
Electronic Transactions on Numerical Analysis.
Volume 4, pp. 14-36, March 1996.
Copyright 1996, Kent State University.
ISSN 1068-9613.

ETNA
Kent State University
etna@mcs.kent.edu

LMS-NEWTON ADAPTIVE FILTERING USING FFT–BASED
CONJUGATE GRADIENT ITERATIONS ∗

MICHAEL K. NG† AND ROBERT J. PLEMMONS‡

Abstract. In this paper, we propose a new fast Fourier transform (FFT) based LMS-Newton
(LMSN) adaptive filter algorithm. At each adaptive time step t, the nth-order filter coefficients
are updated by using the inverse of an n-by-n Hermitian, positive definite, Toeplitz operator T (t).
By applying the cyclic displacement formula for the inverse of a Toeplitz operator, T (t)−1 can be
constructed using the solution vector of the Toeplitz system T (t)u(t) = en, where en is the last
unit vector. We apply the FFT–based preconditioned conjugate gradient (PCG) method with the
Toeplitz matrix T (t−1) as preconditioner to solve such systems at the step t. As both matrix vector
products T (t)v and T (t−1)−1v can be computed by circular convolutions, FFTs are used throughout
the computations. Under certain practical assumptions in signal processing applications, we prove
that with probability 1 that the condition number of the preconditioned matrix T (t − 1)−1T (t) is
near to 1. The method converges very quickly, and the filter coefficients can be updated in O(n logn)
operations per adaptive filter input. Preliminary numerical results are reported in order to illustrate
the effectiveness of the method.

Key words. LMS-Newton adaptive filter algorithm, finite impulse response filter, Toeplitz
matrix, circulant matrix, preconditioned conjugate gradient method, fast Fourier transform.

AMS subject classification. 65F10.

1. Introduction. Adaptive finite impulse response (FIR) filters are used exten-
sively in many signal processing and control applications: for instance, in system
identification, equalization of telephone channels, spectrum analysis, noise cancella-
tion, echo cancellation and in linear predictive coding [12] and [21]. The main concerns
in the design of adaptive filter algorithms are their convergence performance and their
computational requirements. These concerns are especially important when the filters
are used in real-time signal processing applications or where the sizes of the filters are
very large (as is the case in acoustic echo or active noise cancellation problems [12]).

The most popular adaptive filter algorithm is the well-known Least Mean Square
(LMS) algorithm. It allows a simple implementation and requires only O(n) oper-
ations for computing the filter coefficients per adaptive filter input, where n is the
size of the FIR filter [12]. However, a significant drawback of the LMS algorithm is
that it is based on first order statistics, and therefore its convergence rate depends on
the input signal spectrum. When the input signal process is white, good convergence
performance is obtained. But when input signal process is highly colored, the LMS
algorithm converges very slowly; see for instance Widrow [22, pp. 146-147].

In order to reduce the effect of the input signal spectrum on the convergence
rate of the adaptive system, Gitlin and Magee [9] proposed an LMS-Newton (LMSN)
adaptive filter algorithm. The approach is to use the second order statistics of the
input signal to eliminate the dependence of the convergence of the LMS algorithm on
the input signal process. To present the LMS-Newton (LMSN) algorithm properly,

∗ Received November 17, 1995. Accepted for publications March 16, 1996. Communicated by L.
Reichel.
† Computer Sciences Laboratory, Research School of Information Sciences and Engineering, The

Australian National University, Canberra ACT 0200, Australia. mng@cslab.anu.edu.au. This re-
search was supported by the Cooperative Research Centre for Advanced Computational Systems.
‡ Department of Mathematics and Computer Science, Wake Forest University, Box 7388, Winston-

Salem, NC 27109. This research was supported by the NSF under grant no. CCR–92–01105 and the
U.S. Air Force Office of Scientific Research under grant no. F49620–94–1–0261.

14

ETNA
Kent State University
etna@mcs.kent.edu

LMS-Newton Adaptive Filtering using FFTs 15

we first introduce some notation from adaptive filter theory [12, p. 18]:
• discrete time index or step: t
• order of filter: n
• input sample scalar: x(t)
• input sample column vector: x(t) = [x(t), x(t − 1), · · · , x(t− n+ 1)]T

• filter coefficients column vector: w(t) = [w1(t), w2(t), · · · , wn(t)]T

• desired signal scalar: d(t)
• filter output scalar: o(t) = w(t)∗x(t), where ∗ denotes the conjugate transpose.
• estimation error: e(t) = d(t) − o(t) = d(t)−w(t)∗x(t)
In the notation above, the LMS method, in its simplest form, for recursively

updating the filter coefficients column vector w(t) can be expressed as

w(t+ 1) = w(t) + µ(t)e(t)x(t),

where µ(t) is a step size. The method is remarkable in its simplicity, but as noted
earlier, slow convergence can often be a problem.

For the LMSN algorithm, the filter coefficients column vector w(t) is recursively
updated by

w(t+ 1) = w(t) + µ(t)e(t)T (t)−1x(t),(1.1)

where µ(t) is again a step size, and now T (t) is an estimate of the n-by-n input signal
autocorrelation matrix at time step t. In many signal processing applications, the
input signal is generally assumed to come from a wide sense stationary (stationary up
to the second order, see [12, p. 80]) stochastic process. It is well known that the cor-
responding autocorrelation matrix is Hermitian and Toeplitz, i.e. it is constant along
diagonals; see for instance [12, p. 139]. Thus T (t) is also Hermitian and Toeplitz in
practical implementations of the LMSN algorithm. The basic and costly part of the
LMSN algorithm is to compute the matrix-vector multiplication T (t)−1x(t), or solve a
Toeplitz system T (t)z(t) = x(t), at each adaptive time step t. The Toeplitz structure
of T (t) allows one to find z(t) with direct methods that require many fewer operations
than the O(n3) operations used in Gaussian elimination. Several direct methods (see
for instance, Levinson, 1947 [14]) have been derived to solve such Toeplitz systems,
and these methods require O(n2) operations. It follows that the computational re-
quirement is O(n2) operations per adaptive filter input. The Toeplitz structure of
the data matrix allows one to develop computationally efficient algorithms, which
require only O(n) operations per adaptive filter input. The numerical stability of
these algorithms has always been in question [15, 20]. In particular, Luo and Qiao
[15] have recently shown that the entire family of infinite memory fast recursive least
squares algorithms is unstable when the forgetting factor, used to diminish the effects
of the old data, is less than one. Numerical results given in [18] show that the fast
transversal filter O(n) operations algorithms do not converge when noise is added to
the adaptive system.

The purpose of this paper is to propose a new fast Fourier transform (FFT) based
LMSN adaptive filter algorithm with reasonable complexity and fast convergence.
Based on the convergence performance of LMSN, our algorithm converges rapidly
regardless of the input signal statistics. Moreover, the basic tool of our adaptive filter
algorithm is the FFT. Since the FFT is highly parallelizable and has been implemented
on multiprocessors efficiently [1, p.238], our algorithm can be expected to perform
efficiently on a parallel machine for large-scale or real-time applications.

ETNA
Kent State University
etna@mcs.kent.edu

16 M. K. Ng and R. J. Plemmons

The sample autocorrelation matrices T (t) are assumed to be positive definite at
each adaptive time step. One can compute the inverse of T (t) by solving a linear
system

T (t)u(t) = en,(1.2)

where en is the last unit vector. By using the solution vector u(t) in (1.2), Ammar
and Gader [2] showed that there exists a circulant matrix B1(t) and a skew-circulant
matrix B2(t) such that

T (t)−1 =
1

2[u(t)]n
[B2(t)B1(t)∗ +B2(t)∗B1(t)],(1.3)

where [·]n denotes the last entry of n-vector, (see §2.2). The equation (1.3) is called
by Ammar and Gader the cyclic displacement representation of T (t)−1. The main
problem left is how to compute u(t) efficiently at each adaptive time step. Our
strategy is to apply the preconditioned conjugate gradient (PCG) method to solve the
linear system (1.2). It is well known that the convergence performance of the conjugate
gradient method depends on the spectrum and, in particular, on the condition number
of the coefficient matrix. If the condition number of the coefficient matrix is near 1,
convergence will be rapid. Thus, to make the conjugate gradient method a useful
iterative method (converge rapidly), one preconditions the system. In our case, as the
cyclic representation of T (t−1)−1 has already been obtained at the time step t−1, we
therefore use T (t− 1) as preconditioner. That means, instead of solving the original
system (1.2), one solves the preconditioned system by the conjugate gradient method
at the time step t.

The outline of the paper is as follows. In §2, we formulate the updating compu-
tations of T (t) and introduce our FFT–based preconditioners. In §3, we present our
FFT–based LMSN adaptive filtering algorithm and analyze the convergence rate of
the PCG method probabilistically. In §4, numerical experiments on some adaptive
filtering simulation models are reported to illustrate the effectiveness of our algorithm.
Finally, some concluding remarks are given in §5.

2. Updating in the LMSN Algorithm. Here we consider the case where
input signal comes from a discrete-time complex-valued process. Since T (t) is an
Hermitian Toeplitz matrix, it is completely determined by its first column. Let the
first column of T (t) be denoted by

[γ0(t), γ1(t), . . . , γn−1(t)]T .

The parameter γk(t), 0 ≤ k ≤ n − 1, is the estimate of the kth-lag autocorrelation
of the input signal process at the time step t and also γ0(t) is real. In practical
situations, there is no prior knowledge of the autocorrelations of the input signal
process. In this case, the autocorrelations are estimated from the finite number of
input signal samples received up to the time step t, i.e. {x(j)}tj=1. In the following
discussion, we consider the estimates {γk(t)}n−1

k=0 constructed from the convolution of
input data samples given by

γk(t) =
t−k∑
j=1

1
t
x(j)x(j + k), k = 0, 1, . . . , n− 1.(2.1)

In signal processing terminology, the correlation windowing method is used, and the
data samples prior to j = 0 and after j = t are assumed to be zero at time step t [12,

ETNA
Kent State University
etna@mcs.kent.edu

LMS-Newton Adaptive Filtering using FFTs 17

p. 373]. We remark that the correlation windowing method always leads to a positive
semi-definite Toeplitz matrix, see for example, Ng and Chan [17]. If the input signal
process is stationary, γk(t) is the common estimator of the kth-lag autocorrelation
of input stationary process in the time-series literature. Assuming stationarity, we
remark that γk(t) has a smaller mean square error than other estimators, see Priestley
[19, p. 322].

Adaptive filter algorithms are often used to process signals that result from time-
varying environments. The estimates of the autocorrelations are often obtained by
limiting the filter memory. A useful technique is an exponential data weighting infinite
memory method controlled by a forgetting factor α, with 0 < α ≤ 1 [12, p. 478].
Roughly speaking, the inverse of 1−α is a measure of the memory of the adaptive filter
algorithm. For the construction of the estimates of the autocorrelations, we consider
the exponentially weighted data samples {α(t−1)/2x(1), α(t−2)/2x(2), . . . , x(t)} instead
of {x(1), x(2), . . . , x(t)}.

2.1. Updating Computations for T (t). In adaptive systems, data samples
arrive continuously. It is necessary to update the autocorrelations from time t− 1 to
time t. Using (2.1) with forgetting factor α, the relation between γk(t) and γk(t− 1)
is given by

γk(t) =
(t− 1)α

t
γk(t− 1) +

αk/2

t
x(t)x(t − k), k = 0, 1, 2 . . . , n− 1,(2.2)

see for instance Widrow [22, p. 148]. In matrix form, the sample autocorrelation
matrix T (t) can be written as follows:

T (t) =
(t− 1)α

t
T (t− 1) +

x(t)
t
VT (t), t ≥ 2,(2.3)

where VT (t) is a Toeplitz matrix with first column given by[
x(t), α1/2x(t− 1), · · · , α(n−2)/2x(t − n+ 2), α(n−1)/2x(t− n+ 1)

]
.

In each iteration of the PCG method, a matrix-vector multiplication T (t)v is required.
In general, the matrix-vector product can be done in O(n2) operations. However, we
can embed T (t) into the 2n-by-2n circulant matrix:

C(t) =
[
T (t) S(t)
S(t) T (t)

]
.

Here S(t) is so constructed such that C(t) is a circulant matrix. The first column of
C(t) is given by

[γ0(t), γ1(t), . . . , γn−1(t), 0, γn−1(t), . . . , γ1(t)]T .(2.4)

The matrix C(t) can be diagonalized by using the discrete Fourier matrix F2n with
entries given by [F2n]j,k = 1√

2n
e−2πijk/2n. The spectral decomposition of C(t) is given

by

C(t) = F2nΛ(t)F ∗2n,(2.5)

where Λ(t) is a 2n-by-2n diagonal matrix holding the eigenvalues of C(t). We see that
if e1 and 12n denote the first unit vector and the 2n-vector of all ones respectively,
then the eigenvalues of C(t) are related to its first column. We have

Λ(t)12n =
√

2nF ∗2nC(t)e1.(2.6)

ETNA
Kent State University
etna@mcs.kent.edu

18 M. K. Ng and R. J. Plemmons

It follows that the matrix-vector product T (t)v can be computed by using the FFT
in a total of O(n log n) operations, by first embedding T (t) into C(t).

Instead of computing the eigenvalues of C(t) explicitly at each adaptive time step,
we directly update Λ(t) from Λ(t − 1). The updating scheme for the eigenvalues of
C(t) is stated in Algorithm 1 below. Before we begin, we define n-vectors f1(t) and
f2(t) by

f1(t) ≡ [x(t), α1/2x(t− 1), . . . , α(n−1)/2x(t− n+ 1)]T ,(2.7)

and

f2(t) ≡ [0, α(n−1)/2x(t− n+ 1), . . . , α3/2x(t− 2), α1/2x(t− 1)]T ,(2.8)

at each time step t. We let F ∗2n[k : j] denote the sub-matrix formed from the kth
column to the jth column of the discrete Fourier matrix F ∗2n where j ≥ k.

Algorithm 1: Updating the Eigenvalues Λ(t). Given Λ(t− 1) and a new input
signal sample x(t), we let g1(t) and g2(t) be the following n-vectors

g1(t− 1) = F ∗2n[1 : n]f1(t− 1) and g2(t− 1) = F ∗2n[n+ 1 : 2n]f2(t− 1).

• Compute

g1(t) = x(t)F ∗2n[1 : 1] +α1/2
(
g1(t− 1)− F ∗2n[n : n]α(n−1)/2x(t − n+ 2)

)
�F ∗2n[2 : 2],

and

g2(t) = α1/2
(
g2(t− 1)− F ∗2n[n+ 2 : n+ 2]α(n−1)/2x(t− n+ 2)

)
� F ∗2n[2n : 2n] +

α1/2x(t− 1)F ∗2n[2n : 2n],

where � denotes element–wise multiplication of two 2n-vectors.

• Update

Λ(t)12n =
(t− 1)α

t
Λ(t− 1)12n +

√
2nx(t)
t

[g1(t) + g2(t)] .(2.9)

As for the validity of Algorithm 1, it is suffices to establish the following Lemma.
Lemma 2.1. Let g1(t) and g2(t) be computed in Algorithm 1. Then we have

g1(t) = F ∗2n[1 : n]f1(t) and g2(t) = F ∗2n[n+ 1 : 2n]f2(t).

Proof. We let Zn denote the n-by-n downshift matrix.

g1(t) = α1/2
(
F ∗2n[1 : n]f1(t− 1)− F ∗2n[n : n]α(n−1)/2x(t− n+ 2)

)
� F ∗2n[2 : 2] +

x(t)F ∗2n[1 : 1]
= x(t)F ∗2n[1 : 1] + α1/2ZnF

∗
2n[1 : n]f1(t− 1)� F ∗2n[2 : 2] = F ∗2n[1 : n]f1(t).

By using a similar argument, we can prove g2(t) = F ∗2n[n+ 1 : 2n]f2(t).

ETNA
Kent State University
etna@mcs.kent.edu

LMS-Newton Adaptive Filtering using FFTs 19

By using (2.2), (2.4), (2.6), (2.7), (2.8) and Lemma 1, we obtain

Λ(t)12n =
√

2nF ∗2nC(t)e1 =
√

2n(t− 1)α
t

F ∗2nC(t− 1)e1(2.10)

+
√

2nx(t)
t

F ∗2n

(
f1(t)
f2(t)

)
=

(t− 1)α
t

Λ(t− 1)12n

+
√

2nx(t)
t

[g1(t) + g2(t)]

It follows that the eigenvalues of C(t) can easily be updated from time step t− 1
to t. As for the storage requirement, the vectors g1(t), g2(t) and Λ(t)12n are needed
for the updating step. The total cost of Algorithm 1 is O(n) operations. We remark
that in a parallel processing environment with O(n) processors, the complexity of
Algorithm 1 is reduced to O(1) time steps, i.e. the number of time steps is bounded
independently of n.

2.2. FFT–based Preconditioners. In this subsection, we explain the choice
of the Toeplitz matrix T (t− 1) over other preconditioners in the preconditioned con-
jugate gradient iterations for solving T (t)u(t) = en. We remark that, in general, a
preconditioner P should be chosen to satisfy the following criteria:

(P1) The inverse of P should be easy to compute.
(P2) The matrix-vector product P−1v should be easy to form for a given vector

v.
(P3) The condition number of the preconditioned matrix should be close to 1,

and/or the spectrum should be clustered around 1.
In recent years, the use of circulant matrices or the inverses of Toeplitz matrices

as preconditioners for solving Toeplitz systems Tz = v has been proposed and studied
extensively; see for instance Chan and Strang [5], Ku and Kuo [13], T. Chan [6], and
Chan and Ng [4]. They used circulant or Toeplitz matrices to approximate T−1.
In many practical situations, the spectrum of the preconditioned matrix is clustered
around 1. In such cases, the PCG method can be shown to converge superlinearly,
see Chan and Strang [5]. However, the inverse of a Toeplitz matrix is non-Toeplitz in
general. Thus circulant matrices or the inverse of Toeplitz matrices may not always
be good preconditioners for solving Toeplitz systems. We note from (2.3) that VT (t)
is a matrix with small norm when t is sufficiently large. Thus we expect that the
condition number of our preconditioned matrices will be close to 1 (c.f. (P3)). A
detailed convergence analysis will be given in §3.1.

To acheive (P1), we wish to construct the inverse of T (t − 1) easily. According
to formula (1.3), the inverse of T (t − 1) can be constructed efficiently by using the
solution vector u(t − 1) of the Toeplitz system T (t − 1)u(t − 1) = en. We remark
that, in the preconditioned conjugate gradient iterations, the solution vector u(t− 1)
is computed up to a given accuracy. Therefore, we employ a certain approximation
T̃ (t− 1) of T (t− 1) as a preconditioner to solve T (t)u(t) = en at time step t. Given
the computed solution vector

ũ(t− 1) = [ũ0(t− 1), ũ1(t− 1), . . . , ũn−1(t− 1)]T ,

we use a cyclic displacement formula that expresses the inverse of our preconditioner

ETNA
Kent State University
etna@mcs.kent.edu

20 M. K. Ng and R. J. Plemmons

T̃ (t− 1)−1 in the following form:

T̃ (t− 1)−1 =
1

2ũn−1(t− 1)
[B̃2(t− 1)B̃1(t− 1)∗ + B̃2(t− 1)∗B̃1(t− 1)],(2.11)

where B̃1(t− 1) is a circulant matrix with its first row given by

[ũn−1(t− 1), ũ0(t− 1), . . . , ũn−3(t− 1), ũn−2(t− 1)]

and B̃2(t− 1) is a skew-circulant matrix with its first row given by

[ũn−1(t− 1),−ũ0(t− 1), . . . ,−ũn−3(t− 1),−ũn−2(t− 1)].

Since T (t−1) is Hermitian positive definite matrix, we can assume that the component
ũn−1(t− 1) is real and positive. By direct verification, we have the following lemma
about the matrices that are constructed by using a cyclic displacement formula.

Lemma 2.2. Let q be any n-vector with [q]1 a real number. If the first column
of both circulant matrix Q1 and skew-circulant matrix Q2 is given by q, then Q2Q

∗
1 +

Q∗2Q1 is a Hermitian matrix.
It follows from Lemma 2.2 that T̃ (t− 1)−1 is a Hermitian matrix. As for the cost

of the matrix-vector product T̃ (t− 1)−1v, both circulant and skew-circulant matrix-
vector products can be done efficiently by using the n-dimensional FFT, in O(n log n)
operations (c.f. (P2)).

In [10], Gohberg and Semencul presented the displacement formulas for the de-
composition of the inverse of a Toeplitz matrix T ,

T−1 = LL∗ − U∗U,(2.12)

where L and U are lower triangular and upper triangular Toeplitz matrices respec-
tively. Using (2.12), one embeds the lower and upper triangular Toeplitz matrices
into an 2n-by-2n circulant matrices and then uses the 2n-dimensional FFT to com-
pute T̃ (t − 1)−1v. This approach is more expensive than our method of using the
cyclic displacement formula for computing T̃ (t − 1)−1v. The method only involves
the n-dimensional FFT, see Ammar and Gader [2] for details of the approach.

In practice, we solve the scaled preconditioned system

α̂T (t− 1)−1T (t)u(t) = α̂T (t− 1)−1en,(2.13)

where α̂ = t
(t−1)α by the conjugate gradient iterations at each step t.

3. FFT–based LMSN Algorithm. In this section, we summarize our FFT–
based LMSN adaptive filter algorithm. Figure 1 displays the block diagram of the
algorithm. We take the initial filter coefficient vector w(1) and the initial guess
u(0) to be zero vectors, and we also assume that x(1) 6= 0. Thus, we have x(1) =
[x(1), 0, . . . , 0]T .

Algorithm 2: FFT–based LMSN Adaptive Filter Algorithm. For t =
1, 2, 3, . . .

• Compute the estimation error e(t) = d(t)−w(t)∗x(t).
• Update Λ(t) in (2.9) using Algorithm 1.
• Apply the conjugate method to solving the preconditioned system repre-

sented as in (2.13), with starting initial guess u(t− 1).
• Generate the cyclic displacement representation of T̃ (t)−1 using formula

(1.3).
• Update w(t) by w(t+ 1) = w(t) + µ(t)e(t)T̃ (t)−1x(t).

ETNA
Kent State University
etna@mcs.kent.edu

LMS-Newton Adaptive Filtering using FFTs 21

Compute

Estimation Error

e(t) = d(t)−w(t)∗x(t)

Algorithm 1

Update T (t):

Λ(t)

Update w(t+ 1)

by w(t)+

µ(t)e(t)T̃ (t)−1x(t)

PCG algorithm

Compute the cyclic

representation of T̃ (t)−1

-d(t)

x(t)

t

t

-

-

t

-
e(t)

�
w(t)

-
Λ(t)

?
T̃ (t)−1

- w(t+ 1)

Fig. 1. Block Diagram of the FFT–based LMSN Algorithm.

3.1. Convergence Analysis of the PCG Iterations. In this section, we an-
alyze the convergence rate of the preconditioned conjugate gradient method at each
adaptive time step t. In the following, we assume that the computed solution vector
ũ(t) is represented as

ũ(t) = u(t) + y(t),(3.1)

where

y(t) = [y0(t), y1(t), . . . , yn−1(t)]T .

Our first theorem gives the perturbation T̃ (t)−1 of T (t)−1 when the computed solution
vector ũ(t) is used to construct T̃ (t)−1.

Theorem 3.1. Let ũ(t) be given by (3.1) and define the error matrix E(t) by

E(t) = T̃ (t)−1 − T (t)−1(3.2)

at time step t. Then E(t) is Hermitian and, moreover, if ‖y(t)‖2‖T (t)‖2 < 1, then

‖E(t)‖2 ≤
‖y(t)‖2‖T (t)‖2

1− ‖y(t)‖2‖T (t)‖2

[
4n‖y(t)‖2 + 8n‖T (t)−1‖2 +

κ2(T (t))
2

]
,(3.3)

where κ2(T (t)) is the spectral condition number of T (t).
The proof of Theorem 3.1 can be found in the Appendix. As T (t)−1 is positive

definite, it follows from Theorem 3.1 that if E(t) is sufficiently small then T̃ (t)−1

is also positive definite. We note from (3.3) that the error matrix E(t) depends on
‖y(t)‖2, and the maximum and minimum eigenvalues of T (t). Thus the sensitivity
of the `2 norm of the error matrix E(t) is initially determined by the conditioning of
T (t).

As we deal with signal data samples from random input signal processes, the
convergence rate is considered in a probabilistic way, which is quite different from

ETNA
Kent State University
etna@mcs.kent.edu

22 M. K. Ng and R. J. Plemmons

the deterministic case. We first make the following assumption on the input signal
processes so that the results of the convergence rate can be derived.

Assumption (A): Assume that there exist constants Ci independent of t such that
(A1)

∣∣∣E (x(t)x(t − k)
)∣∣∣ < C1, k = 0, 1, . . . , n− 1.

(A2) Var
(
x(t)x(t − k)

)
< C2, k = 0, 1, . . . , n− 1.

(A3) ‖T (t)‖2 < nC3 and ‖T (t)−1‖2 < C4.
Here we consider these assumptions when the input signal processes under con-

sideration are wide sense stationary (stationary up to the second order, see [12, p.
80]). Autoregressive processes (AR), moving-average processes (MA) and autoregres-
sive and moving-average processes (ARMA) are commonly used wide sense stationary
input processes in many signal processing applications [12, pp. 96–113].

1. The assumption (A1) is often true for a stationary input signal process. In
the stationary environment, the k-th lag autocovariance function rk of the
input process is given by

rk = E
(

(x(t) − β)(x(t − k)− β)
)
,(3.4)

where β is the mean of the stationary input process, see Haykin [12, p. 79].
Equation (3.4) implies that

E
(
x(t)x(t − k)

)
= ββ + rk.(3.5)

As |rk| is always less than the variance r0 of the input process, the constant
C1 in (A1) can be set to be |β|2 + r0 depending on the input stationary
process.

2. The variance of x(t)x(t − k) is given by

Var
(
x(t)x(t − k)

)
= E

(
x(t)x(t − k)x(t)x(t− k)

)
− (ββ + rk)(ββ + rk).

Assumption (A2) is satisfied when the input signal process is Gaussian pro-
cess (see Haykin [12, p. 109] for definition). The variance of x(t)x(t − k) is
bounded by

Var
(
x(t)x(t − k)

)
≤ 40|β|4 + 12|β|2r0 + 3r2

0.(3.6)

The proof of (3.6) can be found in the Appendix.
3. Assumption (A3) is satisfied when the underlying spectral density function
f(θ) of the input stationary process is positive and in the Wiener class,
i.e. the autocovariances {rk}∞k=−∞ of the process are absolutely summable,∑∞
k=0 |rk| ≤ ∞. We remark that the spectral density function f(θ) is always

non-negative. We have the following lemma about the smallest and largest
eigenvalues of T (t), proved in Ng [16] when the forgetting factor α is equal
to 1.
Lemma 3.2. Let the spectral density function f(θ) of the input stationary
process be in the Wiener class, and let the mean of the process be β. Then
for any given ε > 0 and 0 < δ < 1, there exists a positive integer N such that
for n > N (where n is size of T (t)),

Pr {λmin(T (t)) ≥ fmin − ε} ≥ 1− δ

ETNA
Kent State University
etna@mcs.kent.edu

LMS-Newton Adaptive Filtering using FFTs 23

and

Pr
{
λmax(T (t)) ≤ fmax + nβ2 + ε

}
≥ 1− δ,

for sufficiently large t where fmin and fmax are the minimum and maximum
values of f(θ).

Before beginning the convergence analysis, we first denote E(Y) as the expected
value of a random matrix Y , where the entries of E(Y) are the expected values of the
elements of Y , i.e. the (j, k)th entry of E(Y) is given by [E(Y)]j,k = E([Y]j,k). The
following Lemma will be useful later in the analysis of the convergence rate of the
method.

Lemma 3.3. Let the input signal process satisfy assumption (A2). Then for any
given ε > 0, we have

Pr

{∣∣∣∣∣
n−1∑
k=0

[
x(t)x(t − k)

t
− E

(
x(t)x(t − k)

t

)]∣∣∣∣∣ ≤ ε
}
≥ 1− n3C2

ε2t2
.

Proof. By using a Lemma in Fuller [8, p. 182] and Chebyshev’s inequality [8, p.
185], we obtain

Pr

{∣∣∣∣∣
n−1∑
k=0

[
x(t)x(t − k)

t
− E

(
x(t)x(t − k)

t

)]∣∣∣∣∣ ≥ ε
}

≤
n−1∑
k=0

Pr

{∣∣∣∣∣x(t)x(t − k)
t

− E
(
x(t)x(t − k)

t

)∣∣∣∣∣ ≥ ε

n

}
≤
n−1∑
k=0

Var(x(t)x(t − k))n2

ε2t2
≤ n3C2

ε2t2
.

As both matrices T̃ (t− 1) and T (t) are Hermitian positive definite, the precondi-
tioned matrices α̂T̃ (t−1)−1/2T (t)T̃ (t−1)−1/2 are similar to the matrices α̂T (t)1/2T̃ (t−
1)−1T (t)1/2. Next, we prove that the condition number of the matrix α̂T (t)1/2T̃ (t−
1)−1T (t)1/2 is close to 1, with probability 1.

Theorem 3.4. Let the input signal process satisfy assumption (A). If

||E(t− 1)||2 ≤
ε1
nC3

< 1,(3.7)

then for any given 0 < ε < 1 − ε1 and 0 < δ < 1, there exists an integer t0, which
depends upon n, ε, δ, α, C1, C2, C3 and C4, such that for t ≥ t0,

Pr
{
κ2(α̂T (t)1/2T̃ (t− 1)−1T (t)1/2) ≤ 1 + ε1 + ε

1− ε1 − ε

}
> 1− δ.

Proof. By (3.2), the matrix T̂ (t) can be written as follows:

T̂ (t) = α̂
[
In + T (t)1/2E(t− 1)T (t)1/2+(3.8)

T (t)1/2
(
T (t− 1)−1 − T (t)−1

)
T (t)1/2

]
.

Next we estimate the `2 norm of the matrices T (t)1/2E(t−1)T (t)1/2 and T (t)1/2(T (t−
1)−1−T (t)−1)T (t)1/2 in the right hand side of (3.8). From (A3) and the hypothesis on

ETNA
Kent State University
etna@mcs.kent.edu

24 M. K. Ng and R. J. Plemmons

‖E(t−1)‖2, the `2 norm of the matrix T (t)1/2E(t−1)T (t)1/2 is bounded by ε1. As both
T (t) and T (t− 1) are Hermitian positive definite matrices, the matrix T (t)1/2(T (t−
1)−1−T (t)−1)T (t)1/2 is similar to the matrix T (t−1)−1/2(T (t)−T (t−1))T (t−1)−1/2.
Therefore it suffices to estimate the `2 norm of T (t−1)−1/2(T (t)−T (t−1))T (t−1)−1/2.
By (2.3), we have

T (t− 1)−1/2 (T (t)− T (t− 1))T (t− 1)−1/2

= T (t− 1)−1/2

[
x(t)
t
VT (t)− E

(
x(t)
t
VT (t)

)]
T (t− 1)−1/2 +

T (t− 1)−1/2E
(
x(t)
t
VT (t)

)
T (t− 1)−1/2.

With∥∥∥∥x(t)
t
VT (t)− E

(
x(t)
t
VT (t)

)∥∥∥∥
2

≤
∥∥∥∥x(t)

t
VT (t)− E

(
x(t)
t
VT (t)

)∥∥∥∥
1

= 2

∣∣∣∣∣
n−1∑
k=0

αk/2

[
x(t)x(t − k)

t
− E

(
x(t)x(t − k)

t

)]∣∣∣∣∣ ,
using Lemma (3.3) and considering probability argument, we obtain

Pr
{∥∥∥∥T (t− 1)−1/2

[
x(t)
t
VT (t)− E

(
x(t)
t
VT (t)

)]
T (t− 1)−1/2

∥∥∥∥
2

ε

2

}
≥ 1− 8n3C2C

2
4α

n−1(1− αn)
(1− α)ε2t2

.

By (A1), we also have∥∥∥∥E (x(t)
t
VT (t)

)∥∥∥∥
2

≤ 1
t
‖E (x(t)VT (t))‖1 ≤

nC1

t
.

Thus there exists t0 given by t0 = max
{

2nC1
ε ,

√
8n3C2C2

4
δε2

}
, such that for t ≥ t0, then

we have

‖T (t)1/2(T (t− 1)−1 − T (t)−1)T (t)1/2‖2 ≤ ε,

with probability 1− δ. It follows from (3.8) that the minimum and maximum eigen-
values of α̂T (t)1/2T̃ (t− 1)−1T (t)1/2 are bounded as follows with probability 1− δ:

α̂(1− ε1 − ε) ≤ λmin

(
α̂T (t)1/2T̃ (t− 1)−1T (t)1/2

)
(3.9)

≤ λmax

(
α̂T (t)1/2T̃ (t− 1)−1T (t)1/2

)
≤ α̂(1 + ε1 + ε)

Hence the theorem follows.
Using Theorem 3.4, we can estimate the number of iterations required for con-

vergence. We let s(k)(t) be the error vector given by

s(k)(t) = u(t)− u(k)(t),

after the kth iteration of preconditioned conjugate gradient method is applied to
solving the preconditioned system. By convergence of the PCG method, we mean

ETNA
Kent State University
etna@mcs.kent.edu

LMS-Newton Adaptive Filtering using FFTs 25

that ‖s(k)(t)‖2 is sufficiently small at the kth iteration so that the `2 norm of the
error matrix satisfies ‖E(t)‖2 ≤ ε1/nC3. We remark that if ‖E(t)‖2 is sufficiently
small then the filter coefficients can be computed accurately at each time step and
the number of PCG iterations can be reduced.

Lemma 3.5. Let the input signal process satisfy assumption (A3). For any given
ε1 > 0, there exists η∗ > 0 such that if ‖y(t)‖2 ≤ η∗ then ‖E(t)‖2 ≤

ε1
nC3

.

Proof. Choose

η∗ = min
{

1
2C3

,

√
ε1

24nC1C3
,

ε1
48nC1C3C4

,
ε1

3C1C2
3C4

}
· 1
nC3

,

and use the error bound E(t) given in Theorem 3.1. The result follows.
In the following, we let N(t, η∗) denote the smallest positive integer k such that

‖s(k)(t)‖2 ≤ η∗. Therefore, N(t, η∗) is the smallest number of iterations required for
the convergence of the PCG method at time t. The following theorem gives an upper
bound for N(t, η∗).

Theorem 3.6. Let the input signal process satisfy assumption (A). For any
given ε and δ satisfying 0 < ε < 1− ε1 and 0 < δ < 1, there exists an integer t0, which
depends on n, ε, δ, α, C1, C2, C3 and C4, such that for t ≥ t0, if

N(t, η∗) ≤ 1
2

(
1 + ε1 + ε

1− ε1 − ε

)
log
[

2(1 + ε1 + ε)‖s(0)(t)‖2
(1− ε1 − ε)η∗

]
+ 1,(3.10)

then

Pr
{
‖s(k)(t)‖2 ≤ η∗

}
> 1− δ.

Proof. By using Theorem 3.4 and the convergence rate of the conjugate gradient
iterations in [3, Theorem 1.12, p. 26], one can prove that if N(t, η∗) is bounded above
as stated as in (3.10), we have

Pr
{
|||s(k)(t)||| ≤

[
(1− ε1 − ε)η∗

(1 + ε1 + ε)‖s(0)(t)‖2

]
|||s(0)(t)|||

}
> 1− δ.(3.11)

Here ||| · ||| is the energy norm corresponding to the preconditioned matrix

α̂T̃ (t− 1)−1/2T (t)T̃ (t− 1)−1/2,

defined by

|||v||| = v∗α̂T̃ (t− 1)−1/2T (t)T̃ (t− 1)−1/2v.

As the minimum and maximum eigenvalues of the preconditioned matrix are bounded
as stated in (3.9), for any vector v, we obtain

α̂(1− ε1 − ε)‖v‖2 ≤ |||v||| ≤ α̂(1 + ε1 + ε)‖v‖2.(3.12)

Putting (3.12) into (3.11), the result follows.
Using Theorem 3.6, we easily note that the conjugate gradient method, when

applied to the preconditioned system

α̂T̃ (t− 1)−1T (t)u(t) = α̂T̃ (t− 1)−1en,

ETNA
Kent State University
etna@mcs.kent.edu

26 M. K. Ng and R. J. Plemmons

converges rapidly with probability 1, provided that t is sufficiently large and ‖E(t−
1)‖2 is sufficiently small.

We recall that in each iteration of the preconditioned conjugate gradient method
the work is of order O(n log n) operations. Therefore, the work for obtaining the
solution vector u(t) to a given accuracy is also of order O(n log n) operations. Hence
the total work of obtaining w(t) at each adaptive time step is of order only O(n log n)
operations, if the input process satisfies assumption (A). Finally, we remark that
our LMSN algorithm is highly parallelizable. In a parallel environment with O(n)
processors, the total work of updating the filter coefficient vector w(t) at each adaptive
time step is O(log n) operations.

4. Numerical Experiments. In this section, some numerical experiments are
performed to test the convergence rate of the preconditioned conjugate gradient al-
gorithm. All the computations are done using Matlab. In the numerical tests, the
stopping criterion used for the preconditioned conjugate gradient (PCG) method is
τk/τ0 < 10−7 as stated in PCG algorithm. Moreover, in all tests, the forgetting factor
is set to 0.99, for simplicity.

In the first set of numerical tests, we illustrate our method by using an adaptive
filtering model problem from [7]. Figure 2 shows the block diagram of the adaptive
filtering simulation model. The common input to the unknown (reference) system
and adaptive filter is a MA(16) input process that is obtained by passing a Gaussian
white noise with unity variance through a FIR filter whose impulse responses is given
in Table 1. The unknown (reference) system is an 14-th order FIR system with
transfer function P(z) given by P(z) = 1 + 4z−6− z−8 + 0.2z−10 + 0.1z−13. Different
levels of variances of the Gaussian white noise {n(t)} are used to test the performance
of the FFT–based LMSN algorithm. The length n of the adaptive filter is selected to
be 16.

For the comparison, T. Chan circulant preconditioners [6] are used in the tests.
Figure 3 shows the condition numbers of different preconditioned matrices for one
realization of input signal. We note that the condition numbers of our preconditioned
systems are near to 1 when t is large enough. Figure 4 shows the average number of
iterations of the preconditioned system at each step, averaged over 100 independent
runs of the algorithm for different levels of Gaussian noise (variances of noise = 0.01
and 0.1) added into the adaptive systems. We remark that for different levels of noise,
the Toeplitz systems T (t)u(t) = en are the same. We see from the numerical results
that the conjugate gradient method for our preconditioned systems converges faster
than that of the circulant-preconditioned systems and non-preconditioned systems.
Figures 5–6 show the corresponding ensemble-averaged learning curves of these adap-
tive filtering models. For this comparison, the learning curves of the LMS algorithms
are presented together in Figures 5–6. We used the same step size 0.025 for the FFT–
based LMSN and LMS algorithms. From the numerical results of the FFT–based
LMSN algorithm, the mean square error (estimation error e(t)) decreases rapidly to
a steady-state value of the average mean square error. Also the decrease of mean
square error using FFT–based LMSN algorithm is faster than that by using the LMS
algorithm. We also compare our FFT–based LMSN algorithm with fast transversal
filter O(n) operations algorithms [12, pp. 586–599]. Figure 7 shows that the fast
transversal filter algorithm does not converge when noise is added to the adaptive
FIR system. In order to get accurate result, it is necessary to reinitialize the filter
coefficients before the error becomes large; see [12]. However, the performance of the
FFT–based LMSN algorithm is quite stable.

ETNA
Kent State University
etna@mcs.kent.edu

LMS-Newton Adaptive Filtering using FFTs 27

-

-

-

x(t) t

Unknown System

Adaptive Filter {wk(t)}16
k=1

FFT–based LMSN Algorithm

-

6

?

n+

6
�
��

- e(t)��
��

�

d(t)

o(t)

−

?

n(t)

Fig. 2. Adaptive Filtering Simulation Model

h(1) = −0.024476535 h(5) = 0.024523262 h(9) = −0.005495879 h(13) = 0.224112905

h(2) = −0.122125943 h(6) = −0.051290013 h(10) = −0.055246398 h(14) = 0.015079975

h(3) = 0.133007741 h(7) = −0.024950762 h(11) = −0.017690268 h(15) = −0.475178548

h(4) = −0.050216528 h(8) = 0.096703820 h(12) = −0.058418098 h(16) = 0.409890873

Table 1

The impulse responses of the FIR filter with h(k) = h(32 − k + 1) used for generation of the
input signal process.

For the second set of simulations, we consider a non-Gaussian input process and
desired responses. We consider the channel equalization problem as shown as in Figure
8; see [7] and [12, p. 342]. The random sequence {a(t)} applied to the channel input
is in polar form, with a(t) = ±1 with equal probability. The impulse responses of the
channel are given in Table 2. A Gaussian white noise {n(t)} is added to the output
of the channel. The channel input {a(t)} is delayed by 15 samples to provide the
desired responses for the equalizer. Figure 9 shows the condition number of different
preconditioned matrices for one realization of input signal. We note that the condition
numbers of our preconditioned systems are near to 1 when t is sufficiently large. Figure
10 shows the average number of iterations of our preconditioned system, circulant-
preconditioned system and non-preconditioned system at each step, averaged over 100
independent runs of the algorithm. The preconditioned conjugate gradient method
with our FFT–based preconditioners converges faster than the others at each step.
Figure 11 also shows the ensemble-averaged learning curves of the FFT–based LMSN
and LMS algorithms where the variance of noise is 0.01. The step size used in two
algorithms is 0.01. We note from the numerical results that the decrease of the of mean
square error using the FFT–based LMSN algorithm is faster than that by using the
LMS algorithm. We observe from Figure 12 that the fast transversal filter algorithm
converges faster than the FFT–based LMSN algorithm, however, its mean square
error is larger than the FFT–based LMSN algorithm. Therefore the performance of
the FFT–based LMSN algorithm is better than the others.

ETNA
Kent State University
etna@mcs.kent.edu

28 M. K. Ng and R. J. Plemmons

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

0

10
1

10
2

10
3

Time Step t

C
on

di
tio

n
N

um
be

r

our preconditioned matrices

circulant-preconditioned matrices

non-preconditioned matrices

Fig. 3. Condition Numbers of Different Preconditioned Matrices.

0

2

4

6

8

10

12

14

16

18

0 200 400 600 800 1000 1200 1400 1600 1800 2000

n=16

Time Step t

N
um

be
r

of
 I

te
ra

tio
ns

our preconditioned systems

circulant-preconditioned systems

non-preconditioned systems

Fig. 4. Numbers of Iterations for Convergence at Each Time Step with n = 16.

ETNA
Kent State University
etna@mcs.kent.edu

LMS-Newton Adaptive Filtering using FFTs 29

10-3

10-2

10-1

100

101

102

0 200 400 600 800 1000 1200 1400 1600 1800 2000

...
...

...
...
...........
.
..
...
.
...

.

.

...
........
.
.......
......
.
.
......
......
.
...
.
....
.
.
.
.......
..
.
...........
.....
.

.

....
.
.
.
....
.
....
..
..
...
.
.
........
...
.
....
..

....
.
.
..
.
...........
.
.
.
..
...
.....
....
.
..
.
....
..
.
..
.

.

.

......
.
.
.....
.
......
......
...
.
..
.
.
..
..
.......
..
.

.

...
.......
.
...
..
.
.............
.
.
..
...
.
...
...
..
.......
....
...
.
.
.
.......

..

.............
.
.
.
.....
..
...
.
.........

..

....
..
..............
......
...
....
....
..........
........
...
.
.
.
...
.
.
..
......
..
..
..
..
.
.
.
..
.
.
..
..
...
....
......
.
...
..

.

..

.

..

........
.....
..........
..
........
...
.
.............
.
..
..
.
..........
.......
....
..
.........
.
....
......
...
........
...
.............
.........
....
...
...
.....
..
............
.
...
.............
..
......
......
..
....
...
.
......
..
...
.......
.......
.
.
.........
....
....
......
......
.........
.
..
.
..
.......
........
....
...
...
..
...
.
.
........
...
.
....
.....
.....
..........
.........
.
..
...
..
...
...............
....
..
..
......
.
.....
......
...
.....
..
.
..
...
..
..
....
...
..
..
...
..
......
..
.
...
..
.......
....
.
...............
..
..
..
.
..
..
......

.

..........
..........
.......
.
.
.
...............
...
..
...
..
.....
..
..
.....
...
...
.....
..
....
...
..
..
.....
.
.............
....

..

...
.....
.
.....
....
.
.....
......
.....
..
.
..
.....
...
....
.
..........
....
.........
..
..
.
..
...
..
.
.
...
...
.
...
...
..
...
...
.
...
..
...
...
.
..
.
.
...
..
...
.
..
...
.
.
........
......
.....
.
...
....
.....
.
.........
.
..
.....
.
.........
..
....
..
............
.
........
.
..
........
....
..
.
..
.........
.
........
..
..
........
.............
...
....
.....
..
..
...
.
....
.
..
..
..
.
...
..
.....
...
..

....
..
.
.
.......
.....
..
....
.
..........
.
...
...........
.....
..
..
.
...
...
...........
..........

...
..
.
..
...
..
..
.
..
..
.
...
........
.
.
.
........
.
.....
.......
..
.
...
...
.......
.
..
.....
......
.

.

.

.

.

.

...
.......
.......
.........
.
.....
.
...
..
.
.
.

.

.

.

..

.

..

...
.

.

.

.

......
.....

..

...
.
..........
.
.
..........
...
.
..
...
.
.
.......
.

..

.

...
...
..
...
........
.
....
......
.
...
.
.....
..
..
.
......
.
.
.....
.
...
.....
...
..
.
.
.
......
......
..
.......
...
....
..
.
.
.......
.....
.....
.....
........
...
.
.
..
.......

..

...
.
.
.

.

.

.

.

.

.

.

........
.
..
...
..
..
.
.........
.
..
.....
....
...
.
.
..
......
.....
....
...
.
...
.
.
.....
...
.

....
....

n = 16, variance of noise = 0.01, step size = 0.025

E
ns

em
bl

e-
av

er
ag

ed
 S

qu
ar

e
E

rr
or

Time Step t

----- FFT-based LMSN Algorithm

..... LMS Algorithm

Fig. 5. Learning Curves of the FFT–based LMSN and LMS Algorithms.

10-2

10-1

100

101

102

0 200 400 600 800 1000 1200 1400 1600 1800 2000

...
...

..

.

.......
..
.
.
.
...
.
..
.

.

.

........
.
.........
.
...
.
.
....
..
.
...
.
.
......
.....
...
.
...
.
.
.
.
.
.....
.
.
......
..........
.
.
.
...
.
.....
...
.
.
.
.
........
..
........
......
.
.
.....

.

......
..
.........
.
.
.
.
..
...
..
.
.
..
.
...
.
..
.

.

..

....

.

..

.

.

.

.

.

...
..
.....
.
.

.

.

.

.

.

.

.

...
...
..
......
..
.

.

.

.

.

....
..
...
..
......
...
...
.
.
...
...
.

..

....

.

..

.

..

..

..

.

...
.
..
...

.......

.

.

.

.

.

.

......
...
.
.
.
.
..
.......
......
.....
......
.
...
.
.....
......
...
..
..
.
...
.
..
.
..
.
..
.......
..
..

..

....
.
.
.

.

.....
...
.
..
.

..

.

...
..
.
....
..
.
..
.

.

...
..
..
..
.
..

.

............
....
..
.
.
.
.
.
..
..
.
..

.

..

..

.

.

.....
..
.....
.
....
.....
.
..
.
..
..
....
.
.
..
.....
.........
........
.
.
..
.....

.

...
.
......
.
...
.
.......
....
.
.
.
..
.
...
..
.
.

....
...

.

..

.

.

..

.

.

.

.

.

..

.

.....
.
.
..
.....
.
..
.

..

..

..

.

...
..
....
....
.
.
.
.
.
......
.......
.
.....
...
.
...
..

.

....
.

...

.

.

..

..

..

.

..

..

..

.....
.
....
.

...
.
.....

.

.

.

.

....
.
.
....
.

.

.

....

.

..

....
...
..
....
......
.
...
.
.
.....
....
.
.
.
..

.

...
..
.
....
.
.
..
...
..
.....
.
..
.
.
.
..
..
...
.
.
..
.
...
.
....
..
.

.

.

.

..

.

.

..

...
.
..

.

.

..

.....
.
.
.
.
.
.
.
...
.

..

...
.
...
.

.

.

.

..

..

.

.

.

.

...
.
..
.
...
...
.
...
..
..
.
.
.
..
.

..

..

.

.

.

..

.

.

.

.

..

.

....
.
.

.

....
..
.
...
...
.
.......
.
..
.
..
.....
....
.

.

.

.

....
.
....
..

.

..

.

...
.

.....
.

.

.

.

.

.

.

..

.

....
..

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

...
.
..........
.
.
.
...
.
.
.
.
.
...
.
..
...
....

.

..

.

.

.

..

.

..

.

.

..

.

..

.

...
.
.
.
.
.
.
.
.
...
.
.
....
......
.....
.
...
...
.
..
..
.
...
..
.
.
...
.....
.

..

.

.

.

...
...
...
.
.
....
..
..
.

.

.............
.
....
.......
..
.

.

.

.

....
.....
.....
.
..
.
.

.

......
..
.

.

..

..

.

.......

.

...
.

.....
..
.

...
..
.
....
.
.....
.
.
.....
.
.

..

.

..

...
.
..
.
.

.

..

.

...
.
..
.
.
....
.
.
.

.

.

...
.
...
.
..
.
....
..
.
.
..

.

.

...
..
.
....
.

.

..

....
..
.
....
.
.
..
.
..
.
.
.
.
..

.

..........
.
.
.
.
.
....
....
..

.

.

.

.

.

.

.

.

.........
.....
.
..
..
...
.
...
.....
..
..
......
.
.
.
.....
..
.
...
...
.

..

.

....
.
.
.
...
.
..
..
....
.
.
.
..
..
..
.
.....
..

.

.....
.
.
...
.
.....
....
.
.
......
.
..
....
...
.
..
.

.

..

..

......
..
.
.
.....
.
.
....
.

.

.

.........
...........
.

..

.

.

....
...
..
..
.
....
......
.
...

.

.

.

.

.

...
.
.
.
.
.
.

.....
..
..
.

........
..
..
..
.
...
..
....
..
.

.

...
...
.....
.
.
.
.
.
..

.

.

.

.

.

..

.

.....
.......
.
..
.

..

.

.....
.
......
.

.

.....
.

.

.

.

..

.

.

..

.

.

..

...
.
...
.
..
..
.
.
.

.........
.

.

......
.........
...
.
..
.
.
..
.
....
.
..
....
.
...
.
.
.
..
.
..
....
.
......
...
...
.

..

.

....
......
..
........
.
.......
..

.

.

.

.

.

.

...
...

..

......

.

..

..

..

.

...
...
.

......
..
.

.

.

...
.
.
.
..
.

.

....
.
.
.

..

.

.

----- FFT-based LMSN Algorithm

..... LMS Algorithm

Time Step t

E
ns

em
bl

e-
av

er
ag

ed
 S

qu
ar

e
E

rr
or

n = 16, variance of noise = 0.1, step size = 0.025

Fig. 6. Learning Curves of the FFT–based LMSN and LMS Algorithms.

ETNA
Kent State University
etna@mcs.kent.edu

30 M. K. Ng and R. J. Plemmons

0 50 100 150 200 250 300 350 400 450 500
10

−10

10
−5

10
0

10
5

10
10

10
15

Time Step t

E
ns

em
bl

e−
av

er
ag

ed
 S

qu
ar

e
E

rr
or

variance of noise = 0.01

variance of noise = 10^(−8)

Fig. 7. Learning Curves of the Fast Transversal Filter Algorithms.

-a(t) t

-

-

Delay

Channel with Noise n(t)

?

Equalizer {wk(t)}16
k=1

FFT–based LMSN Algorithm

6

6
�
��

- e(t)��
��

�

o(t)

−
?

a(t− 15)

Fig. 8. The Equalization Problem used for Simulation.

h(1) = 0.0066 h(5) = 0.3605 h(9) = −0.2270 h(13) = −0.0159

h(2) = 0.0262 h(6) = 0.6762 h(10) = 0.1048 h(14) = 0.0083

h(3) = 0.1919 h(7) = −0.2620 h(11) = −0.0509 h(15) = −0.0331

h(4) = 0.2867 h(8) = 0.3977 h(12) = 0.0278 h(16) = 0.0005

Table 2

The Impulse Responses of the Channel.

ETNA
Kent State University
etna@mcs.kent.edu

LMS-Newton Adaptive Filtering using FFTs 31

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

0

10
1

10
2

10
3

Time Step t

C
on

di
tio

n
N

um
be

r

our preconditioned matrices

circulant-preconditioned matrices

non-preconditioned matrices

Fig. 9. Condition Numbers of Different Preconditioned Matrices.

0

2

4

6

8

10

12

14

16

18

0 200 400 600 800 1000 1200 1400 1600 1800 2000

N
um

be
r

of
 I

te
ra

tio
ns

Time Step t

n = 16, variance of noise = 0.01, step size = 0.01

our preconditioned systems

circulant-preconditioned systems

non-preconditioned systems

Fig. 10. Numbers of Iterations for Convergence at Each Time Step with n = 16.

ETNA
Kent State University
etna@mcs.kent.edu

32 M. K. Ng and R. J. Plemmons

10-2

10-1

100

0 200 400 600 800 1000 1200 1400 1600 1800 2000

.

.....
......
...
......
.
......
.
....
.....
.
....
........
.....
.
.
..
.
.
.
.........................

.

.....
.
....
........
..
.

..

.

.

.....
.
...
.
....
....
..
.
....
.
....
....
......
.
.
.
.
..
......
...
..

.

.....
..
.
.
..
.
...
.
.......
.
..
..
...
...
.
.
......
.
.
.
.
....
......
.
.....

.

.

.

..

.

.

........
.
.
..
...
.
.
...

....
.
.....
.
.....
...

.

.

.

.

.

.....
.
....
.
..
....
..
.....
.
.
..
.
...
.
..
...
......
.
.
.....
...
.......
........
.
....
..

.

.

.

..

..

....
...
..
....
...
.
.
.......
...
....

.

...

.

.

.

.

.

.

.

...
.
......
.......
.

.

.

.

.......
.....
.
.....
.

.............

..

.

.

.

.

.

.....
........
......
.....
.

.

.

.

..

...
..
.
.

.

.

..

.

.

....
..
.....
.

.

.

...
..

.

.

.

...
.
.........
...

.

....
.
.

.

.

.

..

.

.

.

..

.

.

.

.

.

.

....
.

.

....
..
.
..
....

.

.

........
..
.

.

..

.

..

.

.

.

.

.

.

...
.
.
...
.
..
.
.
.
..
..

.

.

.

..

........
....
.
.
....
.
.

.

.

..

.....
.
..
.

.

....
.

.

.

.

.

.

...
.
.
..

.

..

...

.....
..
.

.

.

.

.

.

.

.

....
.

.

.

..

.

...
..
..

.

..

.....

.

.

.

.

....
.....
..
.

.

.

..

.

.

.

.

.

.

...
.
.

.

.

.

.

.

........
.

.

.

.

..

..

.

..

.

..

.....
.
.
.
.
..

.

...
.
..
...
.
.
.
.

.

.

..

.

.

.

.

.

.

.

........
.

.

..

.

.

...
..
.
.

.

....
.

.

.

.....
.
..
.

.

.

.

.

...
..
..
.
.

..

.

..

.

.

.

..

..

.

.

.

.

.

.

...
.
..
..
.
.
.
.

.

..

.

....
.
....
..
.
.

.

.

.

..

...
.
..

....
.
.

.

.

....
...
.

.

.

.

...
....
.

.

.

....
.
.
...
.

.

.

.

.

.

..

.

.

.

..

.

...
.
.
.
..
..
.
.
.

.

...
.

.

.

.

.

.

.

.

.

.

.

.

.....

.

..

.

.

.

.

.

.

...
.
.

.

.

.

.....
.

.

.

.

...

.

.

.

.

.

.

.

.

...
.
....
.
....
.
.

.

.

...
..
.

..

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

...

.

....
.
.
...
...
..
.

.

.

.

.

.

.

..

..

..

..

..

..

.

.

.

..

.

.

.

.

....
.
.

.

..

..

.

..

.

...
...
.
.
.

.

...
..

.

.

.

...
...
..

.

.

..

.

.

..

.

.

.

..

.

.

.

.

..

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

...
.

.

.

.

.

.

.

..

..

.

.

.

..

...
......

.

.

.

...

..

..

.

.

.

.

.

.

.

.

.

.

.

.

.

...
.
.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

..

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

...
.

.

...

.

.

.

.

.

.

...

.

.

.

...

.

.

.

.

.

..

.

..

.

..

..

.

.....

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

..

...
..
..
..

.

.

...

.

....
.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

..

.

....
.

..

.

.

.

.

...
..
.
...
.
.
..
.....
..
..

..

.

...
.

.

.

.

.

..

..

.

.

.

..

....
.
..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

....
.

.

.

.

.

.

.

.

.

....
.

.

.

.

.

.

...
.
.
..
..
.
.
.
.
...
....
.

..

.

.

.

.

..

..

.

.

.

.

..

.

.

.

.

..

..

.

.

..

.

.

.

.

.

.

......
.
..

..

.

.

.

........

.

..

.

.

.

.

.

.

.

.

..

..

.

.

...

.

.

.

.

.

..

.

.

.

.

..

.

.

..

.

.

.

.

.

....
..
....
.
.
.
..
.

.

.

..

..

..

..

.

.

.

.

.

.

.

.

.

.

...

..

.

.

.

.

.

.......
.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

..

.

...
.
..
.

.

.

.

.

.

.

....
.
.
.

.

.

....
....
.

.

.

.

.

.

.

.

.

......
.

.

..

.

..

.

.

.

.

.

.

....
.

.

.

.

.

.

....
.
.
.
.
.

.

.

.

.

.

.

.

.

..

.

....

.

.

.

..

.

..

...
.
.
.

.

.

.

.

...
...
.

.

.

.

.

.

....
.

.

...
...
.
.
.

.

.

.

.

.

..

.

..

..

.

...
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

..

..

.

.

...
....
.
.

.

...

.

..

..

...

.

.

.

.

.

.

.

.

.

.

...
.
..
.

.

.

.

......

.

.

..

.

.

...
.

.

.

.

.

.

.

.

.

.

....

E
ns

em
bl

e-
av

er
ag

ed
 S

qu
ar

e
E

rr
or

Time Step t

n = 16, variance of noise = 0.01, step size = 0.01

----- FFT-based LMSN Algorithm

..... LMS Algorithm

Fig. 11. Learning Curves of the FFT–based LMSN and LMS Algorithms.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

−5

10
0

10
5

10
10

10
15

10
20

10
25

Time Step t

E
ns

em
bl

e−
av

er
ag

ed
 S

qu
ar

e
E

rr
or

n=16, variance of noise = 0.01

Fig. 12. Learning Curves of the Fast Transversal Filter Algorithms.

ETNA
Kent State University
etna@mcs.kent.edu

LMS-Newton Adaptive Filtering using FFTs 33

5. Concluding Remarks. In this paper, we have proposed a new FFT–based
LMSN algorithm. Preliminary numerical results show that the performance of the
algorithm is good in the sense of reasonable complexity and convergence. Also, the
complexity of the algorithm is only O(n log n) operations per each adaptive time step,
and the algorithm itself is highly parallelizable. These attractive features could lead
to the use of the algorithm in diverse adaptive filtering applications. We remark that
the FFT–based LMSN algorithm can be adapted to handle 2–D signal processing
applications, for example 2–D linear prediction, multichannel filtering and spectrum
analysis, as in [21]. The results for 1–D signal processing applications thus far look
promising, and we intend to test a 2–D FFT–based LMSN algorithm in the next phase
of our work.

6. Appendix. Proof of Theorem 3.1: We first let B1(t) and B2(t) be the
circulant and skew-circulant matrices respectively. Their first rows are given by

[un−1(t), un−2(t), . . . , u0(t)] and [un−1(t),−un−2(t), . . . ,−u0(t)]

respectively where u(t) is the actual solution vector of the linear system T (t)u(t) = en.
It follows from Lemma 2.2 that B2(t)B1(t)∗+B2(t)∗B1(t) is a Hermitian matrix. By
(3.1), we obtain

B̃1(t) = B1(t) +E1(t) and B̃2(t) = B2(t) +E2(t).

Therefore, the matrix E1(t) is the circulant matrix with first row given by

[yn−1(t), yn−2(t), . . . , y0(t)]T ,(6.1)

and E2(t) is the skew-circulant matrix with first row given by

[yn−1(t),−yn−2(t), . . . ,−y0(t)]T .(6.2)

It follows that the error matrix E(t) is equal to

E(t) =
1

2ũn−1(t)

[
B̃2(t)B̃1(t)∗ + B̃2(t)∗B̃1(t)

]
(6.3)

− 1
2un−1(t)

[B2(t)B1(t)∗ +B2(t)∗B1(t)]

=
1
2

[
1

un−1(t) + yn−1(t)

] [
B̃2(t)B̃1(t)∗ + B̃2(t)∗B̃1(t)

−B2(t)B1(t)∗ +B2(t)∗B1(t)]

+
1
2

[
1

un−1(t) + yn−1(t)
− 1
un−1(t)

]
[B2(t)B1(t)∗ +B2(t)∗B1(t)]

=
1
2

[
1

un−1(t) + yn−1(t)

] [
B̃2(t)B̃1(t)∗ + B̃2(t)∗B̃1(t)

−B2(t)B1(t)∗ −B2(t)∗B1(t)]

+
1
2

[
1

un−1(t) + yn−1(t)
− 1

un−1(t)

]
T (t)−1.

Here we recall that T (t)−1 = B2(t)B1(t)∗ + B2(t)∗B1(t). From u(t) = T (t)−1en, we
get

un−1(t) = [T (t)−1]n,n.

ETNA
Kent State University
etna@mcs.kent.edu

34 M. K. Ng and R. J. Plemmons

As the diagonal elements of T (t)−1 are always greater than or equal to 1
‖T (t)‖2 , we

have

un−1(t) ≥ 1
‖T (t)‖2

.

Therefore, the `2 norm of the second term of the right hand side in (6.3) is given by∥∥∥∥1
2

[
1

un−1(t) + yn−1(t)
− 1
un−1(t)

]
T (t)−1

∥∥∥∥
2

≤ ‖y(t)‖2κ2(T (t))
2[1− ‖y(t)‖2‖T (t)‖2]

.(6.4)

As for the first term of right hand side in (6.3), we first rewrite it as follows:

B̃2(t)B̃1(t)∗ + B̃2(t)∗B̃1(t)−B2(t)B1(t)∗ −B2(t)∗B1(t)
= B̃2(t)B̃1(t)∗ −B2(t)B̃1(t)∗ +B2(t)B̃1(t)∗ −B2(t)B1(t)∗ + B̃2(t)∗B̃1(t)∗ −B2(t)∗B̃1(t) +

B2(t)∗B̃1(t)−B2(t)∗B1(t)
= E2(t)B̃1(t)∗ +B2(t)E1(t) +E2(t)∗B̃1(t) +B2(t)∗E1(t)
= E2(t)B̃1(t)∗ −E2(t)B1(t)∗ +E2(t)B1(t)∗ +B2(t)E1(t) +E2(t)∗B̃1(t)−E2(t)B1(t) +

E2(t)B1(t) +B2(t)∗E1(t)
= E2(t)E1(t)∗ +E2(t)B1(t)∗ +B2(t)E1(t) +E2(t)∗E1(t) +E2(t)B1(t) +B2(t)∗E1(t).

We see from (6.1) and (6.2) that

‖E2(t)E1(t)∗‖2 ≤ ‖E2(t)‖2‖E1(t)∗‖2 ≤ 4‖y(t)‖1‖y(t)‖1 ≤ 4‖y(t)‖21

and that

‖B2(t)E1(t)∗‖2 ≤ ‖B2(t)‖2‖E1(t)∗‖2 ≤ 4‖u(t)‖1‖y(t)‖1
= 4‖T (t)−1en‖1‖y(t)‖1 ≤ 4‖T (t)−1‖1‖y(t)‖1.

We can establish similar results for the matricesE2(t)∗E1(t), E2(t)B1(t)∗, B2(t)∗E1(t)
and E2(t)B1(t). Thus we obtain

‖B̃2(t)B̃1(t)∗ + B̃2(t)∗B̃1(t)−B2(t)B1(t)∗ −B2(t)∗B1(t)‖2(6.5)
≤ 8‖y(t)‖21 + 16‖T (t)−1‖1‖y(t)‖1 ≤ 8n‖y(t)‖22 + 16n‖T (t)−1‖2‖y(t)‖2.

Combining (6.5) and (6.4) into (6.3), the result follows.

Proof of (3.6): By expanding the expression E
(

(x(t) − β)(x(t − k)− β)(x(t) − β)(x(t− k)− β)
)

,
we can obtain

E
(
x(t)x(t − k)x(t)x(t− k)

)
= E

(
(x(t) − β)(x(t − k)− β)(6.6)

×(x(t)− β)(x(t − k)− β)
)
− β2β

2

+β2βE
(
x(t) + x(t − k)

)
+ββ

2E(x(t) + x(t− k))

+2βE
(
x(t− k)x(t)x(t− k)

)
+2βE

(
x(t)x(t − k)x(t)

)

ETNA
Kent State University
etna@mcs.kent.edu

LMS-Newton Adaptive Filtering using FFTs 35

−ββE
(
x(t)x(t − k) + x(t)x(t − k)

+x(t− k)x(t − k) + x(t)x(t)
)

+β2E
(
x(t)x(t − k)

)
+ β

2E(x(t)x(t − k)).

Similarly we can derive

E
(
x(t − k)x(t)x(t)

)
= E

(
(x(t)− β)(x(t) − β)(x(t − k)− β)

)
(6.7)

+ββ
2 − ββE

(
x(t− k) + x(t)

)
− β2E (x(t))

+βE
(
x(t − k)x(t− k) + x(t)x(t)

)
+ βx(t− k)x(t).

As {x(t) − β} is a zero-mean complex Gaussian stationary process up to the second
order with the variances r0, we have

E
(

(x(t) − β)(x(t − k)− β)(x(t) − β)(x(t − k)− β)
)

(6.8)

= 2E
(

(x(t) − β)(x(t − k)− β)
)2

≤ 2r2
0

and

E
(

(x(t− k)− β)(x(t) − β)(x(t − k)− β)
)

= 0,(6.9)

see Haykin [12, pp. 110–111], Also we have∣∣∣E (x(t)x(t − k)
)∣∣∣ ≤ |β|2 + r0.(6.10)

Combining (6.6), (6.7), (6.8), (6.9), (6.10) and (3.5) together, it follows that∣∣∣E (x(t)x(t − k)x(t)x(t − k)
)∣∣∣ ≤ 40|β|4 + 12|β|2r0 + 3r2

0,

establishing (3.6).

REFERENCES

[1] S. Aki, The Design and Analysis of Parallel Algorithms, Prentice-Hall International Inc., Lon-
don, 1989.

[2] G. Ammar and P. Gader, New Decompositions of the Inverse of a Toeplitz Matrix, in Signal
Processing, Scattering and Operator Theory, and Numerical Methods (Proceedings of the
International Symposium MTNS-89, Volume III), M.A. Kaashoek, J.H. van Schuppen and
A.C.N. Ran, eds., Birkhäuser, Boston, 1990, pp. 421–428.

[3] O. Axelsson and V. Barker, Finite Element Solution of Boundary Value Problems, Theory
and Computation, Academic, New York, 1984.

[4] R. Chan and M. Ng, Toeplitz preconditioners for Hermitian Toeplitz systems, Linear Algebra
and Appl., 190 (1993), pp. 181-208.

[5] R. Chan and G. Strang, Toeplitz equations by conjugate gradients with circulant precondi-
tioner , SIAM J. Sci. Statist. Comput., 10 (1989), pp. 104-119.

[6] T. Chan, An optimal circulant preconditioner for Toeplitz systems, SIAM J. Sci. Statist. Com-
put., 9 (1988), pp. 766-771.

[7] B. Farhang-Boroujeny, Application of orthonormal transforms to implementation of quasi-
LMS/Newton algorithm, IEEE Trans. on Signal Process., 41 (1993), pp.1400-1405.

[8] W. Fuller, Introduction to Statistical Time Series, John Wiley & Sons, Inc., New York, 1976.

ETNA
Kent State University
etna@mcs.kent.edu

36 M. K. Ng and R. J. Plemmons

[9] R. Gitlin and F. Magee, Self-orthogonalizing adaptive equalization algorithms, IEEE Trans.
Commun., 25 (1977), pp. 666-672.

[10] I. Gohberg and A. Semencul, On the inversion of finite Toeplitz matrices and their contin-
uous analogs (in Russian), Mat. Issled, 2 (1972), pp. 201-223.

[11] G. Golub and C. Van Loan, Matrix Computations, Second ed., Johns Hopkins Press, Balti-
more, 1989.

[12] S. Haykin, Adaptive Filter Theory, Second ed., Prentice-Hall, Englewood Cliffs, NJ, 1991.
[13] T. Ku and C. Kuo, Design and analysis of Toeplitz preconditioners, IEEE Trans. on Signal

Process., 40 (1991), pp. 129-141.
[14] N. Levinson, The Wiener rms (root-mean-square) error criterion in filter design and predic-

tion, J. Math. Phys., 25 (1947), pp. 261-278.
[15] X. Luo and S. Qiao, An error analysis of the fast RLS algorithms, Rept. no. 231, Comm. Res.

Lab., McMaster Univ., Hamilton, Ontario, Canada, 1991.
[16] M. Ng, Fast iterative methods for solving Toeplitz-plus-Hankel least squares problem, Electron.

Trans. Numer. Anal., 2 (1994), pp. 154-170.
[17] M. Ng and R. Chan, Fast iterative methods for least squares estimations, Numer. Algorithms,

6 (1994), pp. 353-378.
[18] M. Ng and R. Plemmons, Fast RLS adaptive filtering by FFT–based conjugate gradient iter-

ations, to appear in SIAM J. Sci. Comp. (1996).
[19] M. Priestley, Spectral Analysis and Time Series, Academic Press, New York, 1981.
[20] S. Qiao, Fast recursive least aquares algorithms for Toeplitz matrices, Advanced Signal Pro-

cessing Algorithms, Architectures, and Implementations II, SPIE, 1566 (1991), pp. 47-58.
[21] L. Sibul, Adaptive Signal Processing, IEEE Press, New York, 1987.
[22] B. Widrow and S. Stearn, Adaptive Signal Processing , Prentice-Hall, New Jersey, 1985.

