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REMARKS ON THE CIARLET-RAVIART MIXED FINITE
ELEMENT∗

Y.D. YANG† AND J.B. GAO‡

Abstract. This paper derives a new scheme for the mixed finite element method for the bi-
harmonic equation in which the flow function is approximated by piecewise quadratic polynomial
and vortex function by piecewise linear polynomials. Assuming that the partition, with triangles as
elements, is quasi-uniform, then the proposed scheme can achieve the approximation order that is
observed by the Ciarlet-Raviart mixed finite element when approximating the flow function and the
vortex functions by piecewise quadratic polynomials.
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1. Review of the Ciarlet-Raviart mixed element scheme. Consider the
biharmonic problem (with clamped boundary conditions){

∆2φ = f, in Ω,

φ =
∂φ

∂n
= 0 on ∂Ω,

(1.1)

where the domain Ω is a convex polygon in R2.
Let by Hs (Ω) denote the Sobolev space, let ‖·‖s denote its norm, and let ‖·‖0

denote the norm of the space L2(Ω). Let H−1(Ω) be the dual space of H1
0 (Ω) with

‖·‖−1 as its norm. It is well known that for f ∈ H−1(Ω), (1.1) admits only one
solution φ satisfying

φ ∈ H3(Ω), and ‖φ‖3 ≤ C · ‖f‖−1 .(1.2)

The Ciarlet-Raviart mixed finite element method is used to simultaneously ap-
proximate the flow function φ and the vortex −∆φ:
With u := −∆φ, consider the following variational problem corresponding to (1.1):

Find (u, φ) ∈ H1(Ω)×H1
0 (Ω), such that∫

Ω

uvdxdy −
∫

Ω

∇v∇φdxdy = 0, ∀v ∈ H1(Ω);∫
Ω

∇u∇ψdxdy = −
∫

Ω

fψdxdy, ∀ψ ∈ H1
0 (Ω).

(1.3)

Let Th = {K} be a quasi-uniform partition of Ω with h the maximum diameter
of the partition. Set

Xh := {v ∈ C0(Ω) : v|K ∈ Pm, ∀ K ∈ Th},
Mh := Xh ∩H1

0 (Ω).
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Consider the discrete variational problem used to approximate (1.3):
Find (uh, φh) ∈ Xh ×Mh such that∫

Ω

uhvdxdy −
∫

Ω

∇v∇φhdxdy = 0, ∇v ∈ Xh;∫
Ω

∇uh∇ψdxdy = −
∫

Ω

f · ψdxdy, ∀ψ ∈Mh.

(1.4)

Equation (1.4) is called the Ciarlet-Raviart scheme for biharmonic problem. From
this it can be seen that subspaces of Xh, namely Xh and Mh, are used for the ap-
proximation of both spaces H1(Ω) and H1

0 (Ω). The assumption Mh = Xh ∩H1
0 (Ω)

yields a significant simplification in the proof of error estimates.
In [1] and [2], it was shown, using different approaches, that the following error

estimates for the Ciarlet-Raviart scheme hold:{
‖φ− φh‖1 ≤ C · hs−1 ‖φ‖s ;
‖u− uh‖δ ≤ C · hs−2−δ, δ = 0, 1.

where 1 ≤ s ≤ min{k + 1, r}, u ∈ Hr(Ω). These estimates depend upon the order
k of the polynomials and the smoothness r of generalized solution u. However, in
general case, the solution of (1.1) statisfies φ ∈ H3(Ω) and u = −∆φ ∈ H1(Ω), so
that the approximation order can not be increased by increasing the order k of the
piecewise polynomials in the spaces Mh and Xh. Hence under the natural smoothness
assumptions, to achieve a higher approximation order, a reasonable choice would be
to take the degree of polynomial to be 2 for Mh and a lower degree than 2 for Xh.
The aim of this paper is to look for such spaces Mh and Xh.

2. Main results and proofs. Let T2h be a quasi-uniform triagulation of Ω. Th
is a triangulation obtained by connecting all middle points of edges for each triangle in
T2h. Define Vi (i = 1, 2) to be the order of the associated piecewise polynomial spaces
defined on Tih. It is obvious that Vi ∈ H1(Ω). Taking Xh = V1 and Mh = V2∩H1

0 (Ω)
in the Ciarlet-Raviart mixed element model (1.3), then we will have shown that the
same conclusions hold for error estimates as the case in which Xh and Mh are taken
as the quadratic piecewise polynomial spaces. In our case, as Mh ⊂ Xh is not valid,
the error estimates cannot be proved with the approach used in [1].

Let H,M and X be three real Banach spaces with norms ‖·‖H , ‖·‖M and ‖·‖X ,
respectively, and let X be continuously embedded into H, denote by X ↪→ H. As-
sume that a(·, ·) and b(·, ·), bounded bilinear forms defined on H × H and H ×M ,
respectively, satisfy

|a(u, v)| ≤ C · ‖u‖H ‖v‖H ,∀u ∈ X, ∀v ∈ X,(2.1)

|b(u, ψ)| ≤ C · ‖u‖X ‖v‖M ,∀u ∈ X, ∀ψ ∈M.(2.2)

Consider the following abstract problem:
For any f ∈ X ′ and any g ∈M ′, find (u, φ) ∈ X ×M such that{

a(u, v)− b(v, φ) = 〈f, v〉, ∀v ∈ X,
b(u, ψ) = 〈g, ψ〉, ∀ψ ∈M,

(2.3)

where X ′ and M ′ are the dual spaces of X and M , and where 〈·, ·〉 represents the dual
inner product between X ′ and X or M ′ and M , respectively. The discrete variational
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approximation of (2.3) is: Find (uh, φh) ∈ Xh ×Mh such that
a(uh, v)− b(v, φh) = 〈f, v〉, ∀v ∈ Xh,
b(uh, ψ) = 〈g, ψ〉, ∀ψ ∈Mh,

(2.4)

where Xh ⊂ X and Mh ⊂ M are finite dimensional spaces. The following lemma is
proved in [2]:

Lemma 2.1. Assume that the following hypotheses are satisfied:
H1 For any (f, g) ∈ D, the problem (2.3) has only one solution, where D is the

subspace of X ′ ×M ′.
H2 If G is a Banach space and M ↪→ G, then ∀d ∈ G′, the following problem

has only one solution:

Find (yd, zd) ∈ X ×M such that
a(v, yd)− b(v, zd) = 0, ∀v ∈ X,
b(yd, ψ) = 〈d, ψ〉, ∀ψ ∈M,

(2.5)

H3 There exists a constant α > 0, independent of h, such that

a(v, v) ≥ α ‖v‖2H , ∀v ∈ Xh.

H4 There exists a constant S(h) satisfying

‖v‖X ≤ S(h) ‖v‖H , ∀v ∈ Xh.

H5 There exists an operator P : Y −→ Xh, such that

b(y − Py, ψ) = 0, ∀y ∈ Y, ∀ψ ∈Mh,

where Y := span{{yd}d∈G′ , u}, (u, ϕ) is the solution of (2.3), and (yd, zd) is
the solution of (2.5) corresponding to d ∈ G′.

Then (2.4) admits only one solution (uh, ϕh) which satisfies the error estimates

‖u− uh‖H ≤ C · (‖u− Pu‖H + S(h) ‖ϕ− ψ‖M) ,∀ψ ∈Mh,(2.6)

‖ϕ− ϕh‖G ≤ sup
d∈G′

b(yd − Pyd, ϕ− ψ) + a(u− uh, Pyd − yd) + b(u− uh, zd − v)

‖d‖G′
,(2.7)

∀ψ, v ∈Mh.
Now, we introduce another lemma proven in [5].
Lemma 2.2. ∀v ∈ C(Ω),

‖I2v − I1v‖a ≤
√

2
3
‖I1v‖a ,(2.8)

where ‖w‖2a = (∇w,∇w) = |w|1 and Ii : C0 −→ Vi, i.e., Ii is the piecewise interpola-
tion operator of order i on all vertices of triangles of Tih.

Now we are in a position to state a main result of this paper.
Theorem 2.3. When Xh = V1, and Mh = V2 ∩ H1

0 (Ω), there exists only one
solution (uh, ϕh) for (1.4) which satisfies the error estimates

‖u− uh‖ ≤ C · h, and(2.9)
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‖ϕ− ϕh‖δ ≤ C · h2, δ = 0, 1.(2.10)

Proof. TakeX = H1(Ω), M = H1
0 (Ω), H = L2(Ω), a(u, v) =

∫
Ω uvdxdy, b(v, ψ) =∫

Ω∇v∇ψdxdy, D = 0 ×H−1(Ω), G = H1
0 (Ω) and G′ = H−1(Ω). Then we will use

Lemma 1 to prove this theorem. It is obvious that (2.1), (2.2) and hypotheses H1–H3
are valid. As the partition is quasi-uniform, H4 is valid for S(h) = C ·h−1. Hence it is
necessary to construct an operator P such that H5 be satisfied, and then to estimate
‖u− Pu‖0 , ‖yd − Pyd‖0 and |yd − Pyd|1.

For a given v ∈ H1(Ω), consider the auxiliary problem:

Find w ∈ V1 such that∫
Ω

∇w∇ψdxdy =
∫

Ω

∇v∇ψdxdy, ∀ψ ∈ V2;(2.11) ∫
Ω

wdxdy =
∫

Ω

vdxdy.(2.12)

Equation (2.11) is equivalent to∫
Ω

∇w∇(I2ψ)dxdy =
∫

Ω

∇v∇(I2ψ)dxdy, ∀ψ ∈ V1.(2.13)

Define the quotient space H1(Ω)/P0, where P0 is the polynomial space of order 0.
From [1], this space is a Banach space with its norm defined as

◦
v∈ H1(Ω)/P0 −→

∥∥∥◦v∥∥∥
1

= inf
p∈P0

‖v + p‖1 ,

where v is any element of the equivalence class
◦
v. For any

◦
v, one has

◦
v∈ H1(Ω)/P0 −→

∣∣∣◦v∣∣∣
1

= |v|1 ,(2.14)

and ∥∥∥◦v∥∥∥
1
≤ C ·

∣∣∣◦v∣∣∣
1
.(2.15)

In the quotient space H1(Ω)/P0, define

(
◦
u,
◦
v)0 =

∫
Ω

∇u∇vdxdy.(2.16)

Then

(
◦
u,
◦
v)0 =

∫
Ω

∇u∇vdxdy =
∫

Ω

∇v∇udxdy = (
◦
v,
◦
u)0;(2.17)

(
◦
u +

◦
w,
◦
v)0 =

∫
Ω
∇(u+ w)∇vdxdy

=
∫

Ω∇u∇wdxdy +
∫

Ω∇w∇vdxdy
= (

◦
u,
◦
v)0 + (

◦
w,
◦
v)0;

(2.18)

and

(
◦
u,
◦
u)0 =

∫
Ω

|∇u|2 dxdy = |u|21 ≥ c ·
∥∥∥◦u∥∥∥2

1
.(2.19)
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Hence, (
◦
u,
◦
v)0 is an inner product in H1(Ω)/P0.

By the definition of
∥∥∥◦v∥∥∥

1
, one has∣∣∣◦v∣∣∣

1
= inf
p∈P0

|v + p|1 ≤ inf
p∈P0

‖v + p‖1 =
∥∥∥◦v∥∥∥

1
.(2.20)

It is thus realized from (2.14), (2.15) and (2.20) that the norm
√

(
◦
u,
◦
u)0, derived from

the above inner product, is equivalent to
∥∥∥◦u∥∥∥

1
. Hence, H1(Ω)/P0 is a Hilbert space

with respect to the inner product (
◦
u,
◦
v)0.

Let V1/P0 be the subspace of H1(Ω)/P0, and define

I(
◦
w,
◦
u) :=

∫
Ω

∇w∇(I2u)dxdy.(2.21)

Then in terms of Lemma 2, for any w ∈ V1 it can be seen that∫
Ω
∇w∇(I2w)dxdy =

∫
Ω
∇w∇(I2w − I1w + I1w)dxdy

=
∫

Ω
|∇w|2 dxdy −

∫
Ω
∇w∇(I1w − I2w)dxdy

≥ |w|21 −
√

2
3 |w|

2
1 = (1−

√
2
3 ) |w|21 .

(2.22)

Combining (2.21), (2.22), (2.13) and (2.14) results in

I(
◦
w,
◦
w) ≥ C ·

∥∥∥ ◦w∥∥∥
1
, ∀ ◦w∈ V1/P0.(2.23)

From (2.20) and (2.21),

I(
◦
w,
◦
v) =

∫
Ω
∇w∇(I2v)dxdy

≤ |w|1 · |I2v|1 ≤ C · |w|1 · |v|1
≤ C ·

∥∥∥ ◦w∥∥∥
1
·
∥∥∥◦v∥∥∥

1
, ∀ ◦w, ◦v∈ V1/P0.

(2.24)

By the definition (2.21) and
◦
w +

◦
u=

◦
w + u, one has

I(
◦
w +

◦
u,
◦
v) = I(

◦
w,
◦
v) + I(

◦
u,
◦
v)(2.25)

and also

I(
◦
w,
◦
u +

◦
v) = I(

◦
w,
◦
v) + I(

◦
u,
◦
v).(2.26)

Hence, I(
◦
u,
◦
v) is a continuous positive definite bilinear form. For a fixed v define the

functional

g(
◦
ψ) :=

∫
Ω

v∇(I2ψ)dxdy,(2.27)

so that g(
◦
ψ) is a continuous on V1/P0. By the Lax-Milgram Lemma, the following

problem has only one solution
◦
w:{

Find
◦
w∈ V1/P0 such that

I(
◦
w,
◦
v) = g(

◦
v), ∀ ◦v∈ V1/P0.

(2.28)
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Consequently, there exists a class of solutions for (2.13). All of solutions are same
except for a constant. Thus for any v ∈ H1(Ω), the solution of (2.11), satisfying
(2.12), is unique. Denote by w ∈ V1 this solution. An operator P satisfying H5 can
be defined as P : H1(Ω) → V1, w = Pv. Finally from Lemma 1 there is only one
solution (uh, ϕh) for (1.4).

In order to establish the estimates (2.9) and (2.10), one has to estimate |Pyd−yd|1
and ‖Pyd − yd‖0. As G′ = H−1(Ω), by (1.2) the solution of (2.4) obeys zd ∈ H3(Ω)∩
H2

0 (Ω), yd ∈ H1(Ω) and

‖zd‖3 ≤ C · ‖d‖−1 and ‖yd‖1 ≤ C · ‖d‖−1 .(2.29)

From the property of P , Pyd ∈ V1 and∫
Ω

∇(Pyd − yd)∇ψdxdy = 0, ∀ψ ∈ V2.

Hence,

|Pyd|21 ≤ C · a(Pyd, I2(Pyd)) = C · a(yd, I2(Pyd))
≤ C · |yd|1 · |I2(Pyd)|1
≤ C · |yd|1 · |Pyd|1 .

That is,

|Pyd|1 ≤ C · |yd|1 .

Consequently,

|Pyd − yd|1 ≤ |Pyd|1 + |yd|1 ≤ C · |yd|1 ≤ C · ‖d‖−1 .(2.30)

Now we will use Nitsche’s technique to estimate ‖Pyd − yd‖0. Let z be the solution
of the variational problem{

z ∈ H1(Ω),
b(v, z) = (v, yd − Pyd), ∀v ∈ H1(Ω).(2.31)

From [1], z ∈ H2(Ω), and

‖z‖2 ≤ C · ‖Pyd − yd‖0 .(2.32)

Taking v := yd − Pyd in (2.31) results in, with (2.11) and (2.32),

‖Pyd − yd‖20 = b(yd − Pyd, z) = b(yd − Pyd, z − I2z)
≤ ‖Pyd − yd‖1 · ‖z − I2z‖1 ≤ C · ‖d‖−1 · h · ‖z‖2
≤ C · h · ‖d‖−1 · ‖Pyd − yd‖0 .

That is,

‖Pyd − yd‖0 ≤ C · h ‖d‖−1 ,(2.33)

and by (2.6)

‖u− uh‖0 ≤ C ·
(
‖u− Pu‖0 + C · h−1 ‖ϕ− I2ϕ‖1

)
≤ C · h.
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This completes the proof for (2.9). On the other hand, take v = I2zd and ψ = I2ϕ in
(2.7). Then it can be derived in terms of (2.30), (2.33) and (2.29) that

‖ϕ− ϕh‖1 ≤ sup
d∈H−1(Ω)

b(yd−Pyd,ϕ−ψ)+a(u−uh,Pyd−yd)+b(u−uh,zd−I2zd)
‖d‖−1

≤ sup
d∈H−1(Ω)

|yd−Pyd|1·|ϕ−I2ϕ|1+‖u−uh‖0·‖Pyd−yd‖0+|u−uh|1·|zd−I2zd|1
‖d‖−1

≤ sup
d∈H−1(Ω)

C·‖d‖−1·h
2‖ϕ‖3+C·h2‖d‖−1+C·h2‖d‖−1

‖d‖−1

≤ C · h2

That is, (2.10) and the theorem is proven.
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