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TWO-LEVEL NONLINEAR ELIMINATION BASED PRECONDITIONERS FO R
INEXACT NEWTON METHODS WITH APPLICATION IN SHOCKED DUCT

FLOW CALCULATION ∗

FENG-NAN HWANG†, HSIN-LUN LIN†, AND XIAO-CHUAN CAI ‡

Abstract. The class of Newton methods is popular for solving large sparse nonlinear algebraic systems of
equations arising from the discretization of partial differential equations. The method offers superlinear or quadratic
convergence when the solution is sufficiently smooth and theinitial guess is close to the desired solution. However,
in many practical problems, the solution may exhibit some non-smoothness in part of the computational domain,
due to, for example, the presence of a shock wave. In this situation, the convergence rate of Newton-type methods
deteriorates considerably. In this paper, we introduce a two-level nonlinear elimination algorithm, in which we first
identify a subset of equations that prevents Newton from having the fast convergence and then iteratively eliminate
them from the global nonlinear system of equations. We show that such implicit nonlinear elimination restores the
fast convergence for problems with local non-smoothness. As an example, we study a compressible transonic flow
in a shocked duct.
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1. Introduction. In [13], an interesting nonlinear elimination algorithm (NE) wasintro-
duced for solving large sparse nonlinear systems of equations whose solution is badly scaled
in part of the computational domain. The key idea of NE is to implicitly remove these com-
ponents and obtain a better balanced system for which the classical inexact Newton method
can be applied. The technique works extremely well for some relatively simple cases, and
several recent attempts motivated by this technique have been made in order to make inexact
Newton methods work for other nonlinear systems [3, 4, 5, 6, 7, 10, 11, 12]. In NE, an impor-
tant step is to iteratively eliminate the identified bad component using a subdomain Newton
method, which by itself may fail or take too many iterations to converge. In [13] it was sug-
gested that the nonlinear elimination algorithm can be usedin a nested fashion, i.e., NE can
be used inside the outer NE when the regular inexact Newton fails to converge in the implicit
removing step for the subnonlinear system. Even though the idea of nested NE is simple, it
has never been studied and to actually realize it is quite difficult. The aim of this paper is to
formulate a two-level NE and embed it into the classical inexact Newton methods, which can
be interpreted as a nonlinear Schur complement algorithm.

We briefly recall the classical inexact Newton algorithm with backtracking (INB) [8, 9],
which is used as the basic building block of our algorithms for the global and some subnon-
linear systems. Consider a given nonlinear functionF (x): R

n → R
n. We are interested in

finding a vectorx∗ ∈ R
n, such that

F (x∗) = 0,(1.1)

starting from an initial guessx(0) ∈ R
n. HereF = [F1, . . . , Fn]T , Fi = Fi(x1, . . . , xn), and
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x = [x1, . . . , xn]T .
ALGORITHM 1.1 (Inexact Newton with Backtracking (INB)).

Givenx(0)

EvaluateF (x(0)) and‖F (x(0))‖
Setk = 0
While(‖F (x(k))‖ > ε1‖F (x(0)‖) and(‖F (x(k))‖ > ε2) do

Compute the Jacobian matrixF ′(x(k))
Inexactly solve the Jacobian systemF ′(x(k))s(k) = −F (x(k))
Updatex(k+1) = x(k) + λ(k)s(k), whereλ(k) ∈ (0, 1] is determined to
satisfy

‖F (x(k) + λ(k)s(k))‖ ≤ (1 − αλ(k))‖F (x(k))‖
Setk = k + 1

End While
Hereε1 andε2 are the relative and absolute stopping conditions. For the applications

that we are interested in,n is usually large, and in this case, the algorithm has three expensive
operations: the evaluation ofF (·), the construction of the Jacobian matrix, and the solution
of the Jacobian system. It is important to note that all threeoperations are global in the sense
that all components ofx andF are involved in all three operations. However, as observed
in many numerical experiments, the trigger of these expensive “all components involved”
operations is often local. In other words, only a small number of F1, F2, . . . , Fn are large and
these “bad components” are not random, they are often associated with certain interesting
physics of the solution of the PDE. For example, in the shocked duct flow problem that we
are looking at, all these “bad components” are associated with the shock wave located in a
small region inside the computational domain. In other applications, they may be associated
with a boundary layer or other local singularities [13, 14, 16]. NE is a subproblem solver
inside a global INB that is designed to smooth out these “bad components” so that the total
number of global INB is reduced.

The rest of the paper is organized as follows. In Section2, we formulate the multilevel
NE algorithm. We describe a shocked duct flow problem in Section3. Some numerical results
and concluding remarks are given in Sections4 and5, respectively.

2. Multilevel nonlinear elimination algorithms. We begin with the one-level nonlin-
ear elimination algorithm. The first step is to split the residual components,F1, F2, ..., Fn,
into two sets consisting of the “bad components” to be eliminated and the good components
to be solved by the classical inexact Newton algorithm. LetI = {1, 2, . . . , n} be an index
set, i.e. one integer for each unknownxi and each residual functionFi. Assume thatSb

1 (“b”
for bad) is a subset ofI with m components andSg

1 (“g” for good) with (n−m) components
is its complement; that is,

I = Sb
1 ∪ Sg

1 .

Usuallym ≪ n. For this partition, we define two subspaces,

V b
1 = {v|v = [v1, ..., vn]T ∈ R

n, vk = 0 if k /∈ Sb
1}

and

V g
1 = {v|v = [v1, ..., vn]T ∈ R

n, vk = 0 if k /∈ Sg
1},

respectively, and the corresponding restriction operators, Rb
1 andRg

1, which transfers data
from R

n to V b
1 andV g

1 , respectively. Here, we use the subscript 1 to indicate the partition,
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the subspaces, and the restriction/interpolation operators at the first level, which is used to
distinguish the corresponding ones defined later at the second level. Using the restriction
operatorRb

1, we define the sub-nonlinear functionFSb
1

: R
n → V b

1 as

FSb
1

(x) = Rb
1(F (x)).

For any givenx ∈ R
n, T b(x): R

n → V b
1 is defined as the solution of the following subspace

nonlinear system,

FSb
1

(Rg
1x + T b(x)) = 0.(2.1)

Using the subspace mapping functions, we introduce a new global nonlinear function,

y = G(x) ≡ Rg
1x + T b(x).

Note that for a givenx, the evaluation ofG(x) is not straightforward. A nonlinear system
corresponding to the subspaceV b

1 has to be solved using either the classical INB algorithm
restricted to the subspaceV b

1 or a NE algorithm in the subspaceV b
1 . Let us summarize the

above procedure as the following algorithm.
ALGORITHM 2.1 (Evaluatey = G(x)).

If flag=0 theny = x else
If flag=1: one-level nonlinear elimination:
Solve (2.1) by INB usingRb

1x as an initial guess.
If flag=2: two-level nonlinear elimination:
Solve (2.1) by one-level NE usingRb

1x as an initial guess.
endif
Computey = Rg

1x + T b(x)
Hereflag is an input parameter from somewhere else in the algorithm toindicate if a

nonlinear elimination is needed and if one-level or two-level NE is to be called. Two-level
NE becomes necessary when the local problem (2.1) is still too difficult to solve by INB, and
in this case, another partition of the index setSb

1 into two subsets is needed, i.e.,Sb
1 = Sb

2∪Sg
2 .

At the second level for the subsetSb
1 two subspaces ofRn, V b

2 andV g
2 , the corresponding

restriction operators,Rb
2 andRg

2 , as well as sub-nonlinear functionFSb
2

can all be defined in
a manner similar to the ones at the first level.

Now NE in conjunction with INB can be realized with the following algorithm.
ALGORITHM 2.2 (INB-NE).

Givenx(0). Setk = 0 and flag= 1
Computey(0) = G(x(0)).
EvaluateF (y(0)) and‖F (y(0))‖
While(‖F (y(k))‖ > ε1‖F (y(0)‖) and(‖F (y(k))‖ > ε2) do

ComputeF ′(y(k))
Inexactly solveF ′(y(k))s(k) = −F (y(k))
Updatex(k+1) = x(k) + λ(k)s(k), whereλ(k) is determined to satisfy

‖F (G(x(k) + λ(k)s(k)))‖ ≤ (1 − αλ(k))‖F (y(k))‖
Computey(k+1) = G(x(k+1))
EvaluateF (y(k+1)) and‖F (y(k+1))‖
If ‖F (y(k))‖ < ε3‖F (y(0))‖ then flag=0
Setk = k + 1

End While
INB-NE can be interpreted as follows. Find the solutiony∗ ∈ R

n of (1.1) by solving a
right nonlinearly preconditioned system,F (G(x∗)) = 0. Oncex∗ is found, the solution of
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the original system can be obtained asy∗ = G(x∗). It was shown theoretically in [13] that
under certain assumptions, INB-NE possesses local quadratic convergence provided that the
subspace nonlinear problems (2.1) are solved exactly. Note that ifF (x) is linear, i.e.,

F (x) ≡

[
B E
F C

] [
Rb

1x
Rg

1x

]
−

[
f
g

]
=

[
0
0

]
,

then

y =

[
T b(x)
Rg

1x

]
=

[
−B−1E(Rg

1x) + B−1f
Rg

1x

]
.

As a consequence, solvingF (G(x)) = 0 is mathematically equivalent to decoupling it into
two steps: first, solve the reduced system,U(Rg

1x) = g−FB−1f , whereU = C −FB−1E
is the Schur complement matrix, and then computeRb

1x = −B−1E(Rg
1x) + B−1f . How-

ever, rather than solving the Schur complement system, in practice, it is desirable and often
more efficient to solve the full system, since the Schur complement is denser and good pre-
conditioners may not be available.

Note that in our approach the subproblem corresponding to the bad components is simply
a restriction of the global nonlinear system to the subdomain, not a Schur complement of the
global system with respect to the subdomain consisting of the bad components. The Schur
complement approach is considerably more expensive and is not studied in this paper.

Since the extra function evaluations ofG(x) are needed, NE is intended for the cases in
which INB fails to converge or experiences unacceptably slow convergence. As suggested
by [13, bottom of p. 555], when the intermediate solution is close to the exact solution, NE
is switched back INB by lettingG(x) = x. The switching condition is controlled byε3 in
Algorithm 2.2.

3. A shocked duct flow problem. Compressible flows passing through a diverge-con-
verge duct are governed by the compressible Navier-Stokes equations [1, 2]. Instead of solv-
ing Navier-Stokes equations, we consider a simpler model problem, a quasi-one-dimensional
full potential problem [6, 16] defined on the interval,0 ≤ x ≤ 2, as

{
(A(x)ρ(φx)φx)x = 0,
φ(0) = 0 and φ(L) = φR,

(3.1)

whereA(x) is the area of the cross-section of the duct atx,

A(x) = 0.4 + 0.6(x − 1)2,

and the density function is described as

ρ(u) = (c2)
1/(γ−1)

=

(
1 +

1

2
(γ − 1)(1 − u2)

) 1

γ−1

.(3.2)

Hereγ = 1.4 is the specific heat for air,u = φx is the flow velocity, andc is the speed of
sound. See the left figure of Fig.3.1for the geometric configuration of the shocked duct flow
problem. Although this problem looks quite simple, it is still considered as a difficult test
problem for the convergence of inexact Newton methods because the solution has a strong
shock as the value ofφR becomes larger than1.15 in the domain; see Fig.3.1 (right). The
flow is supersonic at the points in the interval (0,2), where the Mach number,M = |u|/c, is
greater than 1.



ETNA
Kent State University 

http://etna.math.kent.edu

TWO-LEVEL NONLINEAR ELIMINATION BASED PRECONDITIONERS 243

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
−1

−0.5

0

0.5

1

x

R
a
d
i
u
s

M<1
M>1

Flow direction

Throat

M=1

Shock

M<1

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2.0
0

0.2

0.4

0.6

0.8

1

1.2

1.4

 

 

φ
R
=0.5

φ
R
=1.0

φ
R
=1.15

FIG. 3.1. Left: transonic flow in a converge-diverge duct; Right: Machnumber curves for different right
boundary conditionφR, grid sizeh = 1/256.

To approximate (3.1) by a standard finite difference method, we begin by introducing
a uniform grid,0 = x0 < x1 < x2 < . . . < xn = 2, with the grid sizeh = 2/n. Let
Φ = [φh

1 , φh
2 , · · · , φh

n−1]
T be the numerical approximations at these interior grid points. We

define points,xi−1/2 andxi+1/2, as the midpoints of subintervals[xi−1, xi] and[xi, xi+1],
respectively. Consider the subinterval[xi−1/2, xi+1/2]. We approximate(Aρ(φx)φx)x at the
pointxi using a second-order centered finite difference method, i.e.,

Ai+ 1

2

ρi+ 1

2

φh
i+1 − φh

i

h
− Ai− 1

2

ρi− 1

2

φh
i − φh

i−1

h
h

= 0.

For the leftmost grid point, we haveA 3

2

ρ 3

2

(φh
2−φh

1 )−A 1

2

ρ 1

2

φh
1 = 0 and for the rightmost grid

point we have An− 1

2

ρn+ 1

2

(K − φh
n−1) − An− 3

2

ρn− 3

2

(φh
n−1 − φh

n−2). Here
Ai±1/2 = A((xi±1 ± xi)/2) andρi±1/2 = ρ((φx)i±1/2).

For purely subsonic flows, using (3.2) for calculating the flow density is sufficient. How-
ever, for transonic flows, this formulation needs to be modified in order to capture the shock.
By applying a first-order density upwinding scheme as suggested by Young et al. [14, 16], a
modified flow density value at the pointxi+1/2 is expressed as

ρ̃i+ 1

2

= ρi+ 1

2

− µ̃i+ 1

2

(ρi+ 1

2

− ρi− 1

2

),

where the switching parameter̃µi+ 1

2

is defined as̃µi+ 1

2

= max{µi− 1

2

, µi+ 1

2

, µi+ 3

2

} with

µi+1/2 = max{0, 1−M2
c /M2

i+1/2}. HereMc is called the cutoff Mach number andMi+1/2

is the numerical Mach number atxi+1/2 given by

Mi+1/2 ≈ (ux)i+1/2/ρ
1

γ−1

i+1/2 ≈

(
φh

i+1 − φh
i

h

)
/ρ

(
φh

i+1 − φh
i

h

) 1

γ−1

.

In summary, the discrete shocked duct flow problem can be written as a large sparse
nonlinear system of algebraic equations,

F (Φ) = 0,(3.3)
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whereF (Φ) = [F1(Φ), F2(Φ), · · · , Fn(Φ)]T with Fi defined as

Fi(Φ) =





(A 3

2

ρ̃ 3

2

)φh
2 − (A 3

2

ρ̃ 3

2

+ A 1

2

ρ̃ 1

2

)φh
1

(Ai+ 1

2

ρ̃i+ 1

2

)φh
i+1 − (Ai+ 1

2

ρ̃i+ 1

2

+ Ai− 1

2

ρ̃i− 1

2

)φh
i + (Ai− 1

2

ρ̃i− 1

2

)φh
i−1

for any 2 ≤ i ≤ n − 2
(Ai+ 1

2

ρ̃i+ 1

2

)K − (An− 1

2

ρ̃n− 1

2

+ An− 3

2

ρ̃n− 3

2

)φh
n−1 + (An− 3

2

ρ̃n− 3

2

)φh
n−2.

In our implementation, the Jacobian matrix ofF (Φ) is constructed approximately by
using the forward finite differences. Note that for the case of purely subsonic flows, the
formulation (3.3) leads to a symmetric, weakly diagonally dominant, tridiagonal Jacobian
matrix, while for the case of transonic flows the associate Jacobian is nonsymmetric due
to the derivative of the upwinding density coefficientρ̃i± 1

2

corresponding to the supersonic
region.

4. Numerical experiments and observations.In this section, we present some numer-
ical results for solving the shocked duct flow problem (3.3) using the classical inexact Newton
method and the new algorithm. The stopping condition for Newton is

‖F (x(k))‖ ≤ max{10−8‖F (x(0))‖, 10−10},

and a linear initial guess that interpolates the boundary conditions is used for Newton for all
test cases. In our implementation of the classical inexact Newton method with backtracking,
as described in Algorithm1.1, a right preconditioned GMRES [15] is used for solving the
global Jacobian system with zero initial guess. The stopping condition for GMRES is

‖F (x(k)) + (F ′(x(k))M−1
k )(Mks(k))‖ ≤ max{η‖F (x(k))‖, 10−10}.

Here η = 10−6 and M−1
k is a block Jacobi preconditioner constructed using the matrix

F ′(x(k)). In the tests, we partition the computational domain into 15non-overlapping sub-
domains and thereforeM−1

k has 15 blocks. The global Newton step is updated by

x(k+1) = x(k) + λ(k)s(k).

The step length,λ(k) ∈ [λmin, λmax] ⊂ (0, 1], is selected so that

‖F (x(k) + λ(k)s(k))‖ ≤ (1 − αλ(k))‖F (x(k))‖,

where the two parametersλmin andλmax act as safeguards, which are required for strong
global convergence and the parameterα is used to assure that the reduction of‖F‖ is suf-
ficient. Here, a quadratic linesearch technique [8] is employed to determine the step length
λ(k), with α = 10−4, λmin = 1/10 andλmax = 1/2.

In the implementation of the new algorithm, two more nested Newton solvers are needed.
We simply use the inexact Newton just described for all nonlinear solvers.

4.1. Classical inexact Newton.We first show some results using the inexact Newton
methodswith and without backtracking for solving the problem. In Table4.1, we show
the number of Newton iterations on three grids of size1/64, 1/128 and1/256 with four
different boundary conditions,φR = 0.5, 1.0, 1.15, 1.18. For this set of tests, the inexact
Newton without backtracking fails to converge when the gridis fine andφR is large, but INB
converges in all cases. However, the stronger the shock waveis the more INB iterations are
needed for convergence. In Fig.4.1 (left), we show the convergence history of INB on the
three different grids. For all cases, INB converges rapidlyat the beginning (the nonlinear
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residual is reduced by more than one order of magnitude in thefirst few iterations) and then
stagnates for a while before exhibiting the quadratic convergence behavior. Clearly, the finer
the grid, the longer the stagnation period becomes. To understand how INB updates the
intermediate solution during the stagnation period, we focus on the case with grid size equals
to 1/128. INB takes 223 steps to converge, and the 11 selected Mach curves corresponding to
the computed velocities are shown in Fig.4.1(right). It is interesting to observe that at most
grid points the solution convergence happens after the second INB iteration, and the rest of the
INB iterations are devoted exclusively for grid points nearthe shock. Note that, practically
speaking, after the second INB, the Newton corrections are needed only in the neighborhood
of the shock, but the Newton calculations (including the nonlinear residual evaluation and the
Jacobian solve) are actually carried out for the whole computational domain. This is clearly
a waste of computation!

TABLE 4.1
A comparison of the number of iterations of inexact Newton without backtracking (IN) and INB. ‘Div.’ means

divergence.

IN INB
grid sizes (h) 1/64 1/128 1/256 1/64 1/128 1/256
φR = 0.50 3 3 3 3 3 3
φR = 1.00 6 6 6 4 4 4
φR = 1.15 13 22 Div. 46 223 735
φR = 1.18 14 25 Div. 83 278 1009
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FIG. 4.1. Left: Convergence history of INB norm of nonlinear residuals for different grid sizes.φR = 1.15;
Right: Convergence history of Mach number curves,h = 1/128.

To further understand the situation from an algebraic viewpoint, we partition the interval
Ω = (0.0, 2.0) into three subintervals,Ω1 = (0.0, 0.8), Ω2 = (0.8, 1.3), andΩ3 = (1.3, 2.0),
with the middle interval contains the shock. Correspondingly, we partition the nonlinear
vector-valued functionF (·) into three pieces,F1(·) for the subinterval to the left of the shock
neighborhood,F2(·) for the subinterval containing the shock neighborhood, andF3(·) for the
subinterval to the right of the shock neighborhood. Note that the solution components at the
grid points inΩ1∪Ω3 represent thegoodcomponents, while the ones inΩ2 correspond to the
badcomponents. In Fig.4.2, we show the residual of a test run on ah = 1/128 grid using
INB. We include the history of the complete residual‖F‖, the smooth part of the residual√
‖F1‖2 + ‖F3‖2, and the non-smooth part of the residual‖F2‖. It is important to note that

the residual is completely dominated byF2; the two curves virtually sit on top of each other
in Fig. 4.2.
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FIG. 4.2.History of nonlinear residual for sub-functions corresponding the bad, the good, and all components,
‖F2‖, ‖F1 + F3‖, and‖F‖, respectively. Note that the curves corresponding to‖F2‖ and‖F‖ are virtually on
top of each other.

4.2. One-level INB-NE. On the other hand, in Fig.4.3, we show the residual of the
same test case on ah = 1/128 grid as in Fig.4.2 by using the one-level INB-NE algo-
rithm (INB-NE1), in which the bad component near the shock iseliminated with an inner
Newton iteration. It is clear that, after the elimination, the componentF2 is no longer the
dominant term in the overall residual, and the convergence of the outer Newton takes only 5
iterations.
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FIG. 4.3. After nonlinear elimination, the nonlinear residual of INBcorresponding the good components
becomes more dominant and INB converges very fast.h = 1/128. Note that the curves corresponding to‖F1+F3‖
and‖F‖ are virtually on top of each other.

When using INB-NE1, a key question is how to properly pick thebad components. In
Table 4.2, we show the number of iterations with different choices of the “bad” interval.
Note that the shock is located at the point nearx = 1.2. As mentioned before, solving the
local problem exactly is essential for the fast convergenceof INB-NE1. In practice, from our
numerical experiences, the elimination calculation has tobe carried out with a certain degree
of accuracy. Otherwise, INB-NE1 may fail to converge. Hence, for the results in Table4.2,
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we use the following stopping condition,

‖FSb
1

(x
(k)
b,1 )‖ ≤ max{10−8‖FSb

1

(x
(0)
b,1)‖, 10−10},

for the nonlinear system, and

‖FSb
1

(x
(k)
b,1 ) + F ′

Sb
1

(x
(k)
b,1 )s(k)‖ ≤ max{10−2‖FSb

1

(x
(k)
b,1 )‖, 10−10},

for the subdomain Jacobian system, which is solved by GMRES without preconditioning.
Table4.2 suggests that the appropriate subinterval of the “bad” components should include
all grid points near the location of the duct throat and the shock.

TABLE 4.2
Subinterval selection for INB-NE1:h = 1/128, ε3 = 10−6.

subinterval its subinterval its subinterval its subinterval its subinterval its
[0.8, 1.0] 144 [0.9, 1.0] 162 [1.0, 1.1] 167 [1.1, 1.2] 40 [1.2, 1.3] 208
[0.8, 1.1] 92 [0.9, 1.1] 115 [1.0, 1.2] 9 [1.1, 1.3] 40 [1.2, 1.4] 197
[0.8, 1.2] 6 [0.9, 1.2] 8 [1.0, 1.3] 7 [1.1, 1.4] 41 [1.2, 1.5] 154
[0.8, 1.3] 6 [0.9, 1.3] 7 [1.0, 1.4] 7 [1.1, 1.5] 24
[0.8, 1.4] 6 [0.9, 1.4] 5 [1.0, 1.5] 7
[0.8, 1.5] 8 [0.9, 1.5] 5

To make the INB-NE algorithm more efficient, it is wise to sometimes switch to the outer
INB iteration from the inner elimination iteration. This iscontrolled by the parameterǫ3 in
Algorithm 2.2. In Table4.3, we show the number of INB iterations in the bad subdomain
with different values ofǫ3. Whenǫ3 is too large, more outer iterations is needed, but below a
certain value, it is simply a waste of computation. In Fig.4.4, we show the history of Mach
number distribution curves corresponding to bothx(k) andy(k). In Algorithm 2.2, x(k) is
the solution from the outer Newton iteration andy(k) is the modifiedx(k) with the subspace
correction. Note that NE correctly detects the location of the shock at the second iteration,
but it takes 77 iterations to solve the local problem. Clearly after the subspace correction,
the sequencey(k) converges quickly to the desired solution. Hence, the switching should
take place as soon as the location of the shock is detected. For experiments in the rest of the
section, we setǫ3 = 10−4.

TABLE 4.3
The inner INB iteration numbers in INB-NE1 algorithm with differentε3. Subinterval:[0.8, 1.3]. h = 1/128.

φR = 1.15.

inner INB its
NE iteration ε3 = 10−2 ε3 = 10−4 ε3 = 10−6

0 3 3 3
1 5 5 5
2 77 77 77
3 32 32 32
4 0 34 34
5 0 0 34
6 0

Table 4.4 summarizes the number of outer Newton iterations, the average number of
inner Newton iterations, and the average number of GMRES iterations for solving the global
Jacobian systems in INB-NE1. We observe that once the bad components are removed the
total number of outer INB iterations stays small regardlessthe size of the grid and the right
boundary condition, which controls the strength of the shock.
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TABLE 4.4
A summary of the number of the outer INB iterations, the average number of inner Newton iterations per outer

INB iteration, and the average number of GMRES iterations for solving the global Jacobian systems in INB-NE1
with ε3 = 10−4.

outer INB its, ave. inner INB its (ave. GMRES its)
(φR) subinterval h = 1/64 h = 1/128 h = 1/256
0.5 [0.8,1.3] 3,3.0 (30.0) 3,3.0 (30.0) 3, 3.0 (30.0)
1.00 [0.8,1.3] 4,3.8 (30.0) 4,3.8 (30.0) 4, 3.8 (30.0)
1.15 [0.8,1.3] 5,10.4 (31.2) 5,30.2 (31.2) 6,99.8 (32.7)
1.18 [0.8,1.7] 5,17.6 (32.4) 5,53.0 (32.2) 9,212.4 (33.6)
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FIG. 4.4. From top to bottom, from left to right: the outer iteration starting from 0 to 5 in INB-NE1 for the
Mach number curves corresponding tox and original solutiony. Subinterval: [0.8,1.3],h = 1/128, φR = 1.15,
andε3 = 10−4
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4.3. Two-level INB-NE. When using the one-level algorithm, as discussed in the previ-
ous subsection, for some cases, the subspace Newton solver may need many iterations (e.g.
the cases ofh = 1/256 with φR = 1.15 and1.18 in Table4.4) and sometimes the subspace
Newton may even fail to converge. In this situation, one may want to use the one-level algo-
rithm recursively, i.e., further partition the subdomain into “good” and “bad” sub-subdomains
and then introduce a third Newton solver in the “bad” sub-subdomain. For both levels, we
use the following stopping condition,

‖FSb
∗

(x
(k)
b,∗ )‖ ≤ max{10−8‖FSb

∗

(x
(0)
b,∗)‖, 10−10},

for the nonlinear systems, and

‖FSb
∗

(x
(k)
b,∗ ) + F ′

Sb
1

(x
(k)
b,∗ )s(k)‖ ≤ max{10−6‖FSb

∗

(x
(k)
b,∗ )‖, 10−10},

for the subdomain Jacobian systems, which are solved by GMRES without preconditioning
and with a zero initial guess. The notation “*” represents 1:1st level or 2: 2nd level. In Ta-
ble4.5, we show the number of iterations of three nested INB iterations for different choices
of subintervals at each level. How to choose an appropriate subinterval at each level is mostly
empirical. From our numerical experiences, the subinterval at the second level should be
covered by that at the first level and both subintervals should include the shock and the throat.
Note that with this additional level of nonlinear elimination, the number of INB iterations in
the first level can be kept small. Fig.4.5 shows the history of Mach number curves corre-
sponding tox and the original solutiony. Similar to INB-NE1, with the help of NE2, INB
correctly detects the location of the shock at the 1st iteration, and it takes only 5 NE iterations
to solve the local problem.

TABLE 4.5
2nd level subinterval selections for INB-NE2. The numbers in the table are the number of 1st level NE iter-

ations, the average number of 2nd-level INB iterations, andthe average number of the inner-most INB iterations.
Note that the duct throat is located atx = 1.0 and the shock is at aroundx = 1.2. h = 1/128, φR = 1.15, and
ε3 = 10−4

1st level subinterval 2nd level subinterval
[0.5,1.5] [0.8, 1.3] [0.9, 1.3] [1.0, 1.3]

4,4.8,25.8 4,4.8,18.7 4,5.5,15.7
[0.8,1.3] [0.85, 1.25] [0.95, 1.25] [1.05, 1.25]

5,6.4,37.7 5,4.0,22.1 5,5.0,17.0
[1.0,1.3] [1.05, 1.15] [1.1, 1.15] [1.10, 1.25]

7,8.2,17.3 7,17.3,11.8 7,13.3,23.9

5. Concluding remarks and future work. When solving nonlinear system of algebraic
equations using inexact Newton methods, the convergence isoften determined by a small
number of equations in the system that are much more nonlinear than the others. In the paper,
we developed several methods that implicitly eliminate these highly nonlinear components
through an approximate inner subdomain Newton iterations.The number of outer Newton
iterations, which are considerably more expensive than theinner subdomain iterations, can be
drastically reduced if the highly nonlinear components arecorrectly identified and sufficiently
removed. A shocked duct flow problem was carefully studied. For this problem, all of the
bad components of the nonlinear system are near the shock wave, and our numerical results
showed that once these bad components are approximately removed, the number of outer
Newton iterations is reduced from over 200 to just 5 for a particular example on ah = 1/128
grid. A two-level version of the algorithm was also introduced using a combination of the
idea of two-level nonlinear elimination and classical inexact Newton-type methods.
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FIG. 4.5. From top to bottom, from left to right: the outer iteration starting from 0 to 4 in INB-NE2 for
the Mach number curves corresponding tox and original solutiony. h = 1/128, φR = 1.15. 1st subinterval:
[0.5, 1, 5] and 2nd subinterval:[1.0, 1, 3], ε3 = 10−4 .

The focus of the paper was on the convergence of the one-leveland two-level algorithms
and we did not discuss anything related to computing time. Asa future project, we will
consider the extension of the algorithms to two and three dimensional spaces. In INB-NE, a
judicious choice of the bad subspace is crucial for fast convergence of Newton methods. In
the shocked duct flow problem, as illustrated numerically inthe previous section, this choice
depends on the location of the shock. We know where these bad components physically
are and we observe that they do not move during the solution process, hence Algorithm2.2
can be employed. In practice, it may not always be possible todetermine beforehand which
subsystem to be eliminated. Therefore, it is necessary to develop a domain decomposition
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version of Algorithm2.2[7], which extends NE, where a single local problem is considered,
to multiple local problems. The new nonlinear domain decomposition based algorithm is able
to identify this subspace without already knowing the solution profile and it is more suitable
for large scale parallel processing.
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