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A HIERARCHICAL PRECONDITIONER FOR THE MORTAR
FINITE ELEMENT METHOD∗
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Abstract. Mortar elements form a family of nonconforming finite element methods that are
more flexible than conforming finite elements and are known to be as accurate as their conforming
counterparts. A fast iterative method is developed for linear, second order elliptic equations in
the plane. Our algorithm is modeled on a hierarchical basis preconditioner previously analyzed
and tested, for the conforming case, by Barry Smith and the second author. A complete analysis
and results of numerical experiments are given for lower order mortar elements and geometrically
conforming decompositions of the region into subregions.
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1. Introduction. Mortar finite element methods were introduced by Bernardi,
Maday, and Patera; see [9]. The discretization of an elliptic, second order problem
starts by partitioning the computational domain Ω into the union of nonoverlapping
subregions (substructures), {Ωi}Ii=1, and an interface Γ, which is the set of points
which belong to the boundaries of at least two subregions. In this paper, we restrict
ourselves to the geometrically conforming case in two dimensions; the intersection
between the closure of two different subregions is either empty, a vertex, or a whole
edge. We note that mortar element methods have also been developed for geometri-
cally nonconforming decompositions of the given region, i.e. for decompositions which
violate this rule, as well as for problems in three dimensions.

The restriction to any subregion Ωi of the mortar finite element space considered
here, is just a standard piece-wise linear finite element space. We can adopt a strategy
of successive refinement to obtain flexible, geometrically conforming, and shape regu-
lar triangulations of each of the subregions. The meshes of two neighboring subregions
do not necessarily match on their common interface and the elements of the discrete
space V h are typically discontinuous across the interface Γ. Instead of pointwise con-
tinuity, the interface jumps are made orthogonal to a carefully chosen space of trial
functions. In our work, we exclusively consider the second generation mortar element
methods for which continuity is not even imposed at the vertices of the substructures;
even if the meshes match across the interface between adjacent subregions, the mortar
finite element functions will not, generally, be pointwise continuous.

Similarly as when working with other nonconforming methods, the original bi-
linear form a(·, ·) is replaced by aΓ(·, ·) defined as the sum of contributions from the
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individual subregions to a(·, ·):

aΓ(uh, vh) =
I∑
i=1

aΩi(uh, vh).(1.1)

For uh = vh, we obtain the square of what is often called a broken norm. Here the
norm has been broken along Γ and it is finite for any element of the mortar space
even if it is discontinuous across Γ.

It is known that the resulting discrete variational problem gives rise to a linear
system with a symmetric, positive definite matrix, and that its solution is an accurate
approximation to the exact solution of the continuous problem; see [5, 6, 9] where
error bounds of the same type as for standard conforming methods are derived.

In this paper, we address the issue of solving this linear system efficiently. We
note that direct methods and classical, unpreconditioned iterative methods have well-
known limitations. Domain decomposition algorithms, which form a special family
of preconditioned conjugate gradient methods, have been developed extensively for
standard conforming finite elements. The present study is part of an effort to extend
the applicability of these methods to a wider family of discretizations. Here, we have
chosen to use a hierarchical preconditioner modeled on an algorithm developed by
Smith and Widlund [19]. That work, in turn, was based on a result of Yserentant
[21]. We note that, in the conforming case, we had found this to be an effective
preconditioner with certain advantages over some similar iterative methods because
of being relatively simple, and as effective as the others; cf. [18] for motivation and a
comparative study.

Our algorithm is a preconditioned conjugate gradient method with a condition
number bounded from above byC(1+`)2. Here ` is the maximum number of successive
refinements of any individual subregion Ωi into elements, and C a constant which
depends on the minimal angle of the triangulations into subregions and elements, but
which is otherwise independent of `, and the number and size of the substructures and
elements. Our method is an iterative substructuring algorithm, i.e. the linear system
is first reduced in size by implicitly eliminating all the nodal variables interior to the
subregions. The nodal values on ∂ΩN , the part of the boundary where a Neumann
condition is imposed, are also classified as being interior. In each step of the iteration,
we solve a local boundary value problem for each subregion, perform very fast local
transformations between the nodal and hierarchical bases restricted to each individual
edge, and solve a global problem of a dimension equal to the number of crosspoints
of the partitioning of the region into substructures. We note that the global coarse
space of our algorithm is the same as for the conforming case. This is in contrast with
those proposed in Achdou, Maday, and Widlund [3, 4] and Dryja [14], which are of
higher dimension.

Other iterative substructuring methods for mortar finite elements have been de-
scribed and analyzed by Achdou, Kuznetsov, and Pironneau [1, 2] and Le Tallec [16].
Ongoing work in the field also includes Maday and Widlund [17]. We also note that
certain technical issues related to extending the algorithm of this paper to higher
order elements are discussed in a recent paper by the first author; cf. [12].

In the next section, we introduce the mortar space V h, and establish some prop-
erties of certain special vertex basis functions. In Section 3, we introduce the hierar-
chical structure, and describe and analyze our algorithm. In Section 4, we report on
some numerical experiments that demonstrate the effectiveness of the algorithm in a
relatively wide range of situations.
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2. The Elliptic Problem and the Mortar Finite Element Method. Let Ω
be a bounded polygonal region in R2 with a diameter on the order of 1. For simplicity,
we consider only Poisson’s equation as a model problem. The boundary of Ω, ∂Ω, is
the union of ∂ΩN and ∂ΩD on which Neumann and homogeneous Dirichlet conditions
are imposed, respectively. We assume that ∂ΩD is a closed set of positive measure.
Let

a(u, v) =
∫

Ω

∇u · ∇v dx(2.1)

define an elliptic and continuous bilinear form on H1
0 (Ω, ∂ΩD), the subspace of H1(Ω)

with elements which vanish on ∂ΩD. Let f(·) be a continuous linear functional on
H1

0 (Ω, ∂ΩD); it includes a contribution from the nonhomogeneous Neumann boundary
values, if any, in the form of a line integral. Then, by the Lax-Milgram lemma, there
is a unique u ∈ H1

0 (Ω, ∂ΩD) satisfying

a(u, v) = f(v) ∀v ∈ H1
0 (Ω, ∂ΩD).(2.2)

2.1. Triangulation of the region and the subregions. We assume that
Ω can be partitioned into nonoverlapping, shape regular triangular substructures,
{Ωi}Ii=1; we will focus on the analysis of the case of triangular substructures but we
note that a similar theory can be developed for the quadrilateral case. As noted before,
the intersection between the closure of any two distinct substructures is either empty,
a vertex, or a whole edge; this coarse triangulation is geometrically conforming. We
also assume that if ∂Ωi∩∂Ω is nonempty, then the boundary condition does not change
type in the interior of any edge of Ωi. We note that we are primarily interested in the
case of a large number of subregions, since the potential for parallelizing our method
depends on having enough subproblems. Our analysis will only involve individual
subregions and their next neighbors. The subregions are assumed to be shape regular
but there is no need to assume that the coarse triangulation is quasi-uniform. To
simplify our analysis, we assume that the triangulation of each subregion is quasi-
uniform. We will denote the diameter of the subregion Ωi by Hi, and the smallest
diameter of any of its elements by hi. Our results depend only on the minimal angle
of the overall triangulation, and `, the maximum of the number of refinement levels
`(i) of the substructures Ωi.

We start the detailed description of the finite element space V h by defining a
multi-level triangulation within each substructure; see [21]. Each Ωi is subdivided by a
nested family of standard conforming finite element triangulations T i0 , T i1 , T i2 , . . . , T i`(i).
The coarsest level of this triangulation has just one element, Ωi. We set T i0 = {Ωi},
and obtain the quasi-uniform triangulation T ik+1 from the next coarser triangulation,
T ik , by subdividing each of its triangles into four shape-regular, but not necessarily
equal, triangles. In particular, triangles of level k + 1 have diameters of an order
approximately one half of the diameter of those of level k.

2.2. The mortar finite elements. The interface Γ is defined by the coarse
triangulation and is given by

Γ = ∪Ii=1∂Ωi \ ∂Ω.

A set of mortars {γm}Mm=1 is obtained by selecting open edges of the substructures
such that

Γ = ∪Mm=1γm, γm ∩ γn = ∅ if m 6= n.
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Our view is that a mortar γm belongs to just one substructure, denoted by Ωi(m),
while the other edge, which geometrically occupies the same place, is denoted by δm.
We refer to it as a nonmortar, and the subregion to which it belongs is denoted by
Ωj(m). The restrictions of the triangulations of Ωi(m) and Ωj(m) to this common edge
will typically differ and are denoted by γhm and δhm, respectively. Discontinuous mortar
finite element functions have different traces on γm and δm given by one-sided limits
with respect to the two subregions Ωi(m) and Ωj(m). An important component of our
preconditioner will be related to the union of the two subregions Ωi(m) and Ωj(m) and
the edge in between, and we will denote this set by R(γm). Similarly, R(Ωi) is the
union of all subregions Ωj the closure of which intersects the closure of Ωi. We also
introduce the notation V h(Σ) to mean the restriction of V h to a set Σ which, in this
paper, will always be a single subregion or the union of a few of them. Finally, we
denote by V h0 (Σ) the subspace of V h(Σ) of functions which vanish on ∂Σ.

Even though we will use a hierarchical basis in the design of our preconditioner,
we can primarily work with a standard nodal basis. We will use a nodal basis of the
mortar finite element space associated with the following sets of nodes:

• all nodes interior to the substructures and on ∂ΩN ,
• all nodes interior to the mortars, and
• all nodes of vertices of subregions except those on ∂ΩD.

We denote by V the set of vertices of the substructures that are associated with degrees
of freedom of V h, i.e. those for which the values are not given by the Dirichlet data
on ∂ΩD. Each crosspoint of Γ corresponds to several nodes of V and to one degree
of freedom for each of the subregions that meet at that point; these nodes are in the
same geometrical position, but are assigned to different subregions.

For each m, we further define a space of test functions Wh(δm) given by the
restriction to the nonmortar δm of the original finite element space defined on Ωj(m)

subject to the constraints that these continuous, piece-wise linear functions are con-
stant in the first and last mesh intervals of δhm.

The mortar projection πm maps the space of finite element functions defined on
γhm into that of δhm. Given ui(m) in Ωi(m), and boundary values of uj(m) at the two end-
points vn1 and vn2 of δm, we determine the values of πm(ui(m), uj(m)(vn1), uj(m)(vn2))
at the interior nodes of δhm by∫

δm

(ui(m) − πm(ui(m), uj(m)(vn1), uj(m)(vn2))ψds = 0 ∀ψ ∈ Wh(δm).(2.3)

After these preparations, the mortar finite element space V h can now be fully
defined. The restriction of V h to Ωi, V h(Ωi), is a regular conforming finite element
space as described above. For each nonmortar there is a set of constraints,

uj(m)|δm = πm(ui(m), uj(m)(vn1), uj(m)(vn2)),(2.4)

which replaces the pointwise continuity of conforming spaces.
The discrete problem is then:

Find u ∈ V h such that

aΓ(u, v) = fΓ(v) ∀v ∈ V h,(2.5)

where aΓ(u, v) is defined in formula (1.1) and, similarly, fΓ(v) is the sum of contri-
butions from the different subregions.
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The rate of convergence of the solution of (2.5) to the solution of (2.2) is com-
parable to that of a conforming discretization; cf. [7], [9], and references therein for
theoretical and experimental results.

At the expense of an exact solution of a finite element problem per subregion, with
homogeneous Dirichlet data, we reduce problem (2.5) to that of finding the piece-wise
discrete harmonic part of the solution. We recall that a finite element function u is
discrete harmonic in the subregion Ωi if

aΓ(u, v) = 0 ∀v ∈ V h ∩H1
0 (Ωi),

and that a discrete harmonic function provides the unique minimal energy extension
of finite element boundary data given on the boundary ∂Ωi. In what follows, we will
work exclusively with piece-wise discrete harmonic functions, without restricting the
generality of our discussion; from now on V h will denote this subspace.

We will also use a basic result proven in [9].
Lemma 1. The mapping πm is stable: there is a constant C such that

|πm(u, 0, 0)|
H

1/2
00 (δm)

≤ C|u|
H

1/2
00 (γm)

∀u ∈ H1/2
00 (γm).(2.6)

We end the subsection by proving a Poincaré inequality and formulating a Friedrichs
inequality. They will be formulated for a region R(cr) which is the union of the sub-
structures which have a crosspoint cr in common. In order to obtain a result that is
independent of the mesh, we will establish the inequality for a space V̂ (R(cr)), which
contains all possible V h(R(cr)) as a subspace but which itself is not a finite element
space. The restriction of V̂ (R(cr)) to any of the substructures Ωi ⊂ R(cr) equals
H1(Ωi). As in the case of mortar finite element functions, we potentially have two
traces on any edge Γij between any pair of substructures Ωi and Ωj . We only impose
one constraint per edge, namely that

∫
Γij

[u]ds = 0, where [u] is the jump of u across
Γij .

Lemma 2. Let u ∈ V̂ (R(cr)). Then,

inf
c∈<
||u− c||2L2(R(cr))

≤ C
∑

Ωj⊂R(cr)

H2
j |u|2H1(Ωj)

.(2.7)

Here C depends only on the minimal angle of the substructures that form the coarse
triangulation of R(cr) and is independent of the diameters of the substructures and
their triangulations.

Proof. We note that we can confine our study to a finite number of configurations
allowed by the minimal angle condition on the coarse mesh. Each configuration corre-
sponds to a specific number of substructures that have the crosspoint cr in common.
We assume in our discussion that cr is an interior crosspoint; the extension of our
argument to cases when cr ∈ ∂ΩN poses no problems. The problem can be further
specialized by noticing that a piece-wise affine map can be found that maps the trian-
gulation of R(cr) onto a regular polygon R(0) of diameter 1, centered at 0, the image
of cr. This mapping does not adversely affect our bounds, under the assumption of
shape regularity. It also accounts for the factors H2

j in the estimate.
Thus, what remains is to prove the Poincaré inequality (2.7) for this finite number

of special reference regions. We use a variant of a well-known argument given, e.g. in
Ciarlet [13, Theorem 3.1.1]. Our result follows by proving a bound
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Fig. 2.1. Three cases of vertex basis functions

∑
Ωj⊂R(0)

‖u‖2L2(Ωj)
≤ C(

∑
Ωj⊂R(0)

|u|2H1(Ωj)
+ (
∫
R(0)

u(x)dx)2) ∀u ∈ V̂ (R(0)).(2.8)

Following Ciarlet, we use a proof by contradiction. We assume that there is a sequence
of uk ∈ V̂ (R(0)) with unit L2−norm, for which all the terms of the right hand side of
(2.8) go to zero. By applying Rellich’s theorem, one subregion at the time, selecting a
subsequence of the previous subsequence every time we move on to a new subregion, we
find a limit function which is locally in H1(Ωj), and which, because of the continuity
of the trace mappings, satisfies the jump conditions of V̂ (R(0)). Thus, the limit
function belongs to V̂ , and is a constant, which must vanish since the last term of
(2.8) vanishes in the limit.

We note that a proof of the following Friedrichs inequality can be found in [8]; a
proof can also be given using the same techniques as above.

Lemma 3. Let u ∈ V̂ (R(cr)) vanish on at least one of the edges of the substruc-
tures that form R(cr). Then,

||u||2L2(R(cr))
≤ C

∑
Ωj⊂R(cr)

H2
j |u|2H1(Ωj)

.(2.9)

Here C depends only on the minimal angle of the substructures that form the coarse
triangulation of R(cr) and is independent of the diameters of the substructures and
their triangulations.

2.3. Vertex basis functions. As we have already pointed out, the mortar finite
element functions are typically multi-valued at the crosspoints of the subregions. In
order to describe and analyze our algorithm, we need to define a special vertex basis
function for each of these degrees of freedom and derive estimates of their norms.
These special functions are piece-wise discrete harmonic functions.

For each vertex vn of V, let φvn ∈ V h(Ω) be defined by the value 1 at vn, with
all other nodal values on Γ set to zero. This completely defines φvn since the interior
nodal values on the nonmortars are given by the mortar projections, and those in the
interior of the Ωi by discrete harmonic extensions.

As indicated in Fig. 1, φvn differs from zero at the interior nodes of some of the
nonmortar edges associated with the same crosspoint as vn. The marked node is the
vertex vn, and it touches two, one, or no mortars. In the figure, we distinguish between
values at the vertices and at the interior nodes of the edges. The bold lines represent
mortars, and Z and N stand for zero and nonzero values of the vertex function φvn at
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the vertices or at the interior nodes of the edges. The figure displays the three basic
configurations in the case of four quadrilateral subregions meeting at a crosspoint.

In the first case, vn is the left endpoint of a horizontal mortar γm. Then, φvn
coincides with the standard nodal basis function ϕvn on γm. Across the edge, on the
nonmortar, φvn |δm = πm(ϕvn , 0, 0).

In the second and third cases, vn is the left endpoint of a horizontal nonmortar
δm. By construction, φvn vanishes on the mortar γm across the edge. Therefore,
φvn |δm = πm(0, 1, 0).

The following two lemmas provide estimates that will be used in Lemma 6 to
estimate the aΓ(·, ·)- and L∞-norms of φvn .

Lemma 4. Let δ be a nonmortar and let π be the mortar projection associated
with it. Then,

||π(0, 1, 0)||L∞(δ) ≤ C,(2.10)

and

||π(0, 1, 0)||H1/2(δ) ≤ C.(2.11)

Proof. Let uδ be the vector of nodal values, interior to δ, of π(0, 1, 0). A nodal
basis ofWh(δ) is formed from the standard nodal basis on δh by combining two basis
functions at each end to create two special basis functions which are constant in the
mesh intervals of δh that touch the endpoints of δh.

By using (2.3), we obtain a tridiagonal system of linear equations

Muδ = b.

It is easy to show that only the first and last diagonal elements ofM differ from those
of the mass matrix with respect to the space of piece-wise linear functions on δh that
vanish at the endpoints. The differences between these matrix elements are positive
and therefore

||π(0, 1, 0)− ϕvn ||2L2(δ) ≤ uTδMuδ ≤ uTδ b ≤ (uTδMuδ)
1/2(bTM−1b)1/2,

where ϕvn is the nodal basis function on δh associated with the left endpoint. By
examining the right hand side b, which has only one non-zero entry, we easily find,
using the quasi-uniformity of δh, that

||π(0, 1, 0)||2L2(δ) ≤ Chδ,

from which (2.10) and (2.11) follow by using inverse inequalities.
Lemma 5. Let vn be the left endpoint of a mortar γ, and let ϕvn be the standard

nodal basis function on γh corresponding to vn. Then,

||π(ϕvn , 0, 0)||L∞(δ) ≤ C,(2.12)

and

||π(ϕvn , 0, 0)||H1/2(δ) ≤ C.(2.13)
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Proof. We first prove the lemma for hδ ≤ hγ ; these are the minimal mesh sizes
of δh and γh, respectively. In addition, we first also assume that the second leftmost
point of γh, Q, coincides with a mesh point of δh. Using (2.3), we can easily check
that

π(ϕvn , 0, 0)− ϕvn = −π(0, 1, 0),

since both sides are finite element functions on δh. The L∞-norm estimate (2.12)
now easily follows from (2.10). The H1/2-norm estimate (2.13) is a consequence of
||ϕvn ||2H1/2(δ)

≤ C and (2.11).
If the second leftmost point of γh, Q, does not coincide with a mesh point of δh,

we denote by R the mesh point of δh that is the right next neighbor of Q. Let ϕ̃
be the piece-wise linear function that equals 1 at vn and vanishes at R, and to the
right of R. Then, the argument just given can be used for π(ϕ̃, 0, 0), since ϕ̃ is now a
finite element function on the mesh δh. There remains to estimate π(ϕvn − ϕ̃, 0, 0).
From the definition of ϕ̃, we find that ||ϕvn − ϕ̃||2L2(δ) ≤ Chδ. An argument similar to
that of the proof of Lemma 4 shows that ||π(ϕvn − ϕ̃, 0, 0)||2L2(δ) ≤ Chδ, and we can
conclude the proof of the result for hδ ≤ hγ by using two inverse inequalities.

If hδ > hγ , we can use that ||ϕvn ||L2(γ) ≤ Chγ and an argument similar to that
of the proof of Lemma 4, to conclude that

||π(ϕvn , 0, 0)||L2(δ) ≤ Ch2
γ/hδ ≤ Chγ .

The two estimates (2.12) and (2.13) now follow by again using inverse inequalities.
Lemma 6. For any vn ∈ V, we have:

||φvn ||L∞(Γ) ≤ C,(2.14)

and

aΓ(φvn , φvn) ≤ C(1 + `).(2.15)

Proof. The first bound, (2.14), follows immediately from Lemmas 4 and 5. The
bound on the square of the trace norm on the whole interface Γ, which is proportional
to (1+`) and which, by a finte element extension theorem, also implies (2.15), follows
from (2.14) and an argument in the proof of Lemma 3.2 in [20].

3. Algorithm and Analysis. Our solution procedure starts with the static
condensation of all degrees of freedom interior to the different substructures, reducing
the size of the discrete system. We note that it is not necessary to compute the Schur
complement. All that is needed is to carry out a matrix-vector multiplication with
the Schur complement. After finding sufficiently accurate values on Γ, the solution
of (2.5) is then computed everywhere by solving a finite element problem for each
subregion Ωi with Dirichlet data given on ∂Ωi \ ∂ΩN .

3.1. Schwarz methods. We solve (2.5) with a preconditioned conjugate gra-
dient method, using an additive Schwarz method determined by a finite family of
subspaces {Vs} whose sum spans V h, and bilinear forms {bs(·, ·)}s defined on Vs×Vs.
Using the Schwarz framework described in Dryja and Widlund [15], we define approx-
imate projections Ts : V h → Vs, by

bs(Tsu, vs) = aΓ(u, vs) ∀vs ∈ Vs.
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The preconditioned operator T is given by

T = αT0 +
∑
s≥1

Ts,

where α is a positive parameter that is used to tune the algorithm; see Section 4.
Let C2

0 be a constant such that, for all u ∈ V h, there exists {us}s, us ∈ Vs, with∑
s

bs(us, us) ≤ C2
0a

Γ(u, u) where u =
∑
s

us,

and let ω be a constant such that

aΓ(u, u) ≤ ωbs(u, u) ∀u ∈ Vs.

Since our algorithm is a two-level algorithm, the third hypothesis of Theorem 2.2 in
[15] is trivially satisfied. This theorem then provides a bound on the condition number
of T :

κ(T ) ≤ CC2
0ω.(3.1)

In subsection 3.3, we will introduce our algorithm and establish bounds for C0 and ω.

3.2. A hierarchical basis. Before we can introduce our preconditioner in detail,
we need to review some aspects of Yserentant’s hierarchical basis method; cf. [21].
We denote by N i

k, k = 0, 1, . . . , `(i), the set of vertices of the triangles of T ik , by V ik
the space of continuous functions on Ωi that are linear in the triangles of T ik , and
by V i the most refined space V i`(i). All elements of V ik vanish on ∂Ωi ∩ ∂ΩD. An
interpolation operator Iik : V i → V ik , is defined by

Iiku(x) = u(x) ∀x ∈ N i
k.

Following Yserentant [21], we define a discrete norm, for any set Λ ⊂ Ωi, by

|||u|||2Λ =
`(i)∑
k=1

∑
x∈N i

k
\N i

k−1∩Λ

|(Iiku− Iik−1u)(x)|2;(3.2)

cf. Yserentant [21]. Let W i
k be the image of Iik−Iik−1; this is the subspace of functions

of V ik that vanish on N i
k−1. A hierarchical basis of V i can now be defined recursively.

The hierarchical basis of V i0 is the standard finite element nodal basis restricted to
the single triangle Ωi. It is clear that V ik = V ik−1 + W i

k, k ≥ 1. In each step, we
augment the hierarchical basis of V ik−1 by the level k nodal basis functions which span
W i
k ⊂ V ik . For a function u represented in this basis, the discrete norm |||u|||2Λ is simply

the Euclidean norm and thus very easy to compute. Moreover, the transformation
between the standard nodal basis and the hierarchical basis is very fast and easy to
implement; see [19] and [21].

We first describe some results that have motivated the definition of our precon-
ditioner. For one substructure, we have:

|Ii0u|2H1(Ωi)
+ |||u|||2Ωi ≤ C(1 + `(i))||u||2L∞(Ωi)

∀u ∈ V i,(3.3)

and

|u|2H1(Ωi)
≤ C(|Ii0u|2H1(Ωi)

+ |||u|||2Ωi) ∀u ∈ V i.(3.4)
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Equation (3.3) is an easy consequence of the definition of the interpolation operators.
Equation (3.4) results from a strengthened Cauchy-Schwarz inequality; see Yserentant
[21].

For our purposes, we need a variant of (3.4):
Lemma 7. For u ∈ V h(Ωi),

|u|2H1(Ωi)
≤ C(|Ii0u|2H1(Ωi)

+ |||u|||2∂Ωi).(3.5)

Note that the discrete norm over Ωi has been replaced by the norm over ∂Ωi.
Proof. We first define an extension E(u) ∈ V i of u, normally not discrete har-

monic, such that E(u) agrees with u on ∂Ωi, and when written in the hierarchical
representation, has all its degrees of freedom in the open set Ωi equal to zero. Equation
(3.4), applied to E(u), implies

|E(u)|2H1(Ωi)
≤ C(|Ii0u|2H1(Ωi)

+ |||u|||2∂Ωi),

since |||E(u)|||Ωi = |||u|||∂Ωi . We conclude by noting that the discrete harmonic
function u has the smallest energy among all extensions in V i of the boundary values
of u.

3.3. The algorithm. We are now in a position to describe and analyze our
algorithm. The coarse space, which is conforming, is given by

V0 = {u ∈ V h ∩H1
0 (Ω, ∂ΩD)| u is linear on each Ωi}.

The bilinear form associated with V0 is aΓ(·, ·) which coincides with a(·, ·) on this
subspace.

A one-dimensional vertex space is associated with each vn ∈ V:

Vvn = span of φvn .

We use the exact bilinear form aΓ(·, ·) for these spaces.
A subspace Vγm = V h0 (R(γm)) is associated with each mortar. The bilinear forms

for these spaces are given by bγm(·, ·) = ||| · |||2γm .
The Schwarz framework provides a preconditioned equation Tu = b in terms of

these spaces and bilinear forms and the solution of this equation is the same as that
of (2.5). The main result of this paper is the following theorem. We note that a more
straightforward approach to the proof would lead to a bound with a fourth power of
`.

Theorem 1. The condition number of T satisfies

κ(T ) ≤ C(1 + `)2.

Proof. We first partition u ∈ V h and obtain the estimate C2
0 ≤ C(1 + `)2. To do

so, we select u0 ∈ V0, in the representation of u =
∑
us, by making u0(cr) = ūcr ,

where ūcr is the average value of u at the vertices of V that coincide geometrically
with cr. A standard Sobolev-like inequality for finite elements, see e.g. [11], gives:

|u(vn)− u0(vn)|2 ≤ C
∑

Ωj⊂R(cr)

(1 + log(Hj/hj))(|u|2H1(Ωj)
+

1
H2
j

||u||2L2(Ωj)
)(3.6)

≤ C(1 + `)
∑

Ωj⊂R(cr)

(|u|2H1(Ωj)
+

1
H2
j

||u||2L2(Ωj)
),
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since log(Hj/hj) is proportional to `(j).
If R(cr) has a whole edge on ∂ΩD, then the last sum above can be bounded by

aΓ
R(cr)

(u, u), the restriction of aΓ(·, ·) to R(cr), by using Lemma 3. If R(cr) has only
one point in common with ∂ΩD, we consider its union with an additional subregion,
chosen so that this new R(cr) has a whole edge on ∂ΩD, and use Lemma 3 again. If
∂Ωi ∩ ∂ΩD = ∅, we add a constant to u, which does not change the left hand side,
and use Lemma 2. For any of these three cases, we have:

|u(vn)− u0(vn)|2 ≤ C(1 + `)
∑

Ωj⊂R(cr)

|u|2H1(Ωj)
,(3.7)

which in turn implies, by a standard argument, that

|u0|2H1(Ωi)
≤ C(1 + `)

∑
Ωj⊂R(cr)

|u|2H1(Ωj)
.(3.8)

We next define the vertex space components of u. For each vertex vn ∈ V, let
uvn = (u(vn)− u0(vn))φvn . Using equation (2.15) and (3.7), we obtain

(3.9)
aΓ(uvn , uvn) ≤ C(1 + `)|(u− u0)(vn)|2

≤ C(1 + `)2aΓ
R(cr)

(u, u),

where cr is the crosspoint that coincides geometrically with vn.
Let w = u− u0−

∑
vn
uvn . Then, w vanishes at all the vertices. For each mortar

γm, let uγm ∈ Vγm coincide with w on γm. It is easy to see that u = u0 +
∑
n uvn +∑

m uγm, and that

M∑
m=1

|||uγm|||2γm ≤
I∑
i=1

|||w|||2∂Ωi .

By the argument used to derive (3.3), we have

|||w|||2∂Ωi ≤ C(1 + `)‖w‖2L∞(∂Ωi)
.

By (2.14), we know that ‖φvn‖L∞(Γ) ≤ C for all vn ∈ V. Hence,

|||w|||2∂Ωi ≤ C(1 + `)||u− u0||2L∞(∂Ωi)

≤ C(1 + `)(||u||2L∞(Ωi)
+
∑
cr∈Ωi

|u0(cr)|2)

≤ C(1 + `)2

 ∑
Ωj⊂R(Ωi)

|u|2H1(Ωj)
+

1
H2
j

||u||2L2(Ωj)

 ,

since the value of u0 at cr depends only on the values of u at the vertices that coincide
geometrically with cr, and by using the same Sobolev-like inequality used to derive
(3.6).

We now repeat the quotient space argument of (3.7), and obtain

|||w|||2∂Ωi ≤ C(1 + `)2aΓ
R(Ωi)

(u, u).
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Summing over all subregions, we find

M∑
m=1

|||uγm |||2γm ≤ C(1 + `)2
I∑
i=1

aΓ
R(Ωi)

(u, u).(3.10)

Every point of Ω is covered only a small number of times by {R(cr)}, cr a cross-
point, and by {R(Ωi)}. We use (3.8), sum (3.9) over all cr, and (3.10) to obtain

|u0|2H1(Ω) +
∑
vn∈V a

Γ(uxn , uxn) +
∑M
m=1 |||uγm |||2γm

≤ C(1 + `)2aΓ(u, u),

which completes the estimate of C2
0 .

Our next task is to show that ω can be bounded by a constant. Fortunately, this
is a very simple matter. For the coarse and vertex spaces, ω = 1, since we use exact
solvers for these spaces. Let u ∈ Vγm . Then,

aΓ(u, u) = |u|2H1(Ωi(m)) + |u|2H1(Ωj(m)).

The stability of the mortar projection, Lemma 1, the standard trace theorem, and an
extension theorem for finite element functions, [10, Lemma 5.1], allow us to bound
the second term of the right hand side by the first. Then (3.5) can be used to obtain

aΓ(u, u) ≤ C|||u|||2γm = Cbγm(u, u) ∀u ∈ Vγm ,

since the elements of Vγm vanish at the subdomain vertices. Hence, ω ≤ C.

4. Numerical Experiments. Our method has been implemented in MATLAB,
and the code is general enough to treat regions that can be decomposed into the union
of rectangles aligned with the axes; the mesh inside each subregion can be any tensor
product mesh, and the meshes do not necessarily match on the interface between the
subregions. We only report results for a very simple region; we note that even for
more general ones, the algorithm appears to be insensitive to quite different mesh
sizes in adjacent regions.

In a first set of experiments, the region Ω is the unit square, divided uniformly into
M ×M substructures, where M is 2, 4, 8, or 16. The substructures are squares, and
V0 is the space of continuous, piece-wise bilinear functions on the coarse triangulation.
For every N ∈ {4, 8, 16, 32}, each substructure is divided into an N × (N + 4) grid
of smaller rectangles, if the substructure is in an odd row, and into an (N + 4) ×N
grid if it is in an even row. These small rectangles are then divided into two triangles
by drawing the diagonals from bottom left to top right. The meshes do not match at
the interfaces of the substructures; we assign mortars and nonmortars in an arbitrary
fashion. The results are summarized on Table 1, which is organized in the same
way as Table 2 in [19] to facilitate a comparison. The number of refinement levels is
approximately equal to log2(MN) starting from the entire region.

In a second set of experiments, odd rows of subregions have uniform grids of
N ×N squares divided into two triangles each, and even lines have (N + 4)× (N + 4)
squares also divided in two triangles each. Table 2 summarizes the results for this
case.

As in [19], the coarse space V0 generates a separate contribution to the precon-
ditioner, which may be multiplied by a constant α in order to improve the overall
condition number; cf. Subsection 3.1. In our experiments, we found that α = 5 is
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TABLE 1

Condition numbers for the N × (N + 4) case
Refinement levels 3 4 5 6 7 8 9
N 4 8 16 32
M=2 7.84 7.26 8.30 10.11
N 4 8 16 32
M=4 9.95 8.24 8.58 10.35
N 4 8 16 32
M=8 10.01 8.22 8.88 11.23
N 4 8 16 32
M=16 10.94 8.27 9.09 N/A

TABLE 2

Condition numbers for the N ×N and (N + 4)× (N + 4) case
Refinement levels 3 4 5 6 7 8 9
N 4 8 16 32
M=2 5.48 6.32 7.80 9.81
N 4 8 16 32
M=4 9.30 7.95 8.36 10.28
N 4 8 16 32
M=8 9.46 8.36 9.01 11.23
N 4 8 16 32
M=16 9.52 8.55 9.21 11.48

close to the optimal parameter value for a large range of N and M , and all the results
reported have been obtained with this value of α.

We remark that the growth of the condition number is virtually independent
of M2, the number of substructures, if we fix the value of H/h = N . Our results
are quantitatively slightly better than the results obtained in the conforming case.
This appears to be due to a larger overlap of the subspaces in a neighborhood of the
crosspoints, since several subspaces are nonzero there. It can also be an effect of using
parameters, different from those of the conforming case, to scale the contribution of
the coarse problem to the preconditioner.

The growth is also consistent with the estimate of Theorem 1 which is given in
terms of log2(N). For small values of N , N and N + 4 differ substantially, and this
appears to be the reason for the variations in this pattern found in the tables.
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J.-L. Lions, eds., Pitman, 1994. This paper appeared as a technical report about five years
earlier.

[10] P. E. Bjørstad and O. B. Widlund, Iterative methods for the solution of elliptic problems on
regions partitioned into substructures, SIAM J. Numer. Anal., 23 (1986), pp. 1093–1120.

[11] J. H. Bramble, A second order finite difference analogue of the first biharmonic boundary
value problem, Numer. Math., 9 (1966), pp. 236–249.

[12] M. A. Casarin, Diagonal edge preconditioners in p-version and spectral element methods,
Tech. Rep. 704, Department of Computer Science, Courant Institute, September 1995. To
appear in SIAM J. Sci. Comput.

[13] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam,
1978.

[14] M. Dryja, Additive Schwarz methods for elliptic mortar finite element problems, in Modeling
and Optimization of Distributed Parameter Systems with Applications to Engineering,
K. Malanowski, Z. Nahorski, and M. Peszynska, eds., IFIP, Chapman & Hall, London,
1996. To appear.

[15] M. Dryja and O. B. Widlund, Schwarz methods of Neumann-Neumann type for three-
dimensional elliptic finite element problems, Comm. Pure Appl. Math., 48 (1995), pp. 121–
155.

[16] P. Le Tallec, Neumann-Neumann domain decomposition algorithms for solving 2D elliptic
problems with nonmatching grids, East-West J. Numer. Math., 1 (1993), pp. 129–146.

[17] Y. Maday and O. B. Widlund, Some iterative substructuring methods for mortar finite ele-
ments: The lower order case, tech. rep., Courant Institute of Mathematical Sciences, 1996.
In preparation.

[18] B. F. Smith, Domain Decomposition Algorithms for the Partial Differential Equations of Lin-
ear Elasticity, PhD thesis, Courant Institute of Mathematical Sciences, September 1990.
Tech. Rep. 517, Department of Computer Science, Courant Institute.

[19] B. F. Smith and O. B. Widlund, A domain decomposition algorithm using a hierarchical
basis, SIAM J. Sci. Stat. Comput., 11 (1990), pp. 1212–1220.

[20] O. B. Widlund, Iterative substructuring methods: Algorithms and theory for elliptic problems
in the plane, in First International Symposium on Domain Decomposition Methods for
Partial Differential Equations, R. Glowinski, G. H. Golub, G. A. Meurant, and J. Périaux,
eds., Philadelphia, PA, 1988, SIAM.

[21] H. Yserentant, On the multi-level splitting of finite element spaces, Numer. Math., 49 (1986),
pp. 379–412.


