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TWO-LEVEL NONLINEAR ELIMINATION BASED PRECONDITIONERS FO R
INEXACT NEWTON METHODS WITH APPLICATION IN SHOCKED DUCT
FLOW CALCULATION *

FENG-NAN HWANGT, HSIN-LUN LINT, AND XIAO-CHUAN CAl ¥

Abstract. The class of Newton methods is popular for solving large spamonlinear algebraic systems of
equations arising from the discretization of partial difietial equations. The method offers superlinear or quadra
convergence when the solution is sufficiently smooth andritial guess is close to the desired solution. However,
in many practical problems, the solution may exhibit some-smoothness in part of the computational domain,
due to, for example, the presence of a shock wave. In thiatgity the convergence rate of Newton-type methods
deteriorates considerably. In this paper, we introduceaaléwel nonlinear elimination algorithm, in which we first
identify a subset of equations that prevents Newton fromirfgathe fast convergence and then iteratively eliminate
them from the global nonlinear system of equations. We shawguch implicit nonlinear elimination restores the
fast convergence for problems with local non-smoothnessaexample, we study a compressible transonic flow
in a shocked duct.
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1. Introduction. In[13], an interesting nonlinear elimination algorithm (NE) waso-
duced for solving large sparse nonlinear systems of equatidose solution is badly scaled
in part of the computational domain. The key idea of NE is tpligitly remove these com-
ponents and obtain a better balanced system for which tissictd inexact Newton method
can be applied. The technique works extremely well for soetatively simple cases, and
several recent attempts motivated by this technique hase iade in order to make inexact
Newton methods work for other nonlinear syste®sy| 5, 6, 7, 10, 11, 12]. In NE, an impor-
tant step is to iteratively eliminate the identified bad comgnt using a subdomain Newton
method, which by itself may fail or take too many iteratioasbnverge. In13] it was sug-
gested that the nonlinear elimination algorithm can be uisednested fashion, i.e., NE can
be used inside the outer NE when the regular inexact Newitstéaconverge in the implicit
removing step for the subnonlinear system. Even thoughdéa of nested NE is simple, it
has never been studied and to actually realize it is quifecdif. The aim of this paper is to
formulate a two-level NE and embed it into the classical aaNewton methods, which can
be interpreted as a nonlinear Schur complement algorithm.

We briefly recall the classical inexact Newton algorithmhalitacktracking (INB) 8, 9],
which is used as the basic building block of our algorithmsfie global and some subnon-
linear systems. Consider a given nonlinear functigfx): R™ — R™. We are interested in
finding a vectorr* € R™, such that

(1.1) F(z*) =0,
starting from an initial guess(”) € R”. HereF = [F\, ..., F,|", F; = Fi(x1,...,z,), and
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r=[r1,...,2,]7.
ALGORITHM 1.1 (Inexact Newton with Backtracking (INB)).
Givenz(©)
EvaluateF (z(?)) and || F (z(©)]|
Setk =0

While (|| F(z®)[| > &1 || F(«© ) and (|| F(«*))]| > e2) do
Compute the Jacobian matri’ (z(¥)
Inexactly solve the Jacobian systéth(z(*))s(*) = — F(2(*))
Updatez*+1) = z(*) 1 A s(k) 'whereA®) € (0, 1] is determined to

satisfy
IF(@® + 2B s®)| < (1 — aA®) | F®)]
Setk =k+1
End While

Heree, ande, are the relative and absolute stopping conditions. For gpdi@ations
that we are interested in,is usually large, and in this case, the algorithm has threeesive
operations: the evaluation &f(-), the construction of the Jacobian matrix, and the solution
of the Jacobian system. It is important to note that all tloeerations are global in the sense
that all components af and F' are involved in all three operations. However, as observed
in many numerical experiments, the trigger of these expen&ill components involved”
operations is often local. In other words, only a small nundfeé", F», ..., F,, are large and
these “bad components” are not random, they are often agedcivith certain interesting
physics of the solution of the PDE. For example, in the shdakéct flow problem that we
are looking at, all these “bad components” are associatédtié shock wave located in a
small region inside the computational domain. In other @pgibns, they may be associated
with a boundary layer or other local singularities3] 14, 16]. NE is a subproblem solver
inside a global INB that is designed to smooth out these “lmadponents” so that the total
number of global INB is reduced.

The rest of the paper is organized as follows. In Sectiowe formulate the multilevel
NE algorithm. We describe a shocked duct flow problem in $a&i Some numerical results
and concluding remarks are given in Sectidrend5, respectively.

2. Multilevel nonlinear elimination algorithms. We begin with the one-level nonlin-
ear elimination algorithm. The first step is to split the desil componentsl’, Fs, ..., Fy,,
into two sets consisting of the “bad components” to be elated and the good components
to be solved by the classical inexact Newton algorithm. Let {1,2,...,n} be an index
set, i.e. one integer for each unknowpand each residual functiaf. Assume thaS{’ ("b”
for bad) is a subset af with m components and{ (“g” for good) with (n — m) components
is its complement; that is,

I=5usy.
Usuallym < n. For this partition, we define two subspaces,
VP ={vlv = [v1,...,v,)T €R™up =0 if k¢ SV}
and
Vi = {vjv=[v1,.., 00" €R™ 0, =0 if k¢ S},

respectively, and the corresponding restriction opesatf and RY, which transfers data
from R” to v andV/, respectively. Here, we use the subscript 1 to indicate &rétjon,
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the subspaces, and the restriction/interpolation opesatothe first level, which is used to
distinguish the corresponding ones defined later at thensel@vel. Using the restriction
operatorR{, we define the sub-nonlinear functiéfy, : R" — V, as

Fgy(2) = Ry(F(x)).

For any givenr € R”, T°(x): R — V} is defined as the solution of the following subspace
nonlinear system,

(2.1) Fg(Riz +T"(x)) = 0.
Using the subspace mapping functions, we introduce a nemabfmnlinear function,
y=G(z) = Rz + T"(x).

Note that for a given:, the evaluation of7(z) is not straightforward. A nonlinear system
corresponding to the subspalg@ has to be solved using either the classical INB algorithm
restricted to the subspadé’ or a NE algorithm in the subspadé. Let us summarize the
above procedure as the following algorithm.

ALGORITHM 2.1 (Evaluate) = G(z)).

If flag=0 theny = x else

If flag=1: one-level nonlinear elimination:

Solve .1) by INB usingR%z as an initial guess.

If flag=2: two-level nonlinear elimination:

Solve @.1) by one-level NE using’z as an initial guess.
endif
Computey = Rz + T°(x)

Hereflag is an input parameter from somewhere else in the algorithindate if a
nonlinear elimination is needed and if one-level or twoeleME is to be called. Two-level
NE becomes necessary when the local probler) (s still too difficult to solve by INB, and
in this case, another partition of the index §&tnto two subsets is needed, i.8%, = S5USY.
At the second level for the subs6f two subspaces dk”, V andVy/, the corresponding
restriction operatorsiz} and R, as well as sub-nonlinear functidry, can all be defined in
a manner similar to the ones at the first level.

Now NE in conjunction with INB can be realized with the followg algorithm.

ALGORITHM 2.2 (INB-NE).

Givenz(?), Setk = 0 and flag= 1
Computey(®) = G(2().
EvaluateF (y(©) and || F(y(?)]|
While (| F(y®) ]| > &1 || F(y@ ) and (| F(y®)|| > e2) do
Computer” (y*))
Inexactly solveF” (y(*))s(k) = — F(y(*))
Updatez*+1) = (k) 1 \(#)5(¥) ' where\(*) is determined to satisfy
IF(G(@® + 2B sEN))|| < (1 — ad®)||F(y®))|
Computey 1) = G(z(++1))
EvaluateF (y**+1)) and || F(y &)
If | (y ™) < es]|F(y®)]| then flag=0
Setk =k +1
End While

INB-NE can be interpreted as follows. Find the solutiphe R™ of (1.1) by solving a

right nonlinearly preconditioned systerfi{G(z*)) = 0. Oncez* is found, the solution of
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the original system can be obtainedigs= G(x*). It was shown theoretically inlf3] that
under certain assumptions, INB-NE possesses local quadoatvergence provided that the
subspace nonlinear problenis 1) are solved exactly. Note thatF(z) is linear, i.e.,

ro=[ 7 2[R ]-[71-[5]

then

As a consequence, solvidg(G(z)) = 0 is mathematically equivalent to decoupling it into
two steps: first, solve the reduced systéniR{z) = g — FB~!f, whereU = C — FB~'E

is the Schur complement matrix, and then compe = —B~'E(R{z) + B~'f. How-
ever, rather than solving the Schur complement system,dotige, it is desirable and often
more efficient to solve the full system, since the Schur cemgnt is denser and good pre-
conditioners may not be available.

Note that in our approach the subproblem correspondingtbdid components is simply
a restriction of the global nonlinear system to the subdarrait a Schur complement of the
global system with respect to the subdomain consisting @btd components. The Schur
complement approach is considerably more expensive arat sudied in this paper.

Since the extra function evaluations@f{x) are needed, NE is intended for the cases in
which INB fails to converge or experiences unacceptablywstonvergence. As suggested
by [13, bottom of p. 555], when the intermediate solution is claséhe exact solution, NE
is switched back INB by letting7(x) = x. The switching condition is controlled by; in
Algorithm 2.2,

3. A shocked duct flow problem. Compressible flows passing through a diverge-con-
verge duct are governed by the compressible Navier-Stakestions [, 2]. Instead of solv-
ing Navier-Stokes equations, we consider a simpler moadilpm, a quasi-one-dimensional
full potential problem ¢, 16] defined on the interval) < = < 2, as

(A(x)p(¢2)bz), = 0,
(3.1) { $(0) :po and ¢(L) = ¢r,

whereA(z) is the area of the cross-section of the duct at
A(x) = 0.4+ 0.6(x — 1)
and the density function is described as

_1_
y—1

3.2) plu) = ()07 = (1 T u2>)

Herey = 1.4 is the specific heat for aigy = ¢, is the flow velocity, ana: is the speed of
sound. See the left figure of Fig.1for the geometric configuration of the shocked duct flow
problem. Although this problem looks quite simple, it idlstbnsidered as a difficult test
problem for the convergence of inexact Newton methods Isethe solution has a strong
shock as the value afr becomes larger thah15 in the domain; see Fid.1 (right). The
flow is supersonic at the points in the interval (0,2), whéeMach numbei)/ = |u|/c, is
greater than 1.
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FiG. 3.1. Left: transonic flow in a converge-diverge duct; Right: Maohmber curves for different right
boundary conditionp g, grid sizeh = 1/256.

To approximate .1) by a standard finite difference method, we begin by intraayic
a uniform grid,0 = xp < 1 < 23 < ... < z, = 2, with the grid sizeh = 2/n. Let
O = [ph, ol .- ¢l _|]T be the numerical approximations at these interior grid fsoikive
define pointsy;_, /2 andx; 1,2, as the midpoints of subintervals; i, z;] and[z;, ;1]
respectively. Consider the subinterya)_, /2, z;,1/2]. We approximat€¢Ap(¢,)¢. ). atthe
pointz; using a second-order centered finite difference methad, i.e

h h h h
i+1 (bz ¢i — %i—1
Avgpiny = —Aogpy
- =0.
For the leftmost grid point, we havés ps ((bg—(b}f)—A%p% #" = 0 and for the rightmost grid
point we have An,%pn+%(K - Ph) - Anfgpnfg(cbﬁq — ¢_5). Here

Aiz1y2 = A((ix1 £ 25)/2) andpipi/2 = p((dz)ix1/2)-

For purely subsonic flows, using.@) for calculating the flow density is sufficient. How-
ever, for transonic flows, this formulation needs to be medifn order to capture the shock.
By applying a first-order density upwinding scheme as sutggidsy Young et al.14, 16], a
modified flow density value at the poinf, ; , is expressed as

ﬁi+% =Pyl — ﬁi+%(pi+% - pif%)a
where the switching parametﬁhé is defined asﬂH% = maX{ui_%aHi+%aﬂi+%} with

fit1/2 = max{0,1— Mf/MfH/Q}. Herel. is called the cutoff Mach number ard, , ; /,
is the numerical Mach number af , /> given by

o h =g h i\ T
Mi+1/2 ~ (Um)i+1/2/034;11/2 ~ % /p % .

In summary, the discrete shocked duct flow problem can beenmrias a large sparse
nonlinear system of algebraic equations,

(3.3) F(®) =0,
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whereF (®) = [F}(®), Fo(®),---, F,(®)]" with F; defined as

(A3p3)ds — (Agpy + Aypy)ot
Fy(®) = (Ai+%ﬁi+%)¢?+1 — (Aip 1Py s +Ai—%ﬁi—%)¢? +(AioyPiy) =
! forany 2 <i<n-—2
(Air 3Pis ) K = (A y Py + AugPug)rns + (Ao gPug)brio-

In our implementation, the Jacobian matrix Bf®) is constructed approximately by
using the forward finite differences. Note that for the ca@urely subsonic flows, the
formulation @.3) leads to a symmetric, weakly diagonally dominant, tridiagl Jacobian
matrix, while for the case of transonic flows the associatol@n is nonsymmetric due
to the derivative of the upwinding density coefficieﬁg;cé corresponding to the supersonic
region.

4. Numerical experiments and observationsin this section, we present some numer-
ical results for solving the shocked duct flow probler} using the classical inexact Newton
method and the new algorithm. The stopping condition for dewvis

IF (&™) < max{10~%||F(z)], 1071},

and a linear initial guess that interpolates the boundangitimns is used for Newton for all
test cases. In our implementation of the classical inexaetthin method with backtracking,
as described in Algorithm..1, a right preconditioned GMRESL})] is used for solving the
global Jacobian system with zero initial guess. The stappondition for GMRES is

1F®) + (F' (@) M) (Mes™) | < max{n|| F(2)], 10710}

Heren = 1076 and Mk‘1 is a block Jacobi preconditioner constructed using the imatr
F'(z®). In the tests, we partition the computational domain intsma&-overlapping sub-
domains and therefoer_1 has 15 blocks. The global Newton step is updated by

2B+ (B) L \(0) (8

The step length\®) € [Apmin, Amax] C (0, 1], is selected so that
[F @™ + BN < (1= ad®) | F M),

where the two parameters,;, and A\, act as safeguards, which are required for strong
global convergence and the parametes used to assure that the reduction||@f|| is suf-
ficient. Here, a quadratic linesearch techniqglei§ employed to determine the step length
AF) with o = 1074, Apin = 1/10 andAax = 1/2.

In the implementation of the new algorithm, two more nesteddn solvers are needed.
We simply use the inexact Newton just described for all moedr solvers.

4.1. Classical inexact Newton.We first show some results using the inexact Newton
methodswith and without backtracking for solving the problem. In Tablel, we show
the number of Newton iterations on three grids of sizé4, 1/128 and 1/256 with four
different boundary conditionsyr = 0.5,1.0,1.15,1.18. For this set of tests, the inexact
Newton without backtracking fails to converge when the dggifine andy, is large, but INB
converges in all cases. However, the stronger the shock igalie more INB iterations are
needed for convergence. In Fig.l (left), we show the convergence history of INB on the
three different grids. For all cases, INB converges rapatiyhe beginning (the nonlinear
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residual is reduced by more than one order of magnitude ifittstfew iterations) and then
stagnates for a while before exhibiting the quadratic cayece behavior. Clearly, the finer
the grid, the longer the stagnation period becomes. To staled how INB updates the
intermediate solution during the stagnation period, weifozn the case with grid size equals
to 1/128. INB takes 223 steps to converge, and the 11 selected Magbsoorresponding to
the computed velocities are shown in gl (right). It is interesting to observe that at most
grid points the solution convergence happens after thask®dB iteration, and the rest of the
INB iterations are devoted exclusively for grid points né@& shock. Note that, practically
speaking, after the second INB, the Newton corrections eeelad only in the neighborhood
of the shock, but the Newton calculations (including thelimaar residual evaluation and the
Jacobian solve) are actually carried out for the whole caaimnal domain. This is clearly
a waste of computation!

TABLE 4.1
A comparison of the number of iterations of inexact Newtdhawit backtracking (IN) and INB. ‘Div. means
divergence.

IN INB
gridsizes k) | 1/64 1/128 1/256 | 1/64 1/128 1/256
ér =050 3 3 3 3 3 3
ér = 1.00 6 6 6 4 4 4
pr=115 | 13 22 Div. | 46 223 735
pp =118 | 14 25 Div. | 83 278 1009

History of nonlinear residuals
T T T

10 L L . L L L L 0 02 04 06 08 1 12 14 16 18 2

0 100 200 300 400 500 600 700 800
Iteration number

FIG. 4.1. Left: Convergence history of INB norm of nonlinear resicgu@ir different grid sizes¢ g = 1.15;
Right: Convergence history of Mach number curvess 1/128.

To further understand the situation from an algebraic viewp we partition the interval
Q = (0.0, 2.0) into three subinterval§); = (0.0,0.8), Q2 = (0.8,1.3), andQ3 = (1.3,2.0),
with the middle interval contains the shock. Corresponljingge partition the nonlinear
vector-valued functiod'(+) into three piecest? (-) for the subinterval to the left of the shock
neighborhoodF(-) for the subinterval containing the shock neighborhood, &(d) for the
subinterval to the right of the shock neighborhood. Noté tha solution components at the
grid points in2; UQ3 represent thgoodcomponents, while the onesfly correspond to the
bad components. In Figd.2, we show the residual of a test run orha= 1,/128 grid using
INB. We include the history of the complete residlj# ||, the smooth part of the residual
VIIFL|I? + || F5]/2, and the non-smooth part of the residijaL||. It is important to note that
the residual is completely dominated By; the two curves virtually sit on top of each other
in Fig. 4.2,
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FI1G. 4.2 History of nonlinear residual for sub-functions corresparg the bad, the good, and all components,
[[F2||, ||F1 + F3l|, and|| F||, respectively. Note that the curves corresponding&a|| and || F'|| are virtually on
top of each other.

4.2. One-level INB-NE. On the other hand, in Figt.3 we show the residual of the
same test case onfa= 1/128 grid as in Fig.4.2 by using the one-level INB-NE algo-
rithm (INB-NEZ1), in which the bad component near the shockliminated with an inner
Newton iteration. It is clear that, after the eliminatiohetcomponent’ is no longer the
dominant term in the overall residual, and the convergeffitiesoouter Newton takes only 5
iterations.

el #F
oI
-12 _||F||
0 1 2 3 4 5

J

FIG. 4.3. After nonlinear elimination, the nonlinear residual of INB®rresponding the good components
becomes more dominant and INB converges very fiast.1/128. Note that the curves corresponding|tb + F3||
and || F'|| are virtually on top of each other.

When using INB-NE1, a key question is how to properly pick lbizel components. In
Table 4.2, we show the number of iterations with different choices teé tbad” interval.
Note that the shock is located at the point nea+ 1.2. As mentioned before, solving the
local problem exactly is essential for the fast convergeri¢dBB-NE1. In practice, from our
numerical experiences, the elimination calculation hasstoarried out with a certain degree
of accuracy. Otherwise, INB-NE1 may fail to converge. Herfoethe results in Tabld.2,
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we use the following stopping condition,
| sy (@p ) < max{107%) Fgy (2 )Il, 10710},
for the nonlinear system, and
| Foy (a3)) + Foy (y7)s™ | < max{1072| Fgy (2} )11, 107},

for the subdomain Jacobian system, which is solved by GMRESout preconditioning.
Table4.2 suggests that the appropriate subinterval of the “bad” aarmepts should include
all grid points near the location of the duct throat and theckh

TABLE 4.2
Subinterval selection for INB-NEL: = 1/128, 3 = 1076,

subinterval its | subinterval its | subinterval its | subinterval its | subinterval its
[0.8,1.0] 144 | [0.9,1.0] 162 | [1.0,1.1] 167 | [1.1,1.2] 40 | [1.2,1.3] 208
[0.8,1.1] 92 | [0.9,1.1] 115 [1.0,1.2] 9 | [1.1,1.3] 40| [1.2,1.4] 197
[0.8,1.2] 6 | [0.9,1.2] 8 | [1.0,1.3] 7 | [1.1,1.4] 41| [1.2,1.5] 154
[0.8,1.3] 6 | [0.9,1.3] 7 | [1.0,1.4] 7 | [1.1,1.5] 24

[0.8,1.4] 6 [0.9,1.4] 5 [1.0,1.5] 7

[0.8,1.5] 8 | [0.9,1.5] 5

To make the INB-NE algorithm more efficient, it is wise to saimes switch to the outer
INB iteration from the inner elimination iteration. Thisé®ntrolled by the parametes in
Algorithm 2.2 In Table4.3, we show the number of INB iterations in the bad subdomain
with different values ot3;. Whenes is too large, more outer iterations is needed, but below a
certain value, it is simply a waste of computation. In Figl, we show the history of Mach
number distribution curves corresponding to betf) andy*). In Algorithm 2.2, 2(*) is
the solution from the outer Newton iteration agid’ is the modified:(*) with the subspace
correction. Note that NE correctly detects the locationhaf shock at the second iteration,
but it takes 77 iterations to solve the local problem. Cleafter the subspace correction,
the sequencg®) converges quickly to the desired solution. Hence, the ivite should
take place as soon as the location of the shock is detecte@xperiments in the rest of the
section, we set; = 104,

TABLE 4.3
The inner INB iteration numbers in INB-NE1 algorithm witlffeliente 3. Subinterval:[0.8,1.3]. h = 1/128.

ér = 1.15.

inner INB its

NE iteration | e3 =102 e3=10"% 3 =100
0 3 3 3
1 5 5 5
2 77 77 77
3 32 32 32
4 0 34 34
5 0 0 34
6 0

Table 4.4 summarizes the number of outer Newton iterations, the geeraumber of
inner Newton iterations, and the average number of GMREStit:s for solving the global
Jacobian systems in INB-NE1. We observe that once the bagpa@oemts are removed the
total number of outer INB iterations stays small regardtesssize of the grid and the right
boundary condition, which controls the strength of the &hoc
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A summary of the number of the outer INB iterations, the ayeeraumber of inner Newton iterations per outer
INB iteration, and the average number of GMRES iterationssfiving the global Jacobian systems in INB-NE1

withes = 10—4.
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outer INB its, ave. inner INB its (ave. GMRES its)

(¢r) | subinterval | h=1/64 h=1/128 h =1/256

0.5 [0.8,1.3] 3,3.0(30.0) 3,3.0(30.0) 3,3.0(30.0)
1.00 | [0.8,1.3] | 4,3.8(30.0) 4,3.8(30.0) 4,3.8(30.0)
1.15 [0.8,1.3] | 5,10.4(31.2) 5,30.2(31.2) 6,99.8(32.7)
1.18 | [0.8,1.7] | 5,17.6(32.4) 5,53.0(32.2) 9,212.4 (33.6)

12|

-y

FIG. 4.4. From top to bottom, from left to right: the outer iteratioraging from 0 to 5 in INB-NE1 for the

Mach number curves correspondingat@nd original solutiony. Subinterval: [0.8,1.3]h = 1/128, ¢ = 1.15,

andez = 104
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4.3. Two-level INB-NE. When using the one-level algorithm, as discussed in theprev
ous subsection, for some cases, the subspace Newton sayemead many iterations (e.g.
the cases ok = 1/256 with ¢z = 1.15 and1.18 in Table4.4) and sometimes the subspace
Newton may even fail to converge. In this situation, one maytto use the one-level algo-
rithm recursively, i.e., further partition the subdomaiia “good” and “bad” sub-subdomains
and then introduce a third Newton solver in the “bad” subegurbain. For both levels, we
use the following stopping condition,

| oy (2) ]| < maxc {1075 Fgy ({2}, 10720},
for the nonlinear systems, and

st (25) + Fly (w55 ™| < max{1076] Fyy ("))}, 1071},
for the subdomain Jacobian systems, which are solved by G3ARiEhout preconditioning
and with a zero initial guess. The notation “*” representd 4t level or 2: 2nd level. In Ta-
ble 4.5 we show the number of iterations of three nested INB iteretifor different choices
of subintervals at each level. How to choose an appropridimterval at each level is mostly
empirical. From our numerical experiences, the subinteavdhe second level should be
covered by that at the first level and both subintervals shmalude the shock and the throat.
Note that with this additional level of nonlinear eliminati, the number of INB iterations in
the first level can be kept small. Fig.5shows the history of Mach number curves corre-
sponding tar and the original solutiory. Similar to INB-NE1, with the help of NE2, INB
correctly detects the location of the shock at the 1st ii@naaind it takes only 5 NE iterations
to solve the local problem.

TABLE 4.5
2nd level subinterval selections for INB-NE2. The numbertheé table are the number of 1st level NE iter-
ations, the average number of 2nd-level INB iterations, tr@laverage number of the inner-most INB iterations.
Note that the duct throat is located at= 1.0 and the shock is at around = 1.2. h = 1/128, ¢ = 1.15, and
ez =10"%

1st level subinterval 2nd level subinterval
[0.5,1.5] [0.8,1.3] [0.9,1.3] [1.0,1.3]
4,4.8,25.8 4,4.8,18.7 4,5.5,15.7
[0.8,1.3] [0.85,1.25]  [0.95,1.25]  [1.05,1.25]
5,6.4,37.7 5,4.0,22.1 5,5.0,17.0
[1.0,1.3] [1.05,1.15] [1.1,1.15] [1.10, 1.25]
7,8.2,17.3 7,17.3,11.8 7,13.3,23.9

5. Concluding remarks and future work. When solving nonlinear system of algebraic
equations using inexact Newton methods, the convergenafteis determined by a small
number of equations in the system that are much more nomlinaa the others. In the paper,
we developed several methods that implicitly eliminateséhkighly nonlinear components
through an approximate inner subdomain Newton iteratidriee number of outer Newton
iterations, which are considerably more expensive thaimtier subdomain iterations, can be
drastically reduced if the highly nonlinear componentscangectly identified and sufficiently
removed. A shocked duct flow problem was carefully studiedk this problem, all of the
bad components of the nonlinear system are near the shoak wad our numerical results
showed that once these bad components are approximatebveeimthe number of outer
Newton iterations is reduced from over 200 to just 5 for aipalar example on & = 1/128
grid. A two-level version of the algorithm was also intro@acusing a combination of the
idea of two-level nonlinear elimination and classical iaeiNewton-type methods.
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FIG. 4.5. From top to bottom, from left to right: the outer iterationaging from 0 to 4 in INB-NE2 for
the Mach number curves correspondingz#t@nd original solutiony. h = 1/128, ¢ = 1.15. 1st subinterval:
[0.5,1,5] and 2nd subinterval{1.0,1, 3], e3 = 10™4.

The focus of the paper was on the convergence of the onedaddlwo-level algorithms
and we did not discuss anything related to computing time.aAsture project, we will
consider the extension of the algorithms to two and threeedsional spaces. In INB-NE, a
judicious choice of the bad subspace is crucial for fast eagence of Newton methods. In
the shocked duct flow problem, as illustrated numericallghiprevious section, this choice
depends on the location of the shock. We know where these caganents physically
are and we observe that they do not move during the solutioogss, hence Algorithr.2
can be employed. In practice, it may not always be possibieetermine beforehand which
subsystem to be eliminated. Therefore, it is necessary\elol a domain decomposition



ETNA

Kent State University
http://etna.math.kent.edu

TWO-LEVEL NONLINEAR ELIMINATION BASED PRECONDITIONERS 251

version of Algorithm2.2[7], which extends NE, where a single local problem is congder
to multiple local problems. The new nonlinear domain decositpn based algorithm is able
to identify this subspace without already knowing the doluprofile and it is more suitable
for large scale parallel processing.
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