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SEMI-CONVERGENCE AND RELAXATION PARAMETERS FOR A CLASS OF
SIRT ALGORITHMS ∗

TOMMY ELFVING†, TOURAJ NIKAZAD‡, AND PER CHRISTIAN HANSEN§

Abstract. This paper is concerned with the Simultaneous Iterative Reconstruction Technique (SIRT) class of
iterative methods for solving inverse problems. Based on a careful analysis of the semi-convergence behavior of
these methods, we propose two new techniques to specify the relaxation parameters adaptively during the iterations,
so as to control the propagated noise component of the error.The advantage of using this strategy for the choice
of relaxation parameters on noisy and ill-conditioned problems is demonstrated with an example from tomography
(image reconstruction from projections).
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1. Introduction. Large-scale discretizations of ill-posed problems (such as imaging
problems in tomography) call for the use of iterative methods, because direct factorization
methods are infeasible. In particular, there is an interestin regularizing iterations, where the
iteration vector can be considered as a regularized solution with the iteration index playing the
role of the regularizing parameter. Initially the iteration vector approaches a regularized so-
lution, while continuing the iteration often leads to iteration vectors corrupted by noise. This
behavior is calledsemi-convergenceby Natterer [20, p. 89]; for analysis of the phenomenon,
see, e.g., [2, 3, 13, 14, 15, 21, 22].

This work focuses on a class of non-stationary iteration methods, often referred to as Si-
multaneous Iterative Reconstruction Techniques (SIRT), including Landweber and Cimmino
iteration. These methods incorporate a relaxation parameter, and the convergence rate of the
initial iterations depends on the choice of this parameter.In principle, one can use a fixed pa-
rameterλ which is found by “training,” i.e., by adjusting it to yield near-optimal convergence
for one or more test problems. However, this approach is timeconsuming and its success
depends strongly on the resemblance of the test problems to the given problem.

An attractive alternative is to choose the relaxation parameter automatically in each it-
eration, in such a way that fast semi-convergence is obtained. In this paper we study the
semi-convergence for the SIRT methods, and we use our insight to propose two new methods
for adaptively choosing the relaxation parameter.

First, we introduce some notation. LetA ∈ R
m×n andb ∈ R

m be a given matrix and
right-hand side, and consider the linear system of equations (which may be inconsistent)

(1.1) Ax ≃ b, b = b̄ + δb.

We assume that the matrixA comes from discretization of some ill-posed linear problem,
such as the Radon transform (used, e.g., when modeling reconstruction problems in medicine
and biology). We also assume that the noise in the right-handside is additive, i.e.,b consists
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of a noise-free componentb̄ plus a noise componentδb. We consider SIRT methods of the
following form for solving (1.1).

ALGORITHM SIRT. Initialization:x0 ∈ R
n is arbitrary. Iteration: update the iteration

vectorxk by means of

(1.2) xk+1 = xk + λkAT M(b − Axk), k = 0, 1, 2, . . . .

Here{λk}k≥0 are relaxation parameters andM is a given symmetric positive definite (SPD)
matrix that depends on the particular method.

Let ‖x‖ =
√

xT x denote the 2-norm, and let‖x‖M =
√

xT Mx denote a weighted
Euclidean norm (recall thatM is assumed to be SPD). Also, letM1/2 denote the square root
of M , and letρ(Q) denote the spectral radius of a matrixQ. The following convergence
results can be found, e.g., in [5] and [17, Theorem II.3].

THEOREM 1.1. Letρ = ρ(AT MA) and assume that0 ≤ ǫ ≤ λk ≤ (2− ǫ)/ρ. If ǫ > 0,
or ǫ = 0 and

∑∞
k=0 min(ρλk, 2 − ρλk) = +∞, then the iterates ofALGORITHM SIRT

converge to a solutionx∗ of min ‖Ax − b‖M . If x0 ∈ R(AT ) thenx∗ is the unique solution
of minimal Euclidean norm.

Several well-known fully simultaneous methods can be written in the form of ALGO-
RITHM SIRT for appropriate choices of the matrixM . With M equal to the identity we get
the classical Landweber method [18]. Cimmino’s method [8] is obtained with
M = 1

mdiag(1/‖ai‖2) whereai denotes theith row of A. The CAV method of Censor,
Gordon, and Gordon [7] usesM = diag(1/

∑n
j=1 Nja

2
ij) whereNj is the number of non-

zeroes in thejth column ofA. Moreover, if we augment the iterative step (1.2) with a row
scaling,

xk+1 = xk + λkSAT M(b − Axk), k = 0, 1, 2, . . . ,

with S = diag(m/Nj), then we obtain the simultaneous version of the DROP algorithm
[6]. The original proposals of some SIRT methods use weights, but for simplicity we do not
include weights here.

We now give a short summary of the contents of the paper. In Section 2 we study the
semi-convergence behavior of ALGORITHM SIRT using a constant relaxation parameter and
show that the total error can be decomposed into two parts, the iteration-error and the noise-
error. These two errors can be represented by two functions both depending on the iteration
index, the relaxation parameter, and the singular values ofthe matrix. We derive some results
on the behavior of these two functions. Based on this analysis, in Section3 we propose two
new strategies to choose relaxation parameters in ALGORITHM SIRT. The parameters are
computed so as to control the propagated noise-error. In thelast section we compare our new
strategies with two other strategies, using an example taken from image reconstruction from
projections (tomography).

2. Analysis of semi-convergence.In order to analyze the mechanism of semi-conver-
gence, in this section we take a closer look at the errors in the regularized solution using
ALGORITHM SIRT with aconstantrelaxation parameterλ. Hence we study the iteration
scheme

(2.1) xk+1 = xk + λAT M(b − Axk), k = 0, 1, 2, . . . .

2.1. The error in the kth iterate. For convenience we define the quantities

B = AT MA and c = AT Mb,
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and we write the singular value decomposition (SVD) ofM1/2A as

M1/2A = UΣV T ,

whereΣ = diag(σ1, . . . , σp, 0, . . . , 0) ∈ R
m×n with σ1 ≥ σ2 ≥ · · · ≥ σp > 0, andp is the

rank ofA. Therefore,

B = (M1/2A)T (M1/2A) = V ΣT ΣV T

andρ(B) = σ2
1 . From (2.1) we then obtain

xk = (I − λB)xk−1 + λc = λ

k−1
∑

j=0

(I − λB)jc + (I − λB)kx0.

Using the SVD ofB we can write

k−1
∑

j=0

(I − λB)j = V EkV T ,

where we have introduced the diagonal matrix,

(2.2) Ek = diag

(

1 − (1 − λσ2
1)k

λσ2
1

, . . . ,
1 − (1 − λσ2

p)k

λσ2
p

, 0, . . . , 0

)

.

Without loss of generality we can assumex0 = 0 (for a motivation see [13, p. 155]), and then
we obtain the following expression for thekth iterate,

xk = V (λEk)V T c = V (λEk)ΣT UT M1/2b

=

p
∑

i=1

(

1 − (1 − λσ2
i )k
) uT

i M1/2(b̄ + δb)

σi
vi,(2.3)

whereui andvi are the columns ofU andV . The quantitiesφi = 1 − (1 − λσ2
i )k are

sometimes called thefilter factors; see, e.g., [14, p. 138].
Let us now consider the minimum-norm solutionx̄ to the weighted least squares problem

with the noise-free right-hand side,

x̄ = argminx‖Ax − b̄‖M .

Using the SVD it is straightforward to show that

(2.4) x̄ = V E ΣT UT M1/2b̄, E = diag

(

1

σ2
1

, . . . ,
1

σ2
p

, 0, . . . , 0

)

.

Using (2.3) and (2.4) we now obtain an expression for the error in thekth iterate,

xk − x̄ = V (λEk)ΣT UT M1/2(b̄ + δb) − V EΣT UT M1/2b̄

= V
(

(λEk − E)ΣT UT M1/2b̄ + λEkΣT UT M1/2δb
)

,(2.5)

and from (2.2) we note that

(2.6) (λEk − E)ΣT = −diag

(

(1 − λσ2
1)k

σ1
, . . . ,

(1 − λσ2
p)k

σp
, 0, . . . , 0

)

,
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and

(2.7) λEkΣT = diag

(

1 − (1 − λσ2
1)k

σ1
, . . . ,

1 − (1 − λσ2
p)k

σp
, 0, . . . , 0

)

.

If we define

β̄ = UT M1/2b̄ and δβ = UT M1/2δb,

then we can write the error in the SVD basis as

V T (xk − x̄) = (λEk − E)ΣT β̄ + λEkΣT δβ.

For our analysis below, let us introduce the functions

(2.8) Φk(σ, λ) =
(1 − λσ2)k

σ
and Ψk(σ, λ) =

1 − (1 − λσ2)k

σ
.

Then thejth component of the errorV T (xk − x̄) in the SVD basis is given by

(2.9) vT
j (xk − x̄) = −Φk(σj , λ)β̄j + Ψk(σj , λ)δβj , j = 1, . . . , p.

We see that this component has two contributions, the first term is theiteration error and the
second term is thenoise error(other names are used in the literature; for example, the terms
“approximation error” and “data error” are used in [13, p. 157]). It is the interplay between
these two terms that explains the semi-convergence of the method. Note that forλσ2

j ≪ 1 we
haveΨk(σj , λ) ≈ kλσj showing thatk andλ play the same role for suppressing the noise;
the same observation is made in [2, p. 145].

2.2. Analysis of the noise-error.We first establish some elementary properties of the
functionsΦk(σ, λ) andΨk(σ, λ).

PROPOSITION2.1. Assume that

(2.10) 0 < ǫ ≤ λ ≤ 2/σ2
1 − ǫ and 0 < σ <

1√
λ

.

(a)Letλ andσ be fixed. As functions ofk, Φk(σ, λ) is decreasing and convex andΨk(σ, λ)
is increasing and concave.

(b) For all k ≥ 0, Φk(σ, λ) > 0, Ψk(σ, λ) ≥ 0, Φk(σ, 0) = 1/σ, andΨk(σ, 0) = 0.
(c) Letλ be fixed. For allk ≥ 0, as function ofσ, Φk(σ, λ) is decreasing.

Proof. Let y = y(σ) = 1 − λσ2. Then (2.10) implies that

(2.11) 0 < y ≤ 1 − ǫσ2
p < 1.

To prove (a) note thatΦk(σ, λ) = yk/σ and Ψk(σ, λ) = (1 − yk)/σ. Denote byΦk
k

andΦk
kk the first and second derivative ofΦk(σ, λ) with respect tok, respectively. Then

Φk
k = (ln y/σ)yk and Φk

kk = ((ln y)2/σ)yk, and henceΦk
k < 0 and Φk

kk > 0 when
y ∈ (0, 1). SinceΨk(σ, λ) = 1/σ − Φk(σ, λ) the result forΨk(σ, λ) follows directly.
(b) follows directly from (2.8) and (2.11). To prove (c), let1/

√
λ > σ′′ > σ′ ≥ σp. Then

y(σ′′), y(σ′) ∈ (0, 1), and it follows thatΦk(σ′, λ) > Φk(σ′′, λ).

REMARK 2.2. The upper bound forσ in (2.10) is σ̂ = 1/
√

λ. When0 < ǫ ≤ λ ≤ 1/σ2
1

then clearlyσ̂ ≥ σ1. And when1/σ2
1 < λ < 2/σ2

1 thenσ̂ ≥ 1/
√

2/σ2
1 = σ1/

√
2. Hence

σ̂ ≥ σ1/
√

2 for all relaxation parametersλ satisfying (2.10).
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For small values ofk the noise-error, expressed viaΨk(σ, λ), is negligible and the iter-
ation approaches the exact solution. When the noise-error reaches the same order of magni-
tude as the approximation error, the propagated noise-error is no longer hidden in the iteration
vector, and the total error starts to increase. The typical overall error behavior is illustrated
in Figure4.1 in Section 4, which shows convergence histories for the Cimmino and DROP
methods with a fixedλ. We next investigate the noise-error further.

PROPOSITION2.3. Assume that(2.10) of Proposition2.1holds, and letλ be fixed. For
all k ≥ 2 there exists a pointσ∗

k ∈ (0, 1/
√

λ) such that

σ∗
k = arg max

0<σ<1/
√

λ
Ψk(σ, λ).

Moreover,σ∗
k is unique and given by

(2.12) σ∗
k =

√

1 − ζk

λ
,

whereζk is the unique root in(0, 1) of

(2.13) gk−1(y) = (2k − 1)yk−1 − (yk−2 + · · · + y + 1) = 0.

Proof. Denote byΨ′ the derivative ofΨk with respect toσ. Then

1

λ
Ψ′(σ, λ) = 2k(1 − λσ2)k−1 − 1 − (1 − λσ2)k

λσ2

= 2k(1 − λσ2)k−1 − 1 − (1 − λσ2)k

1 − (1 − λσ2)

= (2k − 1)yk−1 − (yk−2 + · · · + y + 1) = gk−1(y),

with y = 1 − λσ2. The functiongk−1 is continuous withgk−1(0) = −1 andgk−1(1) = k.
Hence there exists at least one pointζk ∈ (0, 1) such thatgk−1(ζk) = 0. For ease of notation,
in the rest of this proof we putg = gk−1, z = ζk, andσ∗ = σ∗

k.

Now z = 1− λσ2 so that the pointσ∗ =
√

1−z
λ is a critical point ofΨk obviously lying

in the open interval(0, 1/
√

λ). We now demonstrate the uniqueness ofz. It is easy to see
that the following equality holds,

g(y)

y − z
= (2k − 1)yk−2 + ((2k − 1)z − 1)yk−3

+((2k − 1)z2 − z − 1)yk−4 + · · ·
+((2k − 1)zk−2 − zk−3 − · · · − z − 1) ≡ Q(y).

Now Q(0) = g(0)/(−z) = 1/z > 0. To complete the proof, we show thatQ(y) increases
for y > 0. Let 0 < t < 1 andα > 0 such thatt + α < 1. Then

Q(t + α) − Q(t) = (2k − 1)
(

(t + α)k−2 − tk−2
)

+ ((2k − 1)z − 1)
(

(t + α)k−3 − tk−3
)

+
(

(2k − 1)z2 − z − 1
) (

(t + α)k−4 − tk−4
)

+ · · ·
+
(

(2k − 1)zk−3 − zk−4 − · · · − z − 1
)

((t + α) − t) .
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Sinceg(z) = (2k − 1)zk−1 − (zk−2 + zk−3 + · · · + z + 1) = 0, we have

zk−2 ((2k − 1)z − 1) = (zk−3 + · · · + z + 1),

zk−3
(

(2k − 1)z2 − z − 1
)

= (zk−4 + · · · + z + 1),

...

z2
(

(2k − 1)zk−3 − zk−4 − · · · − z − 1
)

= z + 1.

It follows thatQ(t + α)−Q(t) > 0. Hencez andσ∗ are unique. Sinceg(y) = (y − z)Q(y)
andQ(y) > 0, we can conclude that

(2.14) g(y) > 0, wheny > z, andg(y) < 0 wheny < z.

Now y < z implies that1 − λσ2 < z or σ >
√

(1 − z)/λ, i.e., Ψ′ = λg(y) < 0 when
σ > σ∗ and vice versa. This shows thatσ∗ is indeed a maximum point ofΨk(σ, λ).

PROPOSITION 2.4. The sequence{ζk}k≥2 defined in Proposition2.3 satisfies
0 < ζk < ζk+1 < 1, andlimk→∞ ζk = ζ = 1.

Proof. By Proposition2.3, 0 < ζk < 1. Using (2.13), we obtain

(2.15) gk(y) = (2k + 1)yk − 2kyk−1 + gk−1(y).

We next showgk(ζk) < 0 which by (2.14) (with g = gk andz = ζk+1 so thatg(z) = 0)
impliesζk < ζk+1. Using (2.13) and the geometric series formula, it follows that

(2.16) gk−1(y) = (2k − 1)yk−1 − 1 − yk−1

1 − y
.

With y = 2k
2k+1 , we then get

gk−1

(

2k

2k + 1

)

= (2k − 1)

(

2k

2k + 1

)k−1

−
1 −

(

2k
2k+1

)k−1

1 − 2k
2k+1

=
2(2k)k − (2k + 1)k

(2k + 1)k−1
,

which is positive if2(2k)k − (2k + 1)k > 0 or, equivalently, when21/k > 1 + 1/(2k). One

can easily show that2x − x
2 − 1 > 0 for x > 0. So forx = 1/k follows gk−1

(

2k
2k+1

)

> 0.

Thus by (2.14)

(2.17) ζk <
2k

2k + 1
.

It follows, also using (2.15), that

gk(ζk) = (2k + 1)(ζk)k − 2k(ζk)k−1 + gk−1(ζk)

= (ζk)k−1 ((2k + 1)ζk − 2k) < 0.

Hencelimk→∞ ζk = ζ ≤ 1. We next show thatζ = 1. Using (2.16) with y = ζk, and putting
ζk = 1 − zk (so that0 < zk < 1), we get

gk−1(1 − zk) = 0 = (2k − 1)(1 − zk)k−1 − 1 − (1 − zk)k−1

zk
.
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FIG. 2.1. The functionΨk(σ, λ) as a function ofσ, for λ = 100 andk = 10, 30, 90, and270. The dashed
line shows1/σ.

It follows that(1−zk)
k−1((2k−1)zk+1) = 1 and so(1−zk)

−(k−1) = (2k−1)zk+1 < 2k.
Therefore0 < − ln(1 − zk) = − ln ζk ≤ ln (2k)/(k − 1) → 0 ask → ∞. It follows that
ζ = lim ζk = 1.

Figure2.1 illustrates the behavior ofΨk(σ, λ) as a function ofσ, for a fixedλ. We see
thatσ∗

k (the argument to the maximum) decreases ask increases (which follows from (2.12)
and Proposition2.4). This property implies that the amount of noise inxk (coming from
δb) increases with the number of iterationsk, because the contribution fromδb becomes less
damped. Furthermore, it is seen that the maximal valueΨk(σ∗

k, λ) increases withk, which
further increases the amount of noise inxk. We now prove this last property.

PROPOSITION2.5. The valueΨk(σ∗
k, λ) is an increasing function ofk.

Proof. By Proposition2.1(a), we have

Ψk+1(σ, λ) ≥ Ψk(σ, λ), 0 < σ ≤ σ̂.

(This result assumesσ ≥ σp, but it also holds forσ > 0, as is easily seen.) Hence,

Ψk+1(σ∗
k+1, λ) = max

0<σ≤σ̂
Ψk+1(σ, λ) ≥ max

0<σ≤σ̂
Ψk(σ, λ) = Ψk(σ∗

k, λ).

To summarize: using the SVD ofM1/2A we have, for constantλ, derived the expression
(2.9) for the error in the SVD basis, in thekth iteration. The error depends on two functions
Φ andΨ, whereΦ controls the iteration error andΨ controls the noise error. Both functions
depend onk, σ, andλ. In Proposition2.3we analyzed the behavior ofΨ as a function ofσ.
Based on this semi-convergence analysis we propose two new relaxation parameter strategies
in the next section.

3. Choice of relaxation parameters.We first review two relaxation parameter strate-
gies proposed in the literature. The first is the optimal choice strategy: this means finding that
constant value ofλ which gives rise to the fastest convergence to the smallest relative error in
the solution. The value ofλ is found by searching over the interval(0, 2/σ2

1). This strategy
requires knowledge of the exact solution, so for real data one would first need to train the
algorithm using simulated data; see [19].
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TABLE 3.1
The unique rootζk ∈ (0, 1) of the equationgk−1(y) = 0, Eq.(2.13), as function of the iteration indexk.

k ζk k ζk k ζk k ζk

2 0.3333 9 0.8574 16 0.9205 23 0.9449
3 0.5583 10 0.8719 17 0.9252 24 0.9472
4 0.6719 11 0.8837 18 0.9294 25 0.9493
5 0.7394 12 0.8936 19 0.9332 26 0.9513
6 0.7840 13 0.9019 20 0.9366 27 0.9531
7 0.8156 14 0.9090 21 0.9396 28 0.9548
8 0.8392 15 0.9151 22 0.9424 29 0.9564

Another strategy is based on pickingλk such that the error‖x∗ − xk‖ is minimized in
each iteration, wherex∗ is a solution toAx = b (which we now assume to be consistent):

λk =
(rk)T M rk

‖AT M rk‖2
2

, rk = b − Axk.

This strategy is due to Dos Santos [12] (based on work by De Pierro [11]), where the conver-
gence analysis is done for Cimmino’s method. Similar strategies have also been proposed by
Appleby and Smolarski [1] and Dax [10].

3.1. First strategy. We first propose the following rule for picking relaxation parame-
ters in ALGORITHM SIRT:

(3.1) λk =







√
2

σ2

1

for k = 0, 1

2
σ2

1

(1 − ζk) for k ≥ 2.

We will refer to this choice asΨ1-based relaxation. We note that the rootsζk of gk−1(y) = 0,
for k ≥ 2, can easily be precalculated; see Table3.1. The following theorem ensures that the
iterates computed by this strategy converge to the weightedleast squares solution when the
iterations are carried out beyond the semi-convergence phase.

PROPOSITION3.1. The iterates produced using theΨ1-based relaxation strategy(3.1)
converge toward a solution ofminx ‖Ax − b‖M .

Proof. Proposition2.4gives, fork ≥ 2,

0 =
2

σ2
1

(1 − ζ) ≤ λk =
2

σ2
1

(1 − ζk) ≤ 2

σ2
1

(1 − ζ2) <
2

σ2
1

.

It follows that min(σ2
1λk, 2 − σ2

1λk) = σ2
1λk for k sufficiently large. Next we observe,

using (2.17), that
∑

k≥2 λk = 2
σ2

1

∑

k≥2(1 − ζk) > 2
σ2

1

∑

k≥2
1

2k+1 = ∞. Convergence then

follows using Theorem1.1.
We will now briefly motivate the choice (3.1). Assume first that the relaxation parameter

is kept fixed during the firstk iterations,

λj = λ, j = 0, 1, 2, . . . , k − 1,

so that the results of Section2 apply to the firstk steps. Also, letxk andx̄k denote the iterates
of ALGORITHM SIRT using noisy and noise-free data, respectively. Then the error in thekth
iterate clearly satisfies

‖xk − x̄‖ ≤ ‖x̄k − x̄‖ + ‖xk − x̄k‖.
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FIG. 3.1.The ratioλj+1/λj as a function ofj for the two parameter-choice strategies.

Hence the error decomposes into two components, the iteration-error part‖x̄k − x̄‖ and the
noise-error part‖xk − x̄k‖. Using Eqs. (2.3), (2.4), (2.6), and (2.7) we obtain

x̄k − x̄ = V (λEk − E)ΣT UT M1/2b̄, xk − x̄k = V λEkΣT UT M1/2δb.

Hence the norm of the noise-error is bounded by

(3.2) ‖xk − x̄k‖ ≤ max
1≤i≤p

Ψk(σi, λ) ‖M1/2δb‖.

To analyze (3.2) further, assume first thatλ ∈ (0, 1/σ2
1]. Then by Remark2.2, we have

σ̂ ≥ σ1, and it follows (withk ≥ 2) that

(3.3) max
1≤i≤p

Ψk(σi, λ) ≤ max
0≤σ≤σ1

Ψk(σ, λ) ≤ max
0≤σ≤σ̂

Ψk(σ, λ) = Ψk(σ∗
k, λ).

It follows using (2.8) and (2.12) that

(3.4) ‖xk − x̄k‖ ≤ Ψk(σ∗
k, λ)‖M1/2δb‖ =

√
λ

1 − ζk
k√

1 − ζk

‖M1/2δb‖.

Now consider thekth iteration step, and pickλk by the rule (3.1). Assuming that the relax-
ation parameters are such thatλj+1/λj ≈ 1, we can expect that Eq. (3.4) holds approxima-
tively – the plot of the ratioλj+1/λj in Figure3.1 indicates the validity of this assumption.
Therefore by substituting (3.1) into (3.4) we get

(3.5) ‖xk − x̄k‖ <∼
√

2

σ1
(1 − ζk

k ) ‖M1/2δb‖, k ≥ 2.

This implies that the rule (3.1) provides an upper bound for the noise-part of the error. This
is our heuristic motivation for using the relaxation rule: to monitor and control the noise part
of the error.

We also need to consider the caseλ ∈ (1/σ2
1 , 2/σ2

1), and it follows by Remark2.2 that
σ̂ = 1/

√
λ ∈ (σ1/

√
2, σ1). This means that (3.3) only holds approximatively. However,

using our proposed relaxation rule, we have thatλk ≤ 1/σ2
1 for k > 2; see Table3.1.

3.2. Second strategy.We next consider an alternative choice of relaxation parameters,

(3.6) λk =







√
2

σ2

1

for k = 0, 1

2
σ2

1

1−ζk

(1−ζk

k
)2

for k ≥ 2.

The reason we also introduce (3.6) is that in our numerical tests we found that it usually gives
faster convergence than (3.1). We will refer to this choice asΨ2-based relaxation. Reasoning
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as above (substituting (3.6) into (3.4)) we get the following bound for the noise-error using
Ψ2-based relaxation,

(3.7) ‖xk − x̄k‖ ≤
√

2

σ1
‖M1/2δb‖, k ≥ 2.

Figure3.1also shows the ratioλj+1/λj for this strategy.
We stress again that the two bounds (3.5) and (3.7) for the noise error are derived under

the assumption of a fixed noise level. Further we assumed thatλj is fixed for
j = 0, 1, . . . , k − 1 and thatλk is given by (3.1) or (3.6). We leave it as an open prob-
lem to derive rigorous upper bounds for the noise error without these assumptions. In this
context we also mention the bound‖xk − x̄k‖ ≤

√
k ‖M1/2δb‖ from [13, Lemma 6.2] when

using a constant relaxation parameter in the algorithm.
Again we need to show convergence to the weighted least squares solution when iterating

beyond the semi-convergence phase. To do this we shall use the following result.
LEMMA 3.2.

2t >
2 − t − t2

2 − 2t − t2
, 0 < t ≤ 1/4.

Proof. Let

h(t) = 2t(2 − 2t − t2) − (2 − t − t2).

We need to show thath(t) > 0 for 0 < t ≤ 1
4 . The third derivative ofh satisfies

h′′′(t) = −2t log(2) p(t) < 0 for 0 < t ≤ 1

4
,

wherep(t) = 6 − 2 log2(2) + log(64) + t
(

2 log2(2) + log(64)
)

+ t2 log2(2) is a positive
polynomial for 0 < t ≤ 1/4. It follows that h′′(t) decreases as a function oft. Using
h′′(0) = 2 log(2)(−2 + log(2)) < 0, we obtain

h′′(t) < h′′(0) < 0,

which means the functionh(t) is concave for0 < t ≤ 1/4. Therefore,h(t) > 0 for
0 < t ≤ 1/4 sinceh(0) = 0 andh(1/4) = (23 4

√
2 − 27)/16 > 0.

PROPOSITION 3.3. The iterates produced usingΨ2-based relaxation(3.6) converge
toward a solution ofminx ‖Ax − b‖M .

Proof. Forz ∈ (0, 1), let

γk(z) =
1 − z

(1 − zk)2
.

Then

(3.8) γk+1(z) =
1 − z

(1 − zk+1)2
<

1 − z

(1 − zk)2
= γk(z).

We will next show that

(3.9) γk(ζk+1) < γk(ζk).
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Usinggk−1(ζk) = 0 and1− ζk
k = (1− ζk)(1 + ζk + . . .+ ζk−1

k ), it can easily be shown that
γk(ζk) = (2k(1 − ζk

k )ζk−1
k )−1. Then

dγk

dζk
=

(2k − 1)ζk
k + (1 − k)

2k(1 − ζk
k )2ζk

k

< 0,

provided that

(3.10) ζk <

(

k − 1

2k − 1

)1/k

≡ zk.

The inequality (3.10) holds fork = 2, 3 sinceζ2 = 1/3 andζ3 = 1+
√

21
10 . Fork ≥ 4 we will

show that

(3.11) gk(zk) > 0.

This implies (3.10) since, by (2.14) and Proposition2.4,

zk > ζk+1 > ζk.

Now (3.11) is equivalent to

(2k − 1)(2k2 − 2k − 1)k > (k − 1)(2k2 − k − 1)k.

Since−(2k2 − 2k − 1)k > −(2k2 − k − 1)k, it suffices to show that

21/k >
2k2 − k − 1

2k2 − 2k − 1
.

This inequality follows from Lemma3.2by puttingt = 1/k. Hence (3.9) holds. Using (3.8)
and (3.9),

0 < γk+1(ζk+1) < γk(ζk+1) < γk(ζk) < γ2(ζ2) < 1.

It follows that

lim
k→∞

γk(ζk) = γ ≥ 0.

Therefore,

0 ≤ 2

σ2
1

γ ≤ λk =
2

σ2
1

γk(ζk) ≤ 2

σ2
1

γ2(ζ2) <
2

σ2
1

.

If γ > 0 convergence follows by invoking the first condition in Theorem1.1. Next assume
γ = 0, and note that1/(1 − ζk

k )2 > 1, since ζk < 1. It also follows that
min(σ2

1λk, 2 − σ2
1λk) = σ2

1λk for k large enough. Therefore, using (2.17), we have
∑

k≥2 λk > 2/σ2
1

∑

k≥2 1/(2k + 1) = ∞. Hence, convergence follows by the second
condition in Theorem1.1. (The same arguments could also have been used in the proof of
Proposition3.1, thus avoiding the need to show thatζ = 1).
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3.3. Modified strategies.Finally we will explore the possibility to accelerate the two
new strategies, via the choicēλk = τk λk for k ≥ 2, whereτk a parameter to be chosen.
Consider first theΨ1 strategy, for which we have

(3.12) λ̄k = τk
2

σ2
1

(1 − ζk), k ≥ 2.

We will assume thatτk satisfies

(3.13) 0 < ǫ1 ≤ τk < (1 − ζk)−1, k ≥ 2.

It then follows that

0 ≤ ǫ1
2

σ2
1

(1 − ζk) ≤ λ̄k <
2

σ2
1

.

Hence using that
∑

k≥2(1 − ζk) = ∞ (see proof of Proposition 3.1) we may invoke Theo-
rem1.1to conclude convergence of the relaxation strategy (3.12) with (3.13). Note that with
a constant valueτk = τ we must pickτ < (1 − ζ2)

−1 ≈ 1.5. If we allow τk to depend on
k then Table3.1 immediately leads to the following upper bounds:τ2 < 1.5, τ3 < 2.264,
τ4 < 3.048, andτ5 < 3.84.

For theΨ2 strategy we take

λ̄k = τk
2

σ2
1

1 − ζk

(1 − ζk
k )2

, k ≥ 2,

and with

0 < ǫ2 ≤ τk < (1 − ζk
k )2/(1 − ζk), k ≥ 2,

we maintain convergence (following the same reasoning as above). Using Table3.1we obtain
the following upper bounds:τ2 < 1.185, τ3 < 1.545, τ4 < 1.932 andτ5 < 2.33. If we want
to use a constant value we must takeτk = τ < 1.185. Our numerical results indicate that
pickingτ > 1 accelerates the convergence.

4. Computational results. We report some numerical tests with an example taken from
the field of tomographic image reconstruction from projections (see [16] for a recent and illus-
trative treatment), using the SNARK93 software package [4] and the standard head phantom
from Herman [15]. The phantom is discretized into63×63 pixels, and we use 16 projections
with 99 rays per projection. The resulting projection matrix A has, therefore, the dimensions
1376×3969 (so that the system of equations is highly under-determined). In addition toA, the
software produces an exact right-hand sideb̄ and an exact solution̄x. By using SNARK93’s
right-hand sidēb, which is not generated as the productAx̄, we avoid committing an inverse
crime where the exact same model is used in the forward and reconstruction models.

We add independent Gaussian noise of mean 0 and various standard deviations to gener-
ate three different noise levelsη = ‖δb‖/‖b̄‖ = 0.01, 0.05, and 0.08. Our figures show the
relative errors in the reconstructions, defined as

relative error= ‖x̄ − xk‖/‖x̄‖,

as functions of the iteration indexk.
Figure4.1 shows relative error histories for the fixed-λ Cimmino and DROP methods,

taking three different choices ofλ and two different noise levelsη for each method. Here
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FIG. 4.1. Fixed-λ Cimmino and DROP iterations, using five different choices ofλ and two different noise
levelsη for each method. The choicesλ = 120 andλ = 1.9 are optimal for Cimmino and DROP, respectively, and
the circle shows the minimum.

the upper bound2/σ2
1 for the relaxation parameter equals 150.6 for Cimmino and 2.38 for

DROP. The choicesλ = 120 (for Cimmino) andλ = 1.9 (for DROP) are optimal, in the
sense that they give the fastest convergence to the minimal error.

We clearly see the semi-convergence of the iterations studied in Section2 and that, con-
sequently, fewer iterations are needed to reach the minimumerror when the noise level in-
creases. We make two important observations: the number of iterations to reach the minimum
error depends strongly on the choice ofλ, and the minimum itself is practically independent
of λ (except for the largestλ). This illustrates the necessity of using either a good fixed
relaxation parameter, which requires an extensive study ofmodel problems to find a close-to-
optimal value, or a parameter-choice method that choosesλk such that fast semi-convergence
is achieved automatically.

Figure4.2shows the relative error histories for theΨ1, Ψ2, and optimal strategies using
the Cimmino and DROP methods. For Cimmino’s method we also include the strategy pro-
posed by Dos Santos mentioned in the previous section. We observe a noise-damping effect
using theΨ1 andΨ2 strategies. The zigzagging behavior of the Dos Santos strategy was also
noted by Combette [9, pp. 479 and 504]; the reason seems to be that the strategy assumes
consistent data.

We see that for low-noise data theΨ1 andΨ2 strategies are less efficient than the Dos
Santos and optimal strategies. However, for larger noise levels (where the Dos Santos strategy
leads to irregular convergence) our new methods produce an initial convergence rate, during
the semi-convergent phase, which is close to that of the optimal strategy. Note that the relative
error stays almost constant after the minimum has been obtained, showing that theΨ1 and
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FIG. 4.2. Relative error histories for different relaxation strategies in the Cimmino and DROP methods, for
three different noise levelsη. The circle and the dot show the minimum for the optimal strategy and the Dos Santos
strategy, respectively.

Ψ2 strategies are indeed able to dampen the influence of the noise-error, as desired. The very
flat minimum reduces the sensitivity of the solution to the particular stopping criterion used.

Figure4.3shows the relative error histories using Cimmino’s method with the modified
Ψ1 andΨ2 strategies from Section3.3, for four different choices of a constantτ . (Note that
τ = 1 correspond to the originalΨ1 andΨ2 strategies.) As mentioned in Section3.3, in the
modifiedΨ2 strategy the theoretical upper limit forτ is 1.18, but Figure4.3shows it pays to
allow a somewhat larger value and we foundτ2 = 1.5 is a reasonable choice for the modified
Ψ2 strategy. (Note thatτ = 2 leads to instability during the first iterations.) Similarly, for the
Ψ1-strategy (where the upper bound forτ is 1.5), we found thatτ = 2 is a reasonable choice.
Of course, one could here also consider other options, such as allowingτ to depend on the
iteration index, or introducing a constant factorτ after more than two iterations. But since
we are looking for a simple and self-contained method we havenot considered these choices.

Finally in Figure4.4, we compare the two best modified strategies together with the
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FIG. 4.3. Relative error histories using the modifiedΨ1 andΨ2 relaxation strategies in Cimmino’s method,
for three different noise levelsη.
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FIG. 4.4. Comparison of the error histories for the modifiedΨ1 andΨ2 relaxation strategies in Cimmino’s
method with those of the optimal strategy and the Dos Santos strategy, for three different noise levelsη.

optimal strategy and the Dos Santos strategy. We see that forthe larger noise levels, the
modifiedΨ1 andΨ2 strategies give an initial convergence which is almost identical to that
of the other two methods, but with much better damping of the noise propagation: once we
reach the minimum in the error histories, then the error onlyincreases slowly. Also, we avoid
the erratic behavior of the Dos Santos strategy.
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5. Conclusion. Using theoretical results for the semi-convergence of the SIRT algo-
rithm with a fixed relaxation parameter, we derive two new strategies for choosing the param-
eter adaptively in each step in order to control the propagated noise component of the error.
We prove that with these strategies, the SIRT algorithm willstill converge in the noise-free
case. Our numerical experiments show that if the noise is nottoo small, then the initial con-
vergence of the SIRT algorithm with our strategies is competitive with the Dos Santos strategy
(which leads to erratic convergence) as well as the optimal-choice strategy (which depends
on a careful “training” of the parameter). The experiments also show that our strategies carry
over to the DROP algorithm which is a weighted SIRT method.
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eares, Thesis (tese de Doutoramento), Instituto de Matemática da UFRJ, Cidade Universitária, Rio de
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