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ON WEIGHTED LACUNARY INTERPOLATION ∗

MARGIT LÉNÁRD†

Abstract. In this paper the regularity of a special lacunary interpolation problem is investigated, where for a
givenr (r ≥ 2, r ∈ N) the derivatives up to ther-2nd order together with the weightedrth derivative are prescribed
at the nodes. Sufficient conditions on the nodes and the weight function, for the problem to be regular, are derived.
Under these conditions a method to construct the explicit formulae for the fundamental polynomials of the regular
weighted lacunary interpolation is discussed. Examples are presented using the roots of the classical orthogonal
polynomials.
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1. Introduction. The special lacunary interpolation problem studied in thispaper is
called weighted(0, 1, . . . , r − 2, r)-interpolation for a givenr (r ≥ 2, r ∈ N), where the
derivatives up to ther-2nd order together with the weightedrth derivative are prescribed at
the nodes. On a finite or infinite interval[a, b] for n ∈ N, let{xi}

n
i=1 be a set of distinct points,

the nodes, and letw ∈ Cr(a, b) be a given function, the weight function. Furthermore lety
(l)
i

(l = 0, 1, . . . , r − 2, r; i = 1, . . . , n) be arbitrary given real numbers. Find a polynomialRn

of degree less thanrn such that

(1.1) R(l)
n (xi) = y

(l)
i , (wRn)(r)(xi) = y

(r)
i , (l = 0, 1, . . . , r − 2; i = 1, . . . , n),

(for the sake of simplicity we omit double indices, so we’ll write xi = xi,n andy
(l)
i = y

(l)
i,n).

The weighted(0, 2)-interpolation problem (r = 2) was studied originally by J. Balázs [1] as
a generalization of the(0, 2)-interpolation problem initiated by P. Turán [6].

The weighted(0, 1, . . . , r−2, r)-interpolation is called regular at the nodes{xi}
n
i=1 with

respect to the weight functionw, if for any choice ofy(l)
i there exists a unique polynomial

Rn of degree less thanrn which satisfies the conditions (1.1). The problem is not regular in
general, because in some cases such a polynomialRn does not exist (see, e.g., J. Balázs [1]
for r = 2 and A. Krebsz [2] for r = 3), or if it exists, the uniqueness might fail. Furthermore,
in order to prove convergence theorems in the regular cases,the explicit formulae for the
interpolation polynomialRn are also needed. Several authors investigated the problem for
r = 2 andr = 3 and found regular solutions and explicit formulae by prescribing special
additional conditions to (1.1). In these cases the degree of the interpolation polynomialRn

was increased by the number of the additional conditions. For a general approach to the
special cases whenr = 2 or r = 3 we refer to M. Lénárd [4] and A. Krebsz and M. Lénárd
[3] and to the references therein.

In Section2, sufficient conditions on the nodes and the weight function are given for the
problem to be regular. In Section3, a method is presented to construct the explicit formulae
for the fundamental polynomials of the regular weighted(0, 1, . . . , r − 2, r)-interpolation
problem under these conditions. In Section4, examples are given for regular cases on the
roots of the classical orthogonal polynomials.
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2. Regularity. In order to find regular cases with their explicit formulae for the weighted
(0, 1, . . . , r − 2, r)-interpolation, we extend the problem (1.1) with additional Hermite-type
conditions.

For givenn, m ∈ N, on a finite or infinite interval[a, b] let {xi}
n
i=1 and{x̄i}

m
i=1 be dis-

joint sets of distinct points, the nodes, and letw ∈ Cr(a, b) be a given function, the weight
function. Furthermore, lety(l)

i (l = 0, 1, . . . , r − 2, r; i = 1, . . . , n) and

ȳ
(j)
i (j = 0, . . . , ji − 1; i = 1, . . . , m) be arbitrary given real numbers,M = j1 + · · · + jm

andN = rn + M . Find a minimal degree polynomialRN of degree less thanN satisfying
weighted(0, 1, . . . , r − 2, r)-interpolation conditions

(2.1) R
(l)
N (xi) = y

(l)
i , (wRN )(r)(xi) = y

(r)
i , (l = 0, 1, . . . , r − 2; i = 1, . . . , n),

with additional Hermite-type interpolation conditions on{x̄i}
m
i=1,

(2.2) R
(j)
N (x̄i) = ȳ

(j)
i , (j = 0, . . . , ji − 1; i = 1, . . . , m).

(For m = 0 the problem is the weighted(0, 1, . . . , r − 2, r)-interpolation.) This extended
interpolation problem is also not regular in general, as it is shown forr = 2 andr = 3
in [4] and [3]. Hence we study the interpolation problem (2.1)-(2.2) with further additional
conditions. P. Mathur and S. Datta [5] discussed a special case whenm = 1, j1 = r − 1, and
the additional condition isR(r−1)

N (x̄1) = ȳ
(r−1)
1 .

In what follows, letpn andq be polynomials of degreen andM , respectively, associated
with the interpolation conditions (2.1)-(2.2), that is,

(2.3)
pn(xi) = 0, (i = 1, . . . , n),

q(j)(x̄i) = 0, (j = 0, . . . , ji − 1; i = 1, . . . , m).

If only weighted interpolation conditions are prescribed,let q(x) ≡ 1 andm = 0. Further-
more, let

ℓk(x) =
pn(x)

p′n(xk)(x − xk)
, (k = 1, . . . , n),

denote the fundamental polynomials of Lagrange-interpolation, that is,ℓk(xi) = δk,i for
i, k = 1, . . . , n. Using induction onr it is easy to verify that, fori = 1, . . . , n,

(2.4) (pr
n)(l)(xi) =















0, for l < r,

r!(p′n)r(xi), for l = r,

r

2
(r + 1)!

(

(p′n)r−1p′′n
)

(xi), for l = r + 1,

and

(2.5) (ℓr
k)(l)(xi) =

{

0, for i 6= k, l < r,

r!(ℓ′k)r(xi), for i 6= k, l = r.

Studying the regularity of the problem let us consider the homogeneous case, when
y
(l)
i = 0 (l = 0, 1, . . . , r−2, r; i = 1, . . . , n) andȳ

(j)
i = 0 (j = 0, . . . , ji−1; i = 1, . . . , m).

It is obvious that every polynomial̄RN which satisfies the conditions,

(2.6)
R̄

(j)
N (xi) = 0, (i = 1, . . . , n; j = 0, 1, . . . , r − 2),

R̄
(j)
N (x̄i) = 0, (i = 1, . . . , m; j = 0, 1, . . . , ji − 1),
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can be written in the form

(2.7) R̄N (x) =
(

qpr−1
n Q

)

(x),

wherepn andq are defined in (2.3) andQ is a polynomial. Furthermore, on using (2.4) we
obtain
(

wR̄N

)(r)
(xi) =

(

wqpr−1
n Q

)(r)
(xi) =

(

wqpr−1
n

)(r)
(xi)Q(xi) + r!

(

wq(p′n)r−1Q′
)

(xi)

for i = 1, . . . , n. Therefore, if

(2.8)
(

wqpr−1
n

)(r)
(xi) = 0 and w(xi) 6= 0, (i = 1, . . . , n),

then

(2.9)
(

wR̄N

)(r)
(xi) = 0 if and only if Q′(xi) = 0, (i = 1, . . . , n).

ThusQ′(x) = pn(x)λ(x), whereλ is a polynomial. Since we are looking for a minimal
degree polynomial̄RN in the form (2.7) which fulfills (2.6) and (2.9) with k0 (k0 ∈ N)
additional homogeneous conditions, the degree of the polynomialQ must be less thann+k0.
For the sake of simplicity, in what follows, we will prescribe only one or two conditions at
one or two points (k0 = 1 or 2). In these cases we obtain either

Q(x) = c or Q(x) = c

∫ x

x0

pn(t)dt + d,

where the parametersc andd are to be determined from these additional conditions.
If, for example, the additional homogeneous condition is

(

wR̄N

)(r)
(x0) = 0,

then
(

wR̄N

)(r)
(x0) =

(

cwqpr−1
n

)(r)
(x0) = c

(

wqpr−1
n

)(r)
(x0) = 0.

Hence, the condition of regularity is

(

wqpr−1
n

)(r)
(x0) 6= 0.

Other cases can be discussed in a similar way and we list some of them in the following
statement.

THEOREM 2.1. If at the nodes{xi}
n
i=1 and {x̄i}

m
i=1 the weight functionw satisfies

(2.8), then the interpolation problem(2.1)–(2.2) is regular under the additional condition(s)
(i)-(v) if and only if the corresponding condition in the third column of Table2.1 is fulfilled.

REMARK 2.2. The modified weighted(0, 1, . . . , r− 2, r)-interpolation studied in [5] by
P. Mathur and S. Datta, corresponds to the special case whenm = 1, x0 = x̄1,
q(x) = (x − x0)

r−1 and the additional condition is (i) in Table2.1with j = r − 1.

3. The fundamental polynomials. In this section, we first construct polynomialsAj,k

which satisfy the following weighted(0, 1, . . . , r−2, r)-interpolation conditions at the nodes
{xi}

n
i=1

(3.1)
A

(l)
j,k(xi) = δjlδki

(wAj,k)(r)(xi) = 0

}

(i, k = 1, . . . , n;

j, l = 0, 1, . . . , r − 2),
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TABLE 2.1

Additional Interpolatory
Condition(s)

Condition for Regularity

(i) R
(j)
N

(x0) = y
(j)
0

“

qp
r−1
n

”(j)
(x0) 6= 0

(ii) (wRN )(r) (x0) = y
(r)
0

“

wqp
r−1
n

”(r)
(x0) 6= 0

(iii)
R

(r−2)
N

(x0) = y
(r−2)
0 ,

(wRN )(r) (x0) = y
(r)
0

“

qp
r−1
n

”(r−2)
(x0)

“

wqp
r−1
n

R x

x0
pn(t)dt

”(r)
(x0) −

“

wqp
r−1
n

”(r)
(x0)

“

qp
r−1
n

R x

x0
pn(t)dt

”(r−2)
(x0) 6= 0

(iv)
R

(j)
N

(x0) = y
(j)
0 ,

R
(j)
N

(xn+1) = y
(j)
n+1

(qpr−1
n )(j)(xn+1)

“

qpr−1
n

R x

x0
pn(t)dt

”(j)
(x0) −

(qp
r−1
n )(j)(x0)

“

qp
r−1
n

R x

x0
pn(t)dt

”(j)
(xn+1) 6= 0

(v)
(wRN )(r)(x0) = y

(r)
0 ,

(wRN )(r)(xn+1) = y
(r)
n+1

“

wqp
r−1
n

”(r)
(xn+1)

“

wqp
r−1
n

R x

x0
pn(t)dt

”(r)
(x0) −

“

wqp
r−1
n

”(r)
(x0)

“

wqp
r−1
n

R x

x0
pn(t)dt

”(r)
(xn+1) 6= 0

and

(3.2)
A

(l)
r,k(xi) = 0

(wAr,k)(r)(xi) = δki

}

(i, k = 1, . . . , n;

l = 0, 1, . . . , r − 2),

with Hermite-type interpolation conditions

(3.3) A
(l)
j,k(x̄i) = 0, (i = 1, . . . , m; k = 1, . . . , n; j = 0, . . . , r−2, r; l = 0, . . . , ji−1).

Let pn andq be the polynomials defined in (2.3) and let, fork = 1, . . . , n,

(3.4) Ar,k(x) =
(qpr−1

n )(x)

r! (wq(p′n)r−1) (xk)

{

cr,k +

∫ x

x0

[ℓk(t) + br,kpn(t)]dt

}

and, recursively, forj = r − 2, r − 3, . . . , 1, 0,

(3.5) Aj,k(x) =
q(x)

j!q(xk)

{

(x − xk)jℓr
k(x) + pr−1

n (x)Qj,k(x)
}

+

r−2
∑

l=j+1

d
[l]
j,kAl,k(x),

where
(3.6)

Qj,k(x) =
1

(p′n)r−1(xk)

{

cj,k +

∫ x

x0

[

qj,k(t)

(t − xk)r−j−1
+ aj,kℓk(t) + bj,kpn(t)

]

dt

}

,

(3.7) qj,k(x) = ℓk(x)

[

ℓ′k(xk) +

r−j−2
∑

l=1

γl,k(x − xk)l

]

− ℓ′k(x),
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(3.8) γl,k =
1

l!

{

ℓ
(l+1)
k (xk) − ℓ′k(xk)ℓ

(l)
k (xk) −

l−1
∑

s=1

γs,k

(

l

s

)

s!ℓ
(l−s)
k (xk)

}

,

(3.9) aj,k = −
(wqℓr

k)(r−j)(xk)

(r − j)!(wq)(xk)
−

q
(r−j−1)
j,k (xk)

(r − j − 1)!
,

(3.10) d
[l]
j,k = −

(

l

j

)

(qℓr
k)(l−j)(xk)

q(xk)
,

wherex0, bj,k, andcj,k (k = 1, . . . , n; j = 0, 1, . . . , r− 2, r) are free parameters. (In(3.5),
(3.7), and(3.8) the value of

∑

is 0 if the upper limit of the summation is less than the lower
limit.)

THEOREM 3.1. If at the nodes{xi}
n
i=1 the weight functionw and the polynomialq

satisfy the conditions

(3.11)
(

wqpr−1
n

)(r)
(xi) = 0 and w(xi)q(xi) 6= 0, (i = 1, . . . , n),

then the polynomialsAj,k (j = 0, 1, . . . , r − 2, r; k = 1, . . . , n) defined in(3.4)-(3.10) are
of degree at mostnr + M + 1 and fulfill the conditions(3.1)-(3.3).

Proof. Letk ∈ {1, . . . , n} be fixed. An easy calculation shows thatAr,k in (3.4) satisfies
the equations (3.2).

Now we are looking forAr−2,k in the form

Ar−2,k(x) =
q(x)

(r − 2)!q(xk)

{

(x − xk)r−2ℓr
k(x) + pr−1

n (x)Qr−2,k(x)
}

,

whereQr−2,k is a polynomial of degree at mostn + 1. As pn(xi) = 0 andℓk(xi) = δki

(i = 1, . . . , n), we obtain

A
(l)
r−2,k(xi) = 0, (l = 0, 1, . . . , r − 3),

andA
(r−2)
r−2,k(xi) = δki. On using (2.5) and (3.11) we get that(wAr−2,k)(r)(xi) = 0 for i 6= k

if and only if

Q′

r−2,k(xi) =
−ℓ′k(xi)

(p′n)r−1(xk)(xi − xk)
.

Hence the polynomialQ′

r−2,k can be defined by

Q′

r−2,k(x) =
1

(p′n)r−1(xk)

{

ℓ′k(xk)ℓk(x) − ℓ′k(x)

x − xk

+ ar−2,kℓk(x) + br−2,kpn(x)

}

.

From the equation(wAr−2,k)(r)(xk) = 0 we obtain the parameter

ar−2,k = −
(wqℓr

k)′′(xk)

2(wq)(xk)
−

(

ℓ′
2
k(xk) − ℓ′′k(xk)

)

,

as defined in (3.9) for j = r − 2. HenceQr−2,k is the polynomial in (3.6) for j = r − 2.
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The polynomialsAj,k we construct recursively forj = r − 3, . . . , 1, 0 in a similar way.
Hence we are looking forAj,k in the form of (3.5), where theQj,k are polynomials of degree

n + 1 and thed[l]
j,k are parameters. It is obvious that

A
(l)
j,k(xi) = 0, (l = 0, 1, . . . , r − 2; i 6= k),

A
(l)
j,k(xk) = 0, (l = 0, 1, . . . , j − 1),

A
(j)
j,k(xk) = 1.

From the conditions

A
(l)
j,k(xk) = 0, (l = j + 1, . . . , r − 2),

we obtain the parametersd[l]
j,k as it is given in (3.10). Then the polynomialsQj,k are to be

determined from the conditions

(wAj,k)(r) (xi) = 0, (i = 1, . . . , n).

On using (2.5) and (3.11), we get that(wAj,k)(r)(xi) = 0 for i 6= k if and only if

Q′

j,k(xi) =
−1

(p′n)r−1(xk)
·

ℓ′k(xi)

(xi − xk)r−j−1
.

Therefore, let us write the polynomialsQ′

j,k in the following form,

Q′

j,k(x) =
1

(p′n)r−1(xk)

{

qj,k(x)

(x − xk)r−j−1
+ aj,kℓk(x) + bj,kpn(x)

}

,

whereaj,k andbj,k are parameters, whileqj,k are polynomials which fulfill the conditions

qj,k(xi) = −ℓ′k(xi), (i 6= k).

Now we are looking for the polynomialsqj,k in the form of (3.7), where the parametersγl,k

are determined from the conditions

q
(s)
j,k(xk) = 0, (s = 1, . . . , r − j − 2).

Henceγl,k for l = 1, . . . , r − j − 2 in (3.8) assure thatQj,k are polynomials.

Finally, from the equation(wAj,k)(r) (xk) = 0, using (3.11), we get the parameteraj,k

in (3.9). Hence the polynomialsAj,k for j = 0, 1, . . . , r−2 defined in (3.5) with (3.6)-(3.10)
are of degree at mostnr + M + 1 and fulfill the equations (3.1).

The following special case illustrates how to apply Theorem3.1 to construct the funda-
mental polynomials of regular weighted(0, 1, . . . , r−2, r)-interpolation. Let us consider the
additional condition (ii) in Table2.1whenq(x) = (x − x0)

r−1, that ism = 1, x̄1 = x0 and
j1 = r−1. Hence we are looking for a polynomial of degree less than(n+1)r which fulfills
(2.1) with

R
(l)
N (x0) = y

(l)
0 , (wRN )(r)(x0) = y

(r)
0 , (l = 0, 1, . . . , r − 2),

and the problem is a weighted(0, 1, . . . , r−2, r)-interpolation problem at the nodes{xi}
n
i=0

with respect to the weight functionw. In this case the condition (3.11) can be written as

(3.12)
(

(x − x0)
r−1 w pr−1

n

)(r)
(xi) = 0 and w(xi) 6= 0, (i = 1, . . . , n),
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and the condition for regularity from Table2.1 is

(3.13)
(

(x − x0)
r−1 w pr−1

n

)(r)
(x0) 6= 0,

wherex0 6= xi (i = 1, . . . , n).
THEOREM3.2. If at the nodes{xi}

n
i=0 the weight functionw satisfies(3.12) and(3.13),

then the weighted(0, 1, . . . , r − 2, r)-interpolation is regular at the nodes{xi}
n
i=0 with re-

spect to the weight functionw. Furthermore, the interpolation polynomial is of degree less
than(n + 1)r and can be written in the form

RN (x) =

r−2
∑

j=0

n
∑

k=0

Aj,k(x)y
(j)
k +

n
∑

k=0

Ar,k(x)y
(r)
k ,

where the fundamental polynomialsAj,k are given explicitly.
Proof. Under the conditions (3.12)-(3.13) the regularity of the problem is a simple corol-

lary of Theorem2.1. The fundamental polynomialsAj,k (j = 0, 1, . . . , r − 2, r; k =
1, . . . , n) are associated with the weighted(0, 1, . . . , r − 2, r)-interpolation conditions and
they fulfill the equations (3.1)-(3.3). They are defined in (3.4)-(3.10), where

bj,k = 0, (j = 0, 1, . . . , r − 2, r; k = 1, . . . , n).

and the parameterscj,k are determined recursively forj = r, r − 2, r − 3, . . . , 1, 0 from the
conditions

(wAj,k)
(r)

(x0) = 0, (k = 1, . . . , n).

Hence, the degree of these polynomials is less than(n + 1)r.
Next let us construct the fundamental polynomialsAj,0 for j = 0, 1, . . . , r−2 which are

associated with the Hermite-type conditions, so they fulfill the conditions

A
(l)
j,0(xk) = 0, (l = 0, 1, . . . , r − 2; k = 1, . . . , n),

A
(l)
j,0(x0) = δj,l, (l = 0, 1, . . . , r − 2),

(wAj,0)
(r)

(xk) = 0, (k = 0, 1, . . . , n).

We are looking forAj,0 in the form

(3.14) Aj,0(x) = pr
n(x)(x − x0)

jrj(x) + (x − x0)
r−1pr−1

n (x)Qj(x),

whereQj is a polynomial of degree at mostn and

(3.15) rj(x) = a
(j)
0 + a

(j)
1 (x − x0) + · · · + a

(j)
r−2−j(x − x0)

r−2−j.

It is obvious that

A
(l)
j,0(xi) = 0, (l = 0, 1, . . . , r − 2),

A
(l)
j,0(x0) = 0, (l = 0, 1, . . . , j − 1).

The coefficientsa(j)
l in (3.15) are determined recursively from the conditions

A
(l)
j,0(x0) = δl,j , (l = j, j + 1, . . . , r − 2),
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and we obtain

a
(j)
0 =

1

j!pr
n(x0)

,

a
(j)
l =

−1

pr
n(x0)

l−1
∑

i=0

(pr
n)(l−i)(x0)

(l − i)!
a
(j)
i , (l = 1, . . . , r − 2 − j).

Now we construct the polynomialQj in (3.14) using the conditions(wAj,0)
(r)(xi) = 0 for

i = 1, . . . , n. Applying (2.4) and (3.12) we get

(wAj,0)
(r)(xi) = 0 if and only if Q′

j(xi) = −
p′n(xi)rj(xi)

(xi − x0)r−1−j
, (i = 1, . . . , n),

and hence we obtain

Q′

j(x) =
−p′n(x)rj(x) + pn(x)r̄j(x)

(x − x0)r−1−j
,

where the polynomial̄rj is of degreer − 2 − j and the coefficients are to be determined
uniquely from the equations

(

−p′n rj + pn r̄j

)(l)
(x0) = 0, (l = 0, 1, . . . , r − 2 − j).

Therefore,

Qj(x) = cj +

∫ x

x0

−p′n(t)rj(t) + pn(t)r̄j(t)

(t − x0)r−1−j
dt,

where the parametercj is to be determined from the condition(wAj,0)
(r)(x0) = 0.

Finally, it is easy to verify that the polynomial

Ar,0(x) =
pr−1

n (x)(x − x0)
r−1

(

(x − x0)r−1wpr−1
n

)(r)
(x0)

fulfills the conditions

A
(l)
r,0(xk) = 0, (l = 0, 1, . . . , r − 2; k = 0, 1, . . . , n),

(wAr,0)
(r) (xk) = δk,0, (k = 0, 1, . . . , n).

4. Regular weighted(0, 1, . . . , r − 2, r)-interpolation at the roots of the classical
orthogonal polynomials. The classical orthogonal polynomials (Jacobi, Hermite, and La-
guerre polynomials) fulfill the differential equation

(ωy)′′ + f · (ωy) = 0

with some weight functionω and functionf . Hence, ifpn is a classical orthogonal polyno-
mial of degreen andpn(xi) = 0, then

(ωpn)′′(xi) = 0, (i = 1, . . . , n)

whereω is given in Table4.1; cf. Szegő [7].
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TABLE 4.1

pn(x) (a, b) ω(x)
Hermite

Hn(x) (−∞,∞) e−
x2

2

Laguerre

L
(α)
n (x) [0,∞) e−

x
2 x

α+1

2

(α > −1)
Jacobi

P
(α,β)
n (x) [−1, 1] (1 − x)

α+1

2 (1 + x)
β+1

2

(α, β > −1)

LEMMA 4.1. If ω(xi) 6= 0 at the nodes{xi}
n
i=1, then

(ωpn)
′′

(xi) = 0 if and only if
(

(ωpn)
r−1)(r)

(xi) = 0, (i = 1, . . . , n).

Proof. On using (2.4) and the fact thatxi (i = 1, . . . , n) are distinct roots of the polyno-
mial pn, we obtain

(

(ωpn)r−1)(r)
(xi) =

(

ωr−1 · (pn)r−1
)(r)

(xi)

=
(r − 1)r!

2

(

ω · (p′n)
)r−2

(xi)
(

ωp′′n + 2ω′p′n
)

(xi)

=
(r − 1)r!

2

(

ω · (p′n)
)r−2

(xi) (ωpn)
′′

(xi).

Let the nodes{xi}
n
i=1 be the roots of the classical orthogonal polynomialpn and letω be

the function associated withpn in Table4.1. Furthermore, let us define the weight function
w as

(4.1) w(x) =
ωr−1(x)

q(x)
,

whereq is the polynomial defined in (2.3). On using Lemma4.1 it is obvious that the nodes
and the weight function defined in (4.1) satisfy the conditions (2.8). Hence, applying Theo-
rems2.1and3.2, we obtain regular weighted(0, 1, . . . , r− 2, r)-interpolation on the roots of
the classical orthogonal polynomials with respect to the weight functionw in (4.1). Now we
present only a special case when the nodes are the roots of theLaguerre-polynomialL(α)

n on
the interval[0,∞). Other cases can be discussed in a similar way.

THEOREM 4.2. If the nodes{xi}
n
i=1 are the roots of the Laguerre-polynomialL

(α)
n

(α > −1), then the weighted(0, 1, . . . , r − 2, r)-interpolation with respect to the weight
function

w(x) =
(

x
α−1

2 e−
x
2

)r−1

is regular for

α =
2j

r − 1
− 1, (j = 1, . . . , r).
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Proof. Let pn = L
(α)
n (α > −1), x0 = 0, q(x) = xr−1, andω(x) = x

α+1

2 e−
x
2 . Then

w(x) =
ωr−1(x)

xr−1
=

(

x
α−1

2 e−
x
2

)r−1

.

As L
(α)
n (0) =

(

n+α

n

)

> 0 and
(

L
(α)
n

)

′

(x) = −L
(α+1)
n−1 (x) (c.f. G. Szegő [7]), the sign of

(

L
(α)
n

)(j)

(0) is (−1)j and therefore by induction for allj

(

(

e−
x
2 L(α)

n

)r−1
)(j)

(0) 6= 0.

Thus, the condition (3.13) is fulfilled if

α + 1

2
(r − 1) = j, (j = 1, . . . , r),

and we can apply Theorem3.2.
On using the notationL(−1)

n (x) = − x
n
L

(1)
n−1(x), in the special casej = r− 1, we obtain

the following theorem.
THEOREM 4.3. If the nodes are the roots of the polynomialL

(−1)
n , then the weighted

(0, 1, . . . , r−2, r)-interpolation is regular with respect to the weight functionw(x) = e−
x
2
(r−1).

The interpolation polynomial is constructed explicitly inTheorem3.2.
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[7] G. SZEGŐ, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., 23, New York, 1939, Fourth ed., 1975.

http://etna.math.kent.edu/vol.25.2006/pp206-223.dir

