract” the coarse grid vector and zero entries elsewhere. The right side vector for the HOC
scheme then follows from (2.17) where the entriesri correspond torH in (2.18). The corre-
sponding prolongation operator isP T and we have the fine grid update

eh = P TeH∗(2.19)

whereeH∗ is obtained by solving the coarse grid system (2.16).
Remark: Note that in this approach we use the continuous differential problemLu =

f in Ω to construct the coarse grid problem and deduce the corresponding restriction
and prolongation operators. In so doing we pose consistentO(h4) andO(H4) HOC
schemes at the respective levels. Keeping in mind that the main purpose of the
multigrid scheme is, however, to act as a preconditioning to the fine grid problem,
the need for a high-order scheme for the coarse grid problem is moot. Instead,
the gain may lie in the fact that theO(H4) scheme should have better oscillatory
stability properties and avoid the need for adding artificial dissipation or using other
heuristic approaches for the coarse grid problem (e.g., see Gupta et al. [5, 6]). In
fact, for the 1D case the HOC scheme is nonoscillatory for the model convection-
diffusion problem at all Reynolds (Peclet) numbers, which suggests this idea has
some merit.

In the next section we show the results of numerical studies in 2D that are designed to test
the method. We also emphasize that the preferred approach for constructing the coarse grid
problem may not necessarily be through the approximation of the PDE on this grid. Instead it
might be preferable to construct the Schur complement problem for the coarse grid and then
approximate this problem to determine a convenient class of coarse grid discrete systems
with associated restriction and prolongation operators. We will explore this topic and related
issues in a subsequent study.

3. Results and Discussion.Numerical studies using our approach have been carried
out for the convection-diffusion equation (2.1) subject to Dirichlet boundary conditions. We
consider both constant and variable coefficients in our test problems, which are listed below.

Problem 1:
The domain is0 < x, y < 1, c = d = constant,f = 0, and the analytical solution is

u(x, y) = [(ecx − 1)/(ec − 1)][(edy − 1)/(ed − 1)](3.1)

For c andd large and positive, the solution has a corner layer near(1, 1).
Problem 2:

The domain is−0.5 < x, y < 0.5, c = d = constant,f is derived by substituting
the following analytical solution into (2.1)

u(x, y) = tanh[q(x2 + y2 − r2)](3.2)

with q = 10 andr = 0.25. This solution has a steep layer along the circumference of
a circle of radius0.25 centered at the origin. The value ofq controls the magnitude
of the gradients.

Problem 3:
The domain is0 < x, y < 1, the coefficients have the formc = −Rx andd = Ry,
the source termf is derived by substituting the following analytical solution into
(2.1)

u(x, y) = xy(1− x)(1− y)e(x+y)(3.3)
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Here R is a constant parameter whose magnitude determines the severity of convec-
tion domination in the problem. This is among the test problems used by Gupta et
al. [7].

In the numerical studies we consider a range of convection to diffusion ratios, as well
as the influence of mesh spacing and number of levels in the multigrid algorithm. The re-
sults show that the HOC approach improves multigrid stability, preserves the typical mesh-
independent convergence behavior of the multigrid cycles and yields 4th order accuracy.

The results presented here are computed using multigridV -cycles, with Gauss-Seidel
relaxation for 2 pre-smoothing and 1 post-smoothing iteration. We have considered restric-
tion based on full-weighting as well as the self-consistent HOC form discussed previously.
Bilinear interpolation is used for coarse-to-fine projections, and a band solver is used at the
coarsest level.

Figures 3.1-3.3 show convergence behavior of the residual as a function of multigrid
cycles for each test problem for a range of convection to diffusion ratios. In each case we use
a 6-level multigrid cycle starting from a65 × 65 fine grid. These figures demonstrate how
the HOC formulation improves stability and permits the use of much higher convection to
diffusion ratios for a given mesh size. If we use 2nd order central differencing in place of the
HOC discretization, the multigrid cycles are far less stable – as the convection ratio increases,
it limits the coarser mesh levels permissible for convergence. For example, with a convection
to diffusion ratio of 50 – the least severe case in Figure 3.1 – multigrid convergence is not
possible without limiting it to a 3-level cycle with17× 17 nodes on the coarsest level. This
leads to a considerable increase in the computational cost compared to the HOC case, where
the coarsest mesh has3 × 3 nodes. Figure 3.4 compares the convergence behavior of the
two schemes as a function of CPU time for this case. In fact, the CDS performance rapidly
gets worse as the convection is increased further, until we get to the point where the finest
grid itself is inadequate for computing a stable, nonoscillatory solution. Similar results are
observed when the central difference scheme is used in Problems 2 and 3.

Figures 3.5-3.7 demonstrate the mesh-independent convergence behavior of the multi-
grid cycles for the HOC formulation. Each curve represents a multigrid calculation with the
indicated fine mesh spacing, andV -cycles that descend all the way to the coarsest level that is
nested within the finest mesh. Other details of the multigrid cycle are the same as those spec-
ified for the cases in the previous figures. The figures clearly show that the residual converges
at a similar rate even as we refine the finest mesh.

Figures 3.8-3.10 show that the HOC formulation yields 4th order accuracy in the numer-
ical solution. In each case, the RMS error in the numerical solution at the finest grid points
(relative to the known analytical solution) is plotted as a function of finest mesh spacing. The
slope of the straight line on the log-log plots is very close to 4 for each test problem.

As noted earlier, in convection-diffusion computations with 2nd order central schemes,
converged numerical solutions at high Peclet or Reynolds numbers may exhibit spatial os-
cillations if the grid is not sufficiently fine [4]. In our test problems we confirm that the
numerical results using the HOC approach are oscillation-free by inspecting surface plots of
the solution. Figure 3.11 shows such a plot for Problem 2 withc = d = 500 using a65× 65
fine grid. This represents the most stringent case considered in Figure 3.2 where we see the
rate of multigrid convergence starting to break down at this convection level. Figure 3.12
shows a similar plot for a33 × 33 fine grid with c = d = 200, which is the worst case in
Figure 3.6.

Our numerical studies also revealed certain other interesting features of the HOC multi-
grid approach. For instance, when standard multigrid strategies are applied to convection-
diffusion problems, stability is not guaranteed even when the finest mesh satisfies the usual
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FIG. 3.1. Convergence behavior of HOC method for Problem 1 on a65 × 65 fine grid with a 6-level HOC-
consistent multigrid cycle for various convection to diffusion ratios.
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FIG. 3.2.Convergence behavior of HOC method for Problem 2 with similar multigrid cycle as that of Fig. 3.1.

Peclet (or Reynolds) condition for stability. In the 2nd order central difference scheme with
a given fine mesh, as the convection increases, the number of permissible coarser levels de-
creases. Otherwise the coarsest mesh levels contribute to instability of the multigrid algo-
rithm. In contrast, with the HOC formulation multigrid stability seems less sensitive to the
coarser levels. As long as the fine grid is adequate to yield stable solutions, the number and
coarseness of the other levels appears irrelevant to the stability of the multigrid algorithm.

Finally, we also investigated the behavior of the HOC multigrid algorithm for very large
Reynolds numbers. We found the method converged for the highest Reynolds numbers that
we tested (c = d = 105 in Problem 1). However, the convergence rate significantly dete-
riorates, as shown in Figure 3.13 which plots the residual as a function of multigrid cycles
for Problem 1 with values ofc andd much larger than in Figure 3.1. We emphasize that the
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FIG. 3.3.Convergence behavior of HOC method for Problem 3 with similar multigrid cycle to that of Fig. 3.1.
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FIG. 3.4.CPU timing comparison of HOC and central difference (CDS) multigrid schemes for Problem 1 with
convection to diffusion ratio of 50.

results in Figure 3.13 were computed with the same grid and multigrid cycling strategy as
was used in Figure 3.1.

4. Conclusion. We have developed an accurate, robust multigrid approach for convection-
diffusion applications using high order compact finite difference discretizations. The result-
ing numerical scheme preserves the stability and mesh-independent convergence properties
of the multigrid computations, while also yielding a 4th order accurate, non-oscillatory solu-
tion at the finest mesh level. The high order compact formulation is used for discretizing the
problem at all grid levels, as well as for constructing consistent multigrid projections from
fine to coarse grids. Our numerical studies on 2D convection-diffusion problems demonstrate
the stability and accuracy of this approach in the multigrid setting. Compared to the standard
2nd order central differencing strategy, the HOC method yields significantly higher stabil-
ity, accuracy and computational efficiency. It permits the use of the full hierarchy of nested
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FIG. 3.5. Mesh-independent convergence behavior of HOC-consistent multigrid cycles for Problem 1 with
c = d = 200.
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FIG. 3.6. Mesh-independent convergence behavior of HOC-consistent multigrid cycles for Problem 2 with
c = d = 200.

coarse grids in the multigrid algorithm, unlike the central difference approach which limits
the number of coarse meshes depending on the convection to diffusion ratio.
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FIG. 3.8.Numerical error in HOC formulation exhibits 4th order dependence on mesh spacing for Problem 1
(with c = d = 200).
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FIG. 3.9.Numerical error in HOC scheme for Problem 2 withc = d = 200 also demonstrates 4th order behavior.
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FIG. 3.10.Numerical error in HOC scheme for Problem 3 withR = 200 demonstrates 4th order behavior.
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FIG. 3.11.Surface plot of numerical solution for Problem 2 withc = d = 500 using the same fine grid and
multigrid cycle as in Fig. 3.2.



ETNA
Kent State University 
etna@mcs.kent.edu

Anand L. Pardhanani William, F. Spotz, and Graham F. Carey 223

-0.5

0

0.5 -0.5

0

0.5-1

-0.5

0

0.5

1

x

y

u

FIG. 3.12.Numerical solution for Problem 2 with33× 33 fine grid andc = d = 200 as in Fig. 3.6.
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FIG. 3.13. Residual versus multigrid cycles for Problem 1 with largec, d using the same grid and cycling
strategy as Fig. 3.1.


